• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing

    2022-11-21 09:32:10WeihaoLi李偉浩XiukaiLan蘭修凱XionghuaLiu劉雄華EnzeZhang張恩澤YongchengDeng鄧永城andKaiyouWang王開友
    Chinese Physics B 2022年11期
    關(guān)鍵詞:恩澤永城

    Weihao Li(李偉浩) Xiukai Lan(蘭修凱) Xionghua Liu(劉雄華)Enze Zhang(張恩澤) Yongcheng Deng(鄧永城) and Kaiyou Wang(王開友)

    1State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    3Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    4Center for Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100049,China

    Current-induced multilevel magnetization switching in ferrimagnetic spintronic devices is highly pursued for the application in neuromorphic computing. In this work, we demonstrate the switching plasticity in Co/Gd ferrimagnetic multilayers where the binary states magnetization switching induced by spin–orbit toque can be tuned into a multistate one as decreasing the domain nucleation barrier. Therefore, the switching plasticity can be tuned by the perpendicular magnetic anisotropy of the multilayers and the in-plane magnetic field. Moreover, we used the switching plasticity of Co/Gd multilayers for demonstrating spike timing-dependent plasticity and sigmoid-like activation behavior. This work gives useful guidance to design multilevel spintronic devices which could be applied in high-performance neuromorphic computing.

    Keywords: switching plasticity,compensated ferrimagnet,spin–orbit torque,spike timing-dependent plasticity,sigmoidal neuron,handwritten digits recognition,neuromorphic computing

    1. Introduction

    Neuromorphic computing inspired by biological brain is getting increased attention attributing to ultralow-power compared to the traditional computers.[1–3]The nonvolatile neurons and synapses can process datain situ, which avoids the unnecessary energy cost of the data movement between different modules.[4]Besides, neuromorphic computing not only aims to achieve significant energy saving but also attempts to improve the efficiency during performing complex tasks including cognition, control, movement, and decision making.[5,6]Although various artificial neural networks algorithms have been developed in recent years, the lack of dedicated hardware still limits the application of neuromorphic computing.[7]Recently,spintronic devices have exhibited great potential in neuromorphic computing,[8–19]since they can simulate the functions of neurons and synapses, such as nonlinearity,[9]stochasticity[8,20]and nonvolatility.[1,21]Moreover, the fast dynamics[22,23]and virtually unlimited endurance make them stand out from other competitors including phase-change,[24,25]floating gated[26]and resistive memory[6]devices.

    Compensated ferrimagnets offer the combined advantages of both ferromagnets and antiferromagnets,namely,the rich methods of manipulation and/or detection of their magnetization,ultrafast and energy-efficient spin–orbit torque(SOT)switching.[22,27–29]These advantages make them promising candidates for neuromorphic computing devices. In spintronic-based neuromorphic computing, the multilevel spintronic devices based on domain-wall (DW) motion generated multi-resistance states have been used to emulate biological synapses.[30–32]However, the stochastic nature of the DW pinning and depinning relying on the defects may limit the performance of the devices. Thus, searching for wellcontrolled methods to allow a binary ferrimagnet to realize tunable current-induced multilevel magnetization switching behavior is one of the vital issues. Recently,the tunable multilevel SOT-induced magnetization switching by adjusting the magnitude of in-plane magnetic field or current pulse with a built-in in-plane magnetic field has been observed in a ferromagnet system which suggests the plasticity of switching behavior.[18,33]However, as far as we know, few works on the switching plasticity in ferrimagnets have been reported,[23]which is certainly an urgent topic to promote the application process for spintronic-based neuromorphic computing.

