• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    人工智能在眼底病中的應(yīng)用

    2022-11-23 21:56:16林喆綜述李龍輝趙蘭琴鄧文銳崔婷欣林浩添審校
    眼科學(xué)報(bào) 2022年3期
    關(guān)鍵詞:眼科學(xué)中山大學(xué)眼科

    林喆 綜述 李龍輝,趙蘭琴,鄧文銳,崔婷欣,林浩添 審校

    (1.中山大學(xué)醫(yī)學(xué)院,廣州 510080;2.中山大學(xué)中山眼科中心,眼科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,廣東省眼科視覺(jué)科學(xué)重點(diǎn)實(shí)驗(yàn)室,廣州 510060)

    Ocular fundus disease is complex and challenging.As the population aged,it has posed a major threat to people’s health.In China,the most common fundus diseases include diabetic retinopathy (DR),retinal vein occlusion (RVO),glaucoma and so on.Among all kinds of technology,medical image is the most important one for clinical diagnosis and prediction.Ophthalmologists tend to use fundus images,optical coherence tomography(OCT) and so on.At present,the diagnosis based on medical images is quite subjective.For the same image,different ophthalmologists may get different results.In addition,manual analysis will require a lot of time.

    Deep learning (DL) is an important part of artificial intelligence (AI).It can learn experience (characteristics of fundus diseases) from data (medical images) and analyze new data.Therefore,AI technology can provide objective results.It can also save time.

    1 AI,DL,and convolutional neural networks (CNN)

    AI was first proposed by Mccarthy’s team[1]in the 1950s.It is a branch of computer science and mainly develops intelligent systems which simulate human thought.Machine learning (ML) is an important part of AI[2].It is a group of efficient algorithms figuring out laws from data.Traditional ML includes support vector machine (SVM),random forest,and other algorithms.DL,including CNN and artificial neural networks,is a sub-field of ML[3].DL is far more excellent than classic ML in analyzing images.This is because DL is good at processing large amounts of data,so that the algorithm can better fit the original data.Exceptionally,DL can retain the original features of the data,that is,some components in the image.These components are layered on top of each other and eventually become an image.This is similar to how the human brain processes images.Thanks to the development of computer performance,DL has achieved great progress in image analysis[4],language[5],and other aspects.In the medical field,especially in the ocular fundus disease diagnosis,DL can diagnose a variety of diseases,and the accuracy is close to or even higher than that of experienced doctors[6-8].

    2 AI in fundus diseases

    2.1 DR

    DR is a leading cause of vision impairment and blindness.By 2040,600 million people worldwide will have diabetes,with a third having DR[9].The fundus photography is generally recognized as a conventional method of diagnosing DR.As DL performs well in detecting features in fundus photographs,it can be applied to detecting DR.While the DR screening progress meets with difficulties,such as high cost,not enough qualified doctors,DL has totally changed the performance of detecting DR.

    In 2016,Gulshanet al.[8]showed that DL gave an excellent performance in detecting referable DR.The system achieved 90.3% and 87.0% sensitivity,with 98.1%and 98.5% specificity,when detecting two validation sets of referable DR.It rivaled results of a panel of 7 US board-certified ophthalmologists.Later in 2017,Tinget al.[10]showed that deep learning system (DLS)also performed well when detecting DR through retinal images from multiethnic populations.Its sensitivity was 90.5% and specificity was 91.6%.

    Recently,researchers are devoted to verifying the application to more advanced technology.Ohet al.[11]showed that the DLS based on ultra-widefield (UWF) outperformed that based on the optic disc and macula-centered image in a statistical sense.Hacisoftaogluet al.[12]applied ResNet50 model to images taken on smartphones to detect DR.The model achieved 98.6% accuracy,with 98.2%sensitivity and 99.1% specificity.

    Besides,DLS has achieved remarkable progress in clinical application.In 2018,IDx-DR[13]was the first DLS to be approved for DR detection by Food and Drug Administration.It performed well in the clinical trial,with 87.2% sensitivity and 90.7% specificity.It can be used in primary care and alleviate the demand for human physicians.EyeArt[14]is a DR detection system based on cloud technology.It achieved 91.7%sensitivity and 91.5% specificity in a retrospective study with 78,685 patients involved.With its potential benefits of efficiency and reproducibility,EyeArt would be useful in reducing the burden from the increased people with diabetes.