    In this work, we perform experiments with perpendicular magnetic anisotropy(PMA)Co/Gd ferrimagnetic multilayers under various AlOxthickness. Both the Co and Gd layers are atomically thin, and their moments are coupled antiferromagnetically to form an artificial compensated ferrimagnetic structure. We demonstrate the switching plasticity in the Co/Gd compensated ferrimagnetic multilayers,that is,the binary switching characteristic can be tuned into a multi-state one as the domain nucleation plays a more dominating role during the magnetization switching. The magnitude of the domain nucleation barrier is dependent on the PMA of the multilayers and the external in-plane magnetic field. The excellent switching plasticity gives the ferrimagnets great potential for various neuromorphic computing applications. On the one hand, we demonstrate the spike timing-dependent plasticity(STDP)using the multilevel switching of the Co/Gd compensated ferrimagnetic multilayers.On the other hand,we demonstrate that a three-layers neural network using ferrimagnetic neurons can well recognize patterns in Modified National Institute of Standards and Technology (MNIST) database with accuracy more than 97%. Our work could provide useful information for designing future high-performance spintronicbased neuromorphic computing devices.

    2. Method

    The schematic stack structures,as shown in Fig.1(a),Ta(1)/Pt(5)/[Co(0.36)/Gd(0.34)]6/Pt(1)/AlOx(t)(thickness in nm)witht=0,0.5,1,1.5,and 2.0 were sputtered on Si/SiO2substrates by direct and alternating voltage sources at room temperature. The base pressure of the chamber was less than 1×10-8Torr, and the argon pressure was set as 2 mTorr for AlOxand 0.8 mTorr for other targets during deposition. Subsequently, the samples were patterned into Hall bars devices with channel widths of 10 μm by standard photolithography and Ar-ion etching.

    3. Results and discussion

    Firstly,we measured the anomalous Hall effect resistance(Rhall)under an out-of-plane magnetic field(Hz),as shown in Fig.1(b). A small current of 0.1 mA was used to measure the magnetic state of the device.It is worth noting that all samples with different AlOxthicknesses(t)exhibit square-shaped magnetic hysteresis loop, indicating that the magnetization easy axis is along thezdirection. The hysteresis loops show a positiveRhallpolarity,which reflects that the magnetization in the films is Co-riched since the anomalous Hall effect resistance is dominated by Co in the Co–Gd system.[34]Notably,the magnetic hysteresis loops show a gradual switching behavior with increasing the thicknesses of the AlOxlayer to 2 nm,indicating the switching plasticity in the Co/Gd multilayers.

    Subsequently,the switching plasticity in the Co/Gd multilayers under various in-plane and PMA field was systematically investigated in Fig.2. The pulsed current of width 10 ms was applied and then we measured theRhallafter each pulse at a low current of 0.1 mA.Figure 2(a)shows the magnetization switching driven by SOT under different in-plane fields(Hx)for the device with AlOxthickness of 1 nm. The squareness and switching ratio(ΔRRatio)of magnetization switching loops decrease with the increase ofHx,and the number of intermediate states increases. Here,ΔRRatiois defined as the ratio of current-induced maximum change in Hall resistance to field-induced maximum change in Hall resistance. This phenomenon is also observed in other samples. Moreover,we set the magnitude ofHx=800 Oe in all samples to check the impact of the AlOxthickness,as presented in Fig.2(b).

    Fig.1.(a)The schematic Hall device with stack structures of Ta(1)/Pt(5)/[Co(0.36)/Gd (0.34)]6/Pt (1)/AlOx (t). (b) Anomalous Hall resistance Rhall as a function of perpendicular magnetic field Hz for various AlOx thickness.

    Similarly, the samples with thicker AlOxare inclined to obtain multilevel magnetization switching behavior with a lower ΔRRatiounder the same in-plane field. The increasing AlOxthickness would reduce the effective PMA field of the device, which is because the strong interfacial 3d–5d hybridization in Co/Pt is weakened by the Pt/AlOxinterdiffusion.[35,36]Then, we determine the effective PMA field (Hk) of Ta(1)/Pt(5)/[Co(0.36)/Gd(0.34)]6/Pt(1)/AlOx(t)by fitting the in-plane field dependence of the in-phase first harmonic Hall voltage. In addition,the damping-like effective field of Ta(1)/Pt(5)/[Co/Gd]6/Pt(1) is estimated by harmonic Hall voltage analysis, and the SOT efficiency is calculated to be 25 Oe/(1×107A·cm-2)(see the supporting information for details). TheHkas a function of the AlOxthickness is summarized in Fig.2(f),which clearly shows the magnitude ofHkdecreases with increasing the AlOxthickness. The magnetic moment of the samples with higher ratio of|Hx|/Hkwould tilt away from thezdirection corresponding to a larger angle(θM),leading to a lower switching ratio in Figs.2(a)and 2(b). Besides,a fatter switching curve is obtained accompanying with a lower ΔRRatio(corresponding to a greater tilting angleθM).Thus,the relationship between the switching behavior and the tilting angleθM(∝|Hx|/Hk)needs to be further explored.

    Then, we fixed the value ofHx/Hk≈0.5 to check the impact ofHkon current-induced magnetization switching behavior, as presented in Fig. 2(c). The intermediate sates increase with increasing the thickness of AlOx(corresponding to a lowerHk). However,the switching ratio is roughly the same for all samples. Then we use ΔIto qualitatively evaluate the number of the intermediate magnetization states,which corresponds to the current range covering full ΔRhall,as functions ofHxand AlOxthickness.As clearly shown in Figs.2(d)–2(f),ΔIincreases nonlinearly with higherHxand thicker AlOx,which also indicates the switching behavior can be tuned by the inplane magnetic field and/or effective anisotropy field. The broader current range accompanied by more multi-resistance states is useful for neuromorphic computing applications. Besides,the linearity of ΔIregulated byHxandHkis summarized in the supporting information.

    In this section,we will go deep into the experimental phenomena and explain the switching plasticity which first shows sharp switching characteristic(binary state)then tunes to gradual switching one(multilevel)under increasing in-plane field.In general, magnetization switching takes place through DW propagation and domain nucleation.[37–39]It was verified experimentally that magnetic stripes with N′eel-type chiral domain walls show sharp switching characteristics.[40]Compared to domain wall propagation, the nucleation switching induced by SOT is prone to provide gradual switching behavior, since they naturally form the basis of intermediate states.[17,33]The domain nucleation can be understood from an energy perspective. The probability of nucleation is proportional to e-Eb/kBT,[33]whereEb,kB, andTare the nucleation energy barrier,Boltzmann constant,and the temperature,respectively.Ebhas a spatial distribution across the sample which follows the normal distribution statistically. A higherHkbrings a higher energy barrier for domain nucleation while the in-plane fieldHxcan reduce the barrier.[33,41]Thus, the switching behavior depends on the magnitudes ofHkandHx,as presented in Fig.2. Moreover,the switching plasticity can also be explained by comparing the DW propagation field and nucleation field(see the supporting information for details).

    After systematically studying the dependence of switching plasticity on the in-plane and PMA field, we then investigate how to use the plasticity of the magnetization switching for neuromorphic computing. Artificial neural networks(ANNs) and spiking neural networks (SNNs) are two important and complementary branches in neuromorphic computing with different advantages in dealing with practical tasks.[42]In the following section, the multi-level switching devices with excellent switching plasticity are exploited for both SNNs and ANNs.

    Fig. 2. (a) Pulsed current-driven Rhall–I SOT switching loops under various Hx in Ta/Pt/[Co/Gd]6/Pt/AlOx (1). Rhall–I SOT switching loops with different AlOx thickness for Hx =800 Oe (b) and Hx/Hk ≈0.5 (c) respectively. Tunable current range (ΔI) versus in-plane field Hx (d) and AlOx thickness for Hx=800 Oe(e). (f)AlOx thickness dependence of the current range ΔI and PMA field Hk for Hx/Hk ≈0.5. The inset in(d)presents the current range ΔI we defined.