    2.2 RVO

    RVO is one of the major global blinding diseases[15].After DR,it is the second most common clinical retinal vascular disease[16].In 2018,Nagasatoet al.[17]used DLS to detect central retinal vein occlusion (CRVO)in UWF images.The DL technology is superior in sensitivity,specificity and area under curve (AUC),better than SVM.This experiment showed the possibility of automatic CRVO detection with DL.In 2019,Nagasatoet al.[18]confirmed that DLS has similar advantages in detecting branch retinal vein occlusion (BRVO) through UWF images.At the same time,Nagasatoet al.[19]used DLS to detect the non-perfusion area through optical coherence tomography angiography (OCTA) images.The results showed that DLS is superior to SVM and human RVO experts.Yeunget al.[20]graded the OCTA images of BRVO patients as mild,moderate and severe macular ischemia.DLS detected these images,generated parameters and was compared with OCTA machine.In the images of severe macular ischemia,DLS results of denoised images are more accurate than of original images.The research showed that it is conducive to denoise OCTA images for automatic macular ischemia grading in BRVO eyes.

    2.3 The fundus lesion of glaucoma

    Glaucoma is a progressive optic neuropathy that can cause retinal nerve fiber layer (RNFL) defect and glaucomatous optic neuropathy (GON)[21].For people aged 40 to 80,the global prevalence rate of glaucoma is 3.4%.Moreover,it is estimated that by 2040,there will be approximately 112 million affected people worldwide[9].

    定義 5[9] 一個(gè)覆蓋決策系統(tǒng)是一個(gè)二元組(U, A∪D), A∩D=?,其中(U,A)是一個(gè)覆蓋信息系統(tǒng),A稱為條件屬性集,D=j5i0abt0b稱為決策屬性集,d是名義值或符號(hào)值的屬性,成立一個(gè)映射U→Vd,且Vd={d(x)U}稱為決策屬性d的值域。

    While glaucoma damage is irreversible,early treatment can usually prevent or slow functional impairment progression.Therefore,researches on detecting potential glaucoma and glaucoma progression have flourished recently.Leeet al.[22]developed a DLS to predict glaucoma development through fundus images.The system detected RNFL thickness and predicted the change of it.The study showed that the rate of change of RNFL thickness predicted the conversion to glaucoma.Christopheret al.[23]used DL models to predict the progression of glaucoma visual field damage through spectral domain OCT (SD OCT).The study showed that the model based on RNFL en face images performed better than that based on RNFL thickness maps.Garciaet al.[6]used Kalman filtering to predict intraocular pressure (IOP) through previous IOP results.The study showed that predicted IOP accorded well with observed IOP.Besides,some important progress has been made on glaucoma detection.Medeiroset al.[24]developed a machine-to-machine DLS without human labeling.The system used a classifier trained by RNFL thickness data which is extracted from SD OCT.In this way,it can avoid mistakes that human markers usually make.For example,it can distinguish eyes with large physiologic cups from those with actual glaucomatous damage.The study has opened new possibilities of surpassing human markers’ limitations.Thompsonet al.[25]developed a DLS without conventional segmentation of RNFL.It performed better than the conventional method in detecting glaucoma.This may be a new approach to improving the accuracy and sensitivity in glaucoma detection.Liet al.[26]developed a DLS for GON detection through color fundus photographs.The DLS achieved an AUC of 0.983 to 0.999.It is comparable to that of an experienced ophthalmologist.

    2.4 Age-related macular degeneration (AMD)

    In developed countries,many patients are blind because of AMD[27-28].It is the major course of vision impairment in American whites aged over 50[29].The incidence rate of AMD in China will be increasing because of the aging population[30].Scientists estimated that there would be 288 million AMD patients by 2040[31].

    In 2018,Rohmet al.[32]showed that ML performed well in predicting AMD progression.The system predicted subjects’ visual acuity (VA) by 41 medical records and OCT features.The prediction results are close to the actual ones.

    There is an urgent need for efficient methods of AMD prediction.AI has made excellent progress in this area.Banerjeeet al.[33]proposed a model to predict the risk of exudation in non-exudative AMD eyes.The system performed well in forecasting in the short term (within 3 months) and long term (within 21 months).While the AUC of 21 months is significantly lower than 3 months,its high performance within 3 months showed the possibility of impacting clinical follow-up.Yimet al.[7]used a DLS to predict the AMD progression of patients’ one eye,the other eye of whom has been diagnosed as AMD.Its accuracy is better than 5 of the 6 ophthalmologists.Waldsteinet al.[34]used a DLS to predict early-stage and middle-stage AMD progression to late stage.The system made a prediction by detecting drusen and hyper-reflective foci (HRF) from OCT images.Leeet al.[35]developed a DLS to predict visual prognosis.The system made a prediction by analyzing features in OCT images,such as intraretinal fluid,subretinal fluid,and pigment epithelial detachment.Liuet al.[36]developed a DLS to predict responses to treatment.The system made a prediction by detecting pretherapeutic OCT images.Researchers compared the prediction with the observed post-therapeutic OCT image and found a strong correlation between them.

    Besides,AI has performed well in AMD diagnosis.Lieferset al.[37]developed a DLS to detect AMD and evaluated its performance.They trained the system for the segmentation of 13 features associated with atrophic AMD.The system obtained a higher score than experienced human graders on 11 features out of 13.