    A synapse in SNNs builds the connection between the pre-neuron and post-neuron and its weights are updated when spikes and/or action potentials from the pre-neuron propagate to the post-neuron through the synapses. Moreover, the synaptic weight update rule depends on the delays between the spikes arriving from the pre-and post-neuron,which is known as STDP found in real biological synapses.[43]Figure 3(c)shows the dependence of the weight (Rhall) with the amplitude of current pulses in our CoGd-based artificial synapse.The existence of well-defined current thresholds beyond which switching between low and highRhallstates occurs making it possible to implement STDP in our device. Based on the current pulseIdependence on theRhall, spikes as shown in Fig. 3(b) are designed for realizing the STDP in our device.Before the application of each single spike,a sequence of current pulses with decreasing amplitudes and alternating polarities was applied (e.g., +28 mA→-27.5 mA→+27 mA→···→-1.5 mA→+1 mA→-0.5 mA)to achieve a zeroRhallstate. When pre-and post-neuron spikes reach the CoGd multilayers with a delay Δt, their superposition produces the waveforms (Ipre-Ipost) displayed in the inset of Fig. 3(d)(waveforms with various Δtcould be found in the supporting information). We measure the change ofRhallproduced by pairs of spike 1 and 2 with the time delay from-12 ms to 12 ms. Finally,the STDP window based on ferrimagnet artificial synapse is obtained where the weight(|ΔRhall|)decreases with increasing|Δt|,as shown in Fig.3(d). It obviously shows that the form of STDP can be tuned by the shape of spikes.We note that the symmetry of the STDP form is invariable under differentHxandHkas shown in Fig.2,hence the symmetry of the spike synapse is also retained.Notably,the performance of a certain learning procedure is highly dependent on the form of STDP in a spike neural network. Therefore,the form of STDP can be used to emulate various types of pre-and post-neuron activities.[44,45]

    On the other hand, the nonlinear switching behavior of the ferrimagnetic multilayers makes it possible to construct a sigmoid neuron for an artificial neural network. Figure 4(a) shows the evolution of minor switching loops for Ta/Pt/[Co/Gd]6/Pt/AlOx(2) underHx=-500 Oe by limiting the maximum pulsed current, and the presence of the minor loops indicates the intermediate magnetization states are nonvolatility. Then we select one of theRhall–Icurves (from-5 mA to 30 mA) in Fig. 4(a) to construct an artificial sigmoid neuron as an activation function for neural networks,as shown in Fig.4(b). The inputXis transformed to a currentIapplied into the devices,thenRhallis measured to represent the outputY. It is worth noting that a single SET pulse is required if a subsequent current pulse is higher than the previous one(I >I0), however, an additional RESET pulse before the set pulse is needed to avoid the minor switching loops,as shown in Fig. 4(a). A modified sigmoid function is used to fit the experimental dates:Y=1/[1+e-(X-X0)/K],whereKandX0represent the slope and the rising point of the function,respectively.

    Fig.3. (a)The illustration of CoGd-based artificial synapse. Spikes(blue)propagate between the neurons via synapses. (b)Two engineered spikes with different shapes named as spike 1 and spike 2,arriving from the pre-neuron and post-neuron.(c)Single-pulse Rhall–I SOT switching loop displays clear current threshold(Ith)for Ta/Pt/[Co/Gd]6/Pt/AlOx(2)under Hx=-500 Oe. (d)Measurement of STDP generated with spike 1 and spike 2. The device was demagnetized before each spike applied.

    Fig. 4. (a) Minor switching loops (Rhall vs. I) with different maximum pulsed current (Imax) under Hx =-500 Oe. The current range is sweeping from -30 mA to Imax. (b) The normalized Rhall (output Y) as a function of pulsed current I (input X). (c) Three layers of neural network structure for handwritten digits recognition task. (d)Pattern recognition accuracy and(e)loss as a function of training iteration for an ideal sigmoid function(simulation)and experiment dates(live).

    In order to evaluate the performance of the inference using the sigmoidal compensated ferrimagnetic neural,we construct a feed forward neural network based on gradient descent algorithm,[17,19]as presented in Fig.4(c). It consists of three layers: an input layer of 784 neurons, a hidden layer of 100 neurons and an output layer of 10 neurons. Here,the MNIST handwritten pattern dataset consisting of labeled 60000 training examples and 10000 labeled testing samples is utilized as the written digit dataset. Figure 4(d)shows the recognition accuracy as a function of training iteration for experimental dates and ideal sigmoid function shown in Fig.4(b). It is worth noting that our neural network based on Co/Gd multilayers neurons can achieve a high recognition accuracy of 97.7%,which is very close to the ideal software simulation (97.8%). The respective values of loss decrease quickly toward saturation,as shown in Fig. 4(e). Besides, the recognition accuracy is roughly independent of the in-plane field (see the supporting information for details). These training results prove the validity of our spintronic artificial sigmoidal neuron.

    4. Conclusion

    In summary,we have unambiguously tuned the switching behavior between binary state and multistate in Co/Gd multilayer. We find that the switching plasticity can be controlled by the nucleation energy barrier. Lowering the PMA and/or applying an in-plane field can lower the nucleation energy barrier, it thus can result in multilevel magnetization switching. We further used the switching plasticity for demonstrating neuromorphic computing. We demonstrate that the multilevel magnetization states in Co/Gd multilayer can not only act as a synapse to achieve spike timing-dependent plasticity,but also can as a neuron with sigmoid-like activation behavior.We have simulated an ANN to perform the pattern recognition tasks with an accuracy rate over 97%. Thus, the switching plasticity in compensated ferrimagnets not only provides useful guidance to design multistate spintronic devices, but also opens the prospective door for future high-performance neuromorphic computing.

    Acknowledgements

    This work was supported by Beijing Natural Science Foundation Key Program (Grant No. Z190007), Beijing Natural Science Foundation (Grant No. 2212048), the National Natural Science Foundation of China (Grant Nos. 11474272,61774144, and 12004212), and the Chinese Academy of Sciences(Grant Nos.QYZDY-SSW-JSC020,XDB28000000,and XDB44000000).

    猜你喜歡
    恩澤永城
    永城職業(yè)學(xué)院文化藝術(shù)系作品精選
    聲屏世界(2023年3期)2023-04-06 09:10:44
    巫婆找工作:尉恩澤
    河南永城:裹包玉米走俏 農(nóng)民省心增收
    我的小手
    中糧集團(tuán)百萬頭生豬產(chǎn)業(yè)鏈項(xiàng)目落戶永城
    我媽媽
    四點(diǎn)的力量
    蘋果
    閔恩澤院士題辭
    中國火炬(2014年7期)2014-07-24 14:21:16
    由商丘入永城途中作
    多毛熟女@视频| 精品国内亚洲2022精品成人| 女同久久另类99精品国产91| 一级毛片高清免费大全| 成人永久免费在线观看视频| 成人国产综合亚洲| 曰老女人黄片| 亚洲电影在线观看av| 纯流量卡能插随身wifi吗| 最好的美女福利视频网| avwww免费| 他把我摸到了高潮在线观看| 国产精品久久久久久精品电影 | 搡老岳熟女国产| 波多野结衣av一区二区av| 99re在线观看精品视频| 亚洲国产看品久久| 精品人妻在线不人妻| 久久人人精品亚洲av| 熟妇人妻久久中文字幕3abv| 欧美日韩亚洲国产一区二区在线观看| 法律面前人人平等表现在哪些方面| 九色国产91popny在线| 怎么达到女性高潮| 国产亚洲欧美98| 男女下面插进去视频免费观看| 国产伦人伦偷精品视频| 中国美女看黄片| 久99久视频精品免费| 