    2.5 Retinopathy of prematurity (ROP)

    ROP is a leading cause of childhood blindness worldwide[38].ROP screening can identify early signs of severe ROP,and with timely treatment it can prevent most cases of ROP blindness[39].Therefore,researchers have been paying attention to the prediction of ROP.Tayloret al.[40]developed a DLS to predict ROP progression.The system proposed the ROP vascular severity score by detecting clinical examination images.And it made a prediction based on these scores.The prediction is associated with clinical progression.Huanget al.[41]used a DLS to predict visual prognosis after treatment.The system predicted the VA,best corrected VA (BCVA) and spherical equivalent (SE) of ROP patients.It performed better on predicting SE than on predicting VA and BCVA.Wanget al.[42]developed 4 classifiers,including image quality,any stage of ROP,intraocular hemorrhage,and preplus/plus diseases.The platform integrated the results of 4 classifiers and generated the diagnosis results.Its performance is comparable to human ROP experts.

    2.6 Central serous chorioretinopathy (CSC)

    CSC is one of the most common ocular fundus diseases,affecting middle-aged men mostly[43].Zhenet al.[44]used Inception-V3 to assess CSC depicted on color fundus photographs.The research showed that the performance of DLS is comparable to 2 ophthalmologists.Yoonet al.[45]developed a new DL model to diagnose CSC in SD-OCT images,and distinguish chronic from acute CSC.The research showed that the new model is superior to VGG-16 and Resnet-50 in both diagnosis and classification.And it is comparable to human experts.

    2.7 Retinal detachment (RD)

    According to the cause,RD can be divided into rhegmatogenous retinal detachment (RRD) and nonrhegmatogenous.RRD can lead to blindness without surgical treatment[46].Liet al.[47]developed a DLS that can detect RD based on UWF images.Its performance is comparable to human experts.It can also guide patients to adopt an appropriate position before surgery,which can reduce RD progression.Xinget al.[48]developed a weakly supervised two-stage learning architecture to detect and segment RD.They designed a Located-CNN to detect lesion regions in SD-OCT.The results showed that this method is superior to some models trained with stronger supervision.It is a promising method as it reduces the amount of labelling.

    2.8 Retinitis pigmentosa (RP)

    RP is the most common blinding inherited fundus disease[49].Masumotoet al.[50]used CNN to detect RP through UWF pseudocolor imaging and UWF autofluorescence of retinitis pigmentosa.The research showed that DLS performed well in these two kinds of UWF images.Arsalanet al.[51]developed RPS-Net,an automatic RP segmentation network based on DL.This method provided fine segmentation and accurately detected RP even in the case of degraded images.The research showed that RPS-Net is superior to the stateof-the-art methods in segmentation.

    2.9 Other optical fundus diseases

    Diabetic macular edema (DME),optical neuritis,lattice degeneration,and retinal breaks are common.Wuet al.[52]developed a DLS to detect DME based on OCT images.They train the DLS to detect 3 OCT patterns of DME,including diffused retinal thickening,cystoid macular edema,and serous retinal detachment.The system showed high accuracy,sensitivity,specificity,and AUC in all 3 patterns.It also performed well in external validation.This research emphasized the potential of DL in detecting DME.Abri Aghdamet al.[53]used learning decision tree to assess the probability of conversion to multiple sclerosis (MS) in patients with optic neuritis.The DLS also evaluated the factor most related to the conversion.Results showed that the overall conversion rate to MS was 42.2%and the presence of white matter plaque was the most important factor.Liet al.[54]developed a DLS to identify lattice degeneration and retinal breaks based on UWF images.They used 4 different DL algorithms (VGG16,InceptionV3,InceptionResNetV2,and ResNet50)with 3 preprocessing techniques (original,augmented,and histogram-equalized images) for the training.The research confirmed that InceptionResNetV2 was the best algorithm and the original image augmentation was the best preprocessing technique.

    3 Potential challenges

    3.1 The Black-box problem

    As AI is widely used in the medical field,the AI blackbox has become a critical problem which researchers have to solve.Since AI’s neural network algorithm is too complicated for humans,it is difficult for human end-users to know whether the conclusion is reliable.As humans require more accurate algorithms,the system will be more complicated and more difficult to be interpreted.However,when DL is used in medical diagnosis,it is bound to use detection methods which is understandable for humans,in order to judge the reliability.

    In recent years,researchers are developing methods to interpret DL algorithms to solve this problem.The most common and simplest method is to perform an occlusion test used for AMD detection on OCT[55].Recently,Schmidt-Erfurthet al.[56]have used statistical indicators to compare the interpretability of different algorithms used to diagnose glaucoma.These studies will significantly promote clinical understanding.

    3.2 Poor adaptability to different equipment

    When we developed a new DLS,the image data for training and detecting often come from the same equipment.When the AI model is applied to images obtained by equipment different from its training data source,its accuracy will often decrease.This problem is obvious in OCT images.

    Different countries,regions and medical institutions have different inspection equipment.And the quality of the pictures needed for training will be unstable,which will ultimately affect the accuracy of AI model.

    3.3 Unsophisticated databases

    Several databases cannot reflect the real world.The data currently used for AI research are mostly public databases or databases designed for other researches.Most of the data only include the target disease,but many people actually have multiple eye diseases.What’s more,the data often include only one single race,which means it cannot reflect the obvious ethnic differences among people.It is extremely urgent for us to develop more sophisticated databases.

    3.4 Different diagnostic criteria

    In clinical practice,ophthalmologists make a diagnosis based on multiple factors.But in researches,diagnosis from DLS usually bases on one certain factor.This makes a huge difference.Taking glaucoma as an example,ophthalmologists need to consider complicated examination results,such as IOP,OCT images,visual field and so on.While the DLS only consider one of these factors.The ability of AI to make a diagnosis based on multiple factors is unknown.

    4 Conclusions

    DL is the most advanced AI ML technology.It has shown clinically acceptable performance in many ocular fundus diseases,such as DR,glaucoma,and AMD.AI has helped humans to predict ocular fundus diseases and reduce their prevalence.The progress on AI also shows the possibility of decreasing the incidence rate in low-income and middle-income areas.Especially for glaucoma,a fast and irreversible eye disease,it will vastly change patients’ fate.In order to improve the DL system’s clinical acceptance,it is essential to use existing and future methods to unlock the black-box nature of DL.Despite the challenges,DL may lead the advance in medicine and ophthalmology for decades.

    Footnote

    Ethical Statement:The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

    Open Access Statement:This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0),which permits the noncommercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license).See:https://creativecommons.org/licenses/byncnd/4.0/.

    猜你喜歡
    眼科學(xué)中山大學(xué)眼科
    眼科診所、眼科門(mén)診、視光中心的區(qū)別
    第二十二屆亞非眼科大會(huì)(AACO 2022)
    第二十二屆亞非眼科大會(huì)(AACO 2022)
    我國(guó)最大海洋綜合科考實(shí)習(xí)船“中山大學(xué)號(hào)”下水
    軍事文摘(2020年22期)2021-01-04 02:16:46
    亞非眼科學(xué)會(huì)第二十屆眼科大會(huì)
    ———AACO 2020
    中山大學(xué)歷史地理信息系統(tǒng)(SYSU-HGIS)實(shí)驗(yàn)室簡(jiǎn)介
    亞非眼科學(xué)會(huì)第二十屆眼科大會(huì)
    ——AACO2020
    亞非眼科學(xué)會(huì)第二十屆眼科大會(huì)
    ——AACO 2020
    亞非眼科學(xué)會(huì)第二十屆眼科大會(huì)
    ——AACO 2020
    一擊止“痛”!450余水產(chǎn)人聚焦第九屆中山大學(xué)水產(chǎn)飼料技術(shù)創(chuàng)新大會(huì),教你從百億到百年
    一本精品99久久精品77| 一级a爱片免费观看的视频| 国产激情偷乱视频一区二区| 99久国产av精品| 少妇人妻一区二区三区视频| 91狼人影院| 极品教师在线视频| 国产欧美日韩一区二区精品| 少妇的逼好多水| 男女下面进入的视频免费午夜| 日本-黄色视频高清免费观看| 国产精品野战在线观看| 一级av片app| 国产亚洲av嫩草精品影院| 国产男人的电影天堂91| 亚洲欧美日韩无卡精品| 成人美女网站在线观看视频| 国产精品嫩草影院av在线观看 | 人妻制服诱惑在线中文字幕| 久久草成人影院| 成人无遮挡网站| 乱人视频在线观看| 美女高潮喷水抽搐中文字幕| 免费电影在线观看免费观看| 亚洲狠狠婷婷综合久久图片| 听说在线观看完整版免费高清| 亚洲国产欧美人成| 露出奶头的视频| 制服丝袜大香蕉在线| 一个人观看的视频www高清免费观看| 精品免费久久久久久久清纯| 久久久精品欧美日韩精品| 国产精品精品国产色婷婷| 久久6这里有精品| 日本免费a在线| 九九热线精品视视频播放| 国产精品国产三级国产av玫瑰| 亚洲成人精品中文字幕电影| 亚洲国产精品sss在线观看| 神马国产精品三级电影在线观看| 国产高潮美女av| 999久久久精品免费观看国产| 又紧又爽又黄一区二区| 国产精品电影一区二区三区| 如何舔出高潮| 日本撒尿小便嘘嘘汇集6| 国模一区二区三区四区视频| 一区二区三区四区激情视频 | 国产淫片久久久久久久久| 桃红色精品国产亚洲av| 国产精品久久久久久av不卡| 成人18禁高潮啪啪吃奶动态图 | 色婷婷久久久亚洲欧美| 亚洲精品国产色婷婷电影| 亚洲熟女精品中文字幕| 国产爱豆传媒在线观看| 久久国产精品大桥未久av | 精品亚洲成国产av| 最近的中文字幕免费完整| 国产在视频线精品| 街头女战士在线观看网站| 国产精品一区二区性色av| 三级经典国产精品| 久久毛片免费看一区二区三区| 国产精品一二三区在线看| 男人和女人高潮做爰伦理| 最近中文字幕高清免费大全6| 激情五月婷婷亚洲| 免费久久久久久久精品成人欧美视频 | 2018国产大陆天天弄谢| 久久精品久久久久久噜噜老黄| 国产精品偷伦视频观看了| 网址你懂的国产日韩在线| 欧美成人午夜免费资源| 精品一区二区三区视频在线| 一区二区三区四区激情视频| 久久影院123| 欧美精品国产亚洲| 亚洲精品,欧美精品| 1000部很黄的大片| 免费av不卡在线播放| 日韩,欧美,国产一区二区三区| 成人高潮视频无遮挡免费网站| 精品少妇黑人巨大在线播放| 久热这里只有精品99| 久久久a久久爽久久v久久| 亚洲精品国产av蜜桃| 午夜激情福利司机影院| 午夜激情福利司机影院| 国产精品99久久99久久久不卡 | 91久久精品国产一区二区三区| 亚洲国产av新网站| 国内揄拍国产精品人妻在线| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频| 日本猛色少妇xxxxx猛交久久| 97超视频在线观看视频| 亚洲av成人精品一二三区| 国内揄拍国产精品人妻在线| 国产精品福利在线免费观看| 精品熟女少妇av免费看| 国产精品久久久久久久电影| 国产成人精品福利久久| 人人妻人人爽人人添夜夜欢视频 | 国国产精品蜜臀av免费| 黑人猛操日本美女一级片| 亚洲精品色激情综合| 一级片'在线观看视频| 精华霜和精华液先用哪个| 永久免费av网站大全| 国产有黄有色有爽视频| 久久久久久久久久久免费av| 看免费成人av毛片| 十八禁网站网址无遮挡 | 特大巨黑吊av在线直播| 亚洲美女搞黄在线观看| 韩国高清视频一区二区三区| 国产黄片视频在线免费观看| 99九九线精品视频在线观看视频| 伦理电影免费视频| 久久99热这里只频精品6学生| 亚洲色图综合在线观看| 好男人视频免费观看在线| 好男人视频免费观看在线| 亚洲精品国产av成人精品| 国产老妇伦熟女老妇高清| 免费看av在线观看网站| 国产爽快片一区二区三区| av在线老鸭窝| 国产av一区二区精品久久 | 欧美最新免费一区二区三区| 国产精品99久久久久久久久| 麻豆成人av视频| 在线精品无人区一区二区三 | 国产亚洲午夜精品一区二区久久| 欧美另类一区| 午夜福利视频精品| 亚洲高清免费不卡视频| 又粗又硬又长又爽又黄的视频| 最近最新中文字幕免费大全7| 少妇人妻久久综合中文| 亚洲综合色惰| 亚洲自偷自拍三级| 在线观看三级黄色| h视频一区二区三区| 久久av网站| 蜜臀久久99精品久久宅男| 国产免费一级a男人的天堂| 婷婷色麻豆天堂久久| 欧美三级亚洲精品| 亚洲电影在线观看av| 国产成人精品久久久久久| 国产免费一级a男人的天堂| 天天躁夜夜躁狠狠久久av| 日韩av在线免费看完整版不卡| 汤姆久久久久久久影院中文字幕| 午夜福利在线在线| www.色视频.com| 久久99热这里只有精品18| 国产精品人妻久久久影院| 色哟哟·www| 99九九线精品视频在线观看视频| 久久久久久久精品精品| 91久久精品国产一区二区成人| 99九九线精品视频在线观看视频| 欧美日韩视频高清一区二区三区二| 在线观看免费高清a一片| 好男人视频免费观看在线| 亚洲国产最新在线播放| 婷婷色综合www| 亚洲国产精品成人久久小说| 欧美 日韩 精品 国产| 青春草视频在线免费观看| 亚洲av不卡在线观看| 亚洲精品一区蜜桃| 成人美女网站在线观看视频| 一级毛片aaaaaa免费看小| 伦精品一区二区三区| 久久女婷五月综合色啪小说| 网址你懂的国产日韩在线| 看十八女毛片水多多多| 夜夜看夜夜爽夜夜摸| 欧美xxⅹ黑人| 亚洲精品aⅴ在线观看| 国产成人免费观看mmmm| 国产亚洲91精品色在线| 亚州av有码| 亚州av有码| 欧美最新免费一区二区三区| 网址你懂的国产日韩在线| 99精国产麻豆久久婷婷| 国产高潮美女av| 亚洲精品,欧美精品| 日本与韩国留学比较| 久久久国产一区二区| 美女xxoo啪啪120秒动态图| 天堂8中文在线网| av国产久精品久网站免费入址| 日韩欧美精品免费久久| 久久精品夜色国产| 午夜激情福利司机影院| 一级av片app| 99热这里只有是精品在线观看| 亚洲精品国产av蜜桃| 国产成人a区在线观看| 在线播放无遮挡| 伦理电影大哥的女人| 边亲边吃奶的免费视频| 欧美日韩在线观看h| 免费不卡的大黄色大毛片视频在线观看| 亚洲内射少妇av| 超碰av人人做人人爽久久| 亚洲婷婷狠狠爱综合网| 国产 精品1| 香蕉精品网在线| 日本欧美视频一区| 人妻 亚洲 视频| 大香蕉久久网| 国产成人精品久久久久久| 亚洲精品自拍成人| 亚洲欧美精品专区久久| 国内揄拍国产精品人妻在线| 一级a做视频免费观看| 亚洲aⅴ乱码一区二区在线播放| 美女内射精品一级片tv| 亚洲四区av| 亚洲精品中文字幕在线视频 | 十分钟在线观看高清视频www | 99视频精品全部免费 在线| 只有这里有精品99| 久久久久精品久久久久真实原创| 我的女老师完整版在线观看| 精品久久久久久久久av| 校园人妻丝袜中文字幕| 亚洲av免费高清在线观看| 国产久久久一区二区三区| 秋霞伦理黄片| 女性生殖器流出的白浆| 国产乱人视频| 国产成人免费观看mmmm| 国国产精品蜜臀av免费| 亚洲成人手机| 成人二区视频| 亚洲三级黄色毛片| 成人高潮视频无遮挡免费网站| 国产精品一区二区在线观看99| 男的添女的下面高潮视频| 亚洲熟女精品中文字幕| 十分钟在线观看高清视频www | 亚洲av日韩在线播放| 欧美日韩视频精品一区| 日韩强制内射视频| 亚洲欧美清纯卡通| 精品99又大又爽又粗少妇毛片| 午夜视频国产福利| 成人免费观看视频高清| 亚洲真实伦在线观看| 国产欧美另类精品又又久久亚洲欧美| 一区二区三区四区激情视频| 最近2019中文字幕mv第一页| av黄色大香蕉| 久久av网站| 日韩欧美 国产精品| 亚洲国产av新网站| 免费大片18禁| 男人爽女人下面视频在线观看| 最近最新中文字幕大全电影3| 在线精品无人区一区二区三 | 午夜免费鲁丝| 久久久色成人| 极品少妇高潮喷水抽搐| 久久鲁丝午夜福利片| 国产高潮美女av| 精华霜和精华液先用哪个| 黑人猛操日本美女一级片| 亚洲国产最新在线播放| 啦啦啦啦在线视频资源| 人人妻人人看人人澡| av网站免费在线观看视频| 777米奇影视久久| 午夜老司机福利剧场| 亚洲国产成人一精品久久久| 久久av网站| 自拍偷自拍亚洲精品老妇| 97在线视频观看| 亚洲综合精品二区| 精品亚洲乱码少妇综合久久| 欧美老熟妇乱子伦牲交| 亚洲av欧美aⅴ国产| 国产精品人妻久久久影院| 亚州av有码| 一级毛片久久久久久久久女| 日本av手机在线免费观看| 国产在视频线精品| 亚洲图色成人| 一个人看的www免费观看视频| 国产精品一二三区在线看| 少妇熟女欧美另类| 蜜桃久久精品国产亚洲av| 亚洲最大成人中文| 午夜日本视频在线| 国产亚洲91精品色在线| 美女cb高潮喷水在线观看| 99久久人妻综合| 亚洲中文av在线| 欧美日韩在线观看h| 午夜激情久久久久久久| 2021少妇久久久久久久久久久| 乱码一卡2卡4卡精品| 免费av不卡在线播放| 又大又黄又爽视频免费| 色视频在线一区二区三区| 婷婷色av中文字幕| 99国产精品免费福利视频| 亚洲美女黄色视频免费看| 国产成人免费无遮挡视频| 如何舔出高潮| 97超碰精品成人国产| 成人毛片60女人毛片免费| 少妇丰满av| 欧美一区二区亚洲| 久久精品久久久久久久性| 亚洲久久久国产精品| 午夜福利网站1000一区二区三区| 国产高清有码在线观看视频| 中文字幕免费在线视频6| 高清黄色对白视频在线免费看 | 午夜福利在线在线| 精品久久久久久久久av| 最近的中文字幕免费完整| 日韩在线高清观看一区二区三区| 亚洲精品视频女| 2018国产大陆天天弄谢| 狂野欧美激情性bbbbbb| 国产午夜精品一二区理论片| freevideosex欧美| 搡老乐熟女国产| 超碰97精品在线观看| 欧美日本视频| 国产高潮美女av| 午夜激情久久久久久久| 一本一本综合久久| 最近最新中文字幕大全电影3| 国产高清不卡午夜福利| 亚洲欧洲国产日韩| 久久精品久久精品一区二区三区| 免费在线观看成人毛片| 97超碰精品成人国产| 久久久午夜欧美精品| 国产精品免费大片| 久久久久精品性色| 黄色欧美视频在线观看| 日本-黄色视频高清免费观看| 亚洲av男天堂| videossex国产| 国产在线一区二区三区精| 精品酒店卫生间| 男女下面进入的视频免费午夜| 久久6这里有精品| 成年av动漫网址| 欧美最新免费一区二区三区| 亚洲国产精品专区欧美| 一区二区三区乱码不卡18| 精品亚洲成国产av| 日本-黄色视频高清免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 少妇人妻精品综合一区二区| 成人免费观看视频高清| 成人影院久久| 少妇精品久久久久久久| 一区在线观看完整版| 精品一区二区三区视频在线| 国产男女超爽视频在线观看| 免费av中文字幕在线| 亚洲精品乱码久久久v下载方式| 日韩一本色道免费dvd| 美女福利国产在线 | 精品人妻偷拍中文字幕| 国产高清国产精品国产三级 | 精品一区二区免费观看| 熟女人妻精品中文字幕| 网址你懂的国产日韩在线| 99九九线精品视频在线观看视频| 亚洲av成人精品一区久久| 成人黄色视频免费在线看| 大香蕉97超碰在线| 大香蕉久久网| 日韩中文字幕视频在线看片 | 亚洲成人av在线免费| av一本久久久久| 亚洲精品456在线播放app| 国产成人freesex在线| 最新中文字幕久久久久| 六月丁香七月| 国产 一区 欧美 日韩| 亚洲欧美精品自产自拍| 国产亚洲欧美精品永久| 精品人妻熟女av久视频| 国产探花极品一区二区| 97超视频在线观看视频| 国产成人a∨麻豆精品| 国产高清三级在线| 午夜福利高清视频| 亚洲av电影在线观看一区二区三区| 欧美3d第一页| 亚洲av二区三区四区| 高清日韩中文字幕在线| 麻豆精品久久久久久蜜桃| 欧美三级亚洲精品| 超碰av人人做人人爽久久| 精品久久久噜噜| 黄片无遮挡物在线观看| 久久 成人 亚洲| 久久久久久久亚洲中文字幕| 成人毛片60女人毛片免费| 久久ye,这里只有精品| 欧美成人精品欧美一级黄| 黑丝袜美女国产一区| 国产男人的电影天堂91| 少妇 在线观看| 99re6热这里在线精品视频| 久久精品久久久久久噜噜老黄| 最后的刺客免费高清国语| 欧美一级a爱片免费观看看| 亚洲一区二区三区欧美精品| 日本av手机在线免费观看| 亚洲精品一区蜜桃| 高清黄色对白视频在线免费看 | 色婷婷av一区二区三区视频| 亚洲精品中文字幕在线视频 | 亚洲人与动物交配视频| 久久av网站| 99热网站在线观看| 精品人妻熟女av久视频| 亚洲在久久综合| 色婷婷av一区二区三区视频| 免费黄色在线免费观看| h日本视频在线播放| 免费久久久久久久精品成人欧美视频 | 国产探花极品一区二区| 日本与韩国留学比较| 美女内射精品一级片tv| 国产免费又黄又爽又色| 国产亚洲5aaaaa淫片| 国产免费视频播放在线视频| 成人美女网站在线观看视频| 亚洲精品,欧美精品| 六月丁香七月| 秋霞伦理黄片| 亚洲成人中文字幕在线播放| 插阴视频在线观看视频| 午夜视频国产福利| 国产成人免费观看mmmm| 国产中年淑女户外野战色| 日韩国内少妇激情av| 国产精品国产三级国产av玫瑰| 少妇人妻精品综合一区二区| 人妻制服诱惑在线中文字幕| 亚洲精品色激情综合| 久久久久性生活片| 网址你懂的国产日韩在线| 一级片'在线观看视频| 国产一级毛片在线| 免费观看av网站的网址| 青春草亚洲视频在线观看| av黄色大香蕉| 汤姆久久久久久久影院中文字幕| 天天躁日日操中文字幕| 80岁老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 久久久久国产精品人妻一区二区| www.av在线官网国产| 深爱激情五月婷婷| 少妇的逼水好多| 久久久久视频综合| 内地一区二区视频在线| 91aial.com中文字幕在线观看| 国产黄色视频一区二区在线观看| 99视频精品全部免费 在线| 在线观看美女被高潮喷水网站| 联通29元200g的流量卡| 精品久久久久久电影网| 成人二区视频| 这个男人来自地球电影免费观看 | 久久久久久久国产电影| 亚洲精品久久久久久婷婷小说| 在线 av 中文字幕| 夫妻性生交免费视频一级片| 天美传媒精品一区二区| 尾随美女入室| 国产精品欧美亚洲77777| 国产亚洲av片在线观看秒播厂| 久久99精品国语久久久| 在线 av 中文字幕| 插逼视频在线观看| 亚洲成人手机| 人妻制服诱惑在线中文字幕| 国产精品欧美亚洲77777| 国产高清三级在线| 一区在线观看完整版| 精品人妻熟女av久视频| 久久久久久久久久人人人人人人| 久久久久人妻精品一区果冻| 国产高清三级在线| 亚洲美女视频黄频| 91精品国产九色| 自拍偷自拍亚洲精品老妇| 大香蕉97超碰在线| 亚洲经典国产精华液单| 久久人人爽av亚洲精品天堂 | 日本色播在线视频| 乱系列少妇在线播放| 黄色配什么色好看| 少妇裸体淫交视频免费看高清| 在线观看免费视频网站a站| 国产成人91sexporn| 国产精品蜜桃在线观看| 日日啪夜夜撸| 亚洲人与动物交配视频| 国产免费福利视频在线观看| 在线观看免费高清a一片| 99国产精品免费福利视频| 中国国产av一级| av视频免费观看在线观看| 国产精品人妻久久久影院| 精品亚洲成国产av| 免费观看a级毛片全部| 久久精品国产亚洲网站| 国产精品一区二区在线观看99| 一级毛片久久久久久久久女| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 欧美 日韩 精品 国产| 亚洲精品,欧美精品| 丝袜脚勾引网站| 国产精品久久久久久久电影| 综合色丁香网| 麻豆成人av视频| 亚洲av电影在线观看一区二区三区| 日韩在线高清观看一区二区三区| 一边亲一边摸免费视频| 久久久a久久爽久久v久久| 草草在线视频免费看| 免费看av在线观看网站| 蜜臀久久99精品久久宅男| 亚洲四区av| 亚洲成人av在线免费| 91久久精品国产一区二区成人| 精品少妇黑人巨大在线播放| 国产视频首页在线观看| 午夜免费观看性视频| 国产亚洲欧美精品永久| 精品一区二区三卡| 爱豆传媒免费全集在线观看| 极品少妇高潮喷水抽搐| 亚洲美女视频黄频| 午夜精品国产一区二区电影| 亚洲成人手机| 大陆偷拍与自拍| 国产av国产精品国产| 99国产精品免费福利视频| 一级片'在线观看视频| 国产精品麻豆人妻色哟哟久久| 一区二区av电影网| 在线亚洲精品国产二区图片欧美 | 少妇人妻精品综合一区二区| 国产永久视频网站| 男人和女人高潮做爰伦理| 美女脱内裤让男人舔精品视频| 好男人视频免费观看在线| 夫妻性生交免费视频一级片| 亚洲成人手机| 最近中文字幕2019免费版| 天天躁日日操中文字幕| 黄色日韩在线| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久人人人人人人| 久久国产亚洲av麻豆专区| 国产精品.久久久| 嫩草影院新地址| 99国产精品免费福利视频| 女人十人毛片免费观看3o分钟| 国产精品.久久久| 男男h啪啪无遮挡| 内射极品少妇av片p| 一级毛片久久久久久久久女| 熟女av电影| 一级二级三级毛片免费看| 另类亚洲欧美激情| 伦理电影免费视频| 国产av一区二区精品久久 | 亚洲av免费高清在线观看| 亚洲第一区二区三区不卡| 我要看黄色一级片免费的| 欧美区成人在线视频| 国语对白做爰xxxⅹ性视频网站| 夫妻性生交免费视频一级片| 欧美成人一区二区免费高清观看| 国产高清不卡午夜福利| 王馨瑶露胸无遮挡在线观看| h日本视频在线播放| 一级毛片我不卡| 日本免费在线观看一区| 亚洲精品日本国产第一区| 在线观看av片永久免费下载| 在线免费观看不下载黄p国产| 日产精品乱码卡一卡2卡三| 免费看日本二区| 国产精品秋霞免费鲁丝片| av在线老鸭窝| 国产精品免费大片| kizo精华| 久久97久久精品| 国产av精品麻豆| 老司机影院成人|