首页视频小说图片口味搜索| 成人亚洲精品av一区二区| 黑人欧美特级aaaaaa片| 久久 成人 亚洲| 久久精品亚洲精品国产色婷小说| 色老头精品视频在线观看| 夜夜看夜夜爽夜夜摸| 午夜两性在线视频| 91字幕亚洲| 国产男靠女视频免费网站| АⅤ资源中文在线天堂| 黄色片一级片一级黄色片| 脱女人内裤的视频| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 视频在线观看一区二区三区| √禁漫天堂资源中文www| 女性被躁到高潮视频| 男女午夜视频在线观看| 男女之事视频高清在线观看| 婷婷丁香在线五月| 一本综合久久免费| av天堂在线播放| 成人亚洲精品一区在线观看| 久久久精品国产亚洲av高清涩受| 亚洲一区二区三区不卡视频| 亚洲少妇的诱惑av| 18禁美女被吸乳视频| 日本vs欧美在线观看视频| 亚洲国产欧美网| 自线自在国产av| 国产一区二区三区综合在线观看| 国产成人av教育| 麻豆一二三区av精品| 国产欧美日韩一区二区三区在线| 91成年电影在线观看| 热99re8久久精品国产| 一级毛片精品| 国产乱人伦免费视频| 非洲黑人性xxxx精品又粗又长| 一二三四在线观看免费中文在| 欧美不卡视频在线免费观看 | 首页视频小说图片口味搜索| 在线观看日韩欧美| 欧美成狂野欧美在线观看| 51午夜福利影视在线观看| 国产精品 国内视频| 男人操女人黄网站| e午夜精品久久久久久久| 制服人妻中文乱码| 一本大道久久a久久精品| 一区二区三区激情视频| 女人高潮潮喷娇喘18禁视频| 91麻豆精品激情在线观看国产| 亚洲人成77777在线视频| 这个男人来自地球电影免费观看| 免费在线观看亚洲国产| xxx96com| 岛国在线观看网站| 久久欧美精品欧美久久欧美| 亚洲久久久国产精品| 天堂动漫精品| 日韩有码中文字幕| 啦啦啦韩国在线观看视频| 国产亚洲精品久久久久久毛片| 精品国产美女av久久久久小说| 午夜福利视频1000在线观看 | 欧美黄色片欧美黄色片| 18禁黄网站禁片午夜丰满| 啦啦啦韩国在线观看视频| 色综合欧美亚洲国产小说| 国产欧美日韩一区二区三区在线| 老司机深夜福利视频在线观看| 亚洲av片天天在线观看| 黄色毛片三级朝国网站| 欧美国产日韩亚洲一区| 亚洲精品国产一区二区精华液| 久久久久久久久免费视频了| av电影中文网址| 免费在线观看影片大全网站| 日韩精品免费视频一区二区三区| 国产精品免费一区二区三区在线| 国产精品精品国产色婷婷| 中国美女看黄片| 自拍欧美九色日韩亚洲蝌蚪91| 91九色精品人成在线观看| 麻豆久久精品国产亚洲av| 亚洲第一av免费看| 久久久精品欧美日韩精品| 热99re8久久精品国产| 成人欧美大片| 激情视频va一区二区三区| 国产真人三级小视频在线观看| 国产一区二区激情短视频| а√天堂www在线а√下载| 国产极品粉嫩免费观看在线| 两人在一起打扑克的视频| 国产片内射在线| 亚洲一区中文字幕在线| av中文乱码字幕在线| 国产精品免费一区二区三区在线| 国产精品二区激情视频| 高清黄色对白视频在线免费看| 一区在线观看完整版| 高清在线国产一区| 亚洲自偷自拍图片 自拍| 一区二区三区高清视频在线| 国产高清激情床上av| 99国产综合亚洲精品| 男人操女人黄网站| 亚洲天堂国产精品一区在线| 中文字幕精品免费在线观看视频| ponron亚洲| 深夜精品福利| a在线观看视频网站| 成人18禁在线播放| 亚洲国产欧美网| 97人妻精品一区二区三区麻豆 | 视频区欧美日本亚洲| 欧美黄色淫秽网站| 激情视频va一区二区三区| 国产精品日韩av在线免费观看 | 久久精品国产亚洲av香蕉五月| 欧美日韩亚洲综合一区二区三区_| 亚洲成a人片在线一区二区| 亚洲一区中文字幕在线| 亚洲熟妇熟女久久| 精品久久蜜臀av无| 身体一侧抽搐| 搡老妇女老女人老熟妇| 国产激情久久老熟女| 亚洲欧美激情在线| 中文字幕人成人乱码亚洲影| av在线播放免费不卡| 天堂影院成人在线观看| 99久久综合精品五月天人人| 午夜福利影视在线免费观看| 成人三级黄色视频| 亚洲美女黄片视频| 中文字幕人妻丝袜一区二区| 欧美激情极品国产一区二区三区| 精品午夜福利视频在线观看一区| 欧美亚洲日本最大视频资源| 免费人成视频x8x8入口观看| 国产1区2区3区精品| 亚洲国产精品sss在线观看| 久久久久国内视频| 在线国产一区二区在线| avwww免费| 久9热在线精品视频| 韩国av一区二区三区四区| 日韩精品免费视频一区二区三区| 国产国语露脸激情在线看| 一本大道久久a久久精品| 午夜免费观看网址| 久久久久国产一级毛片高清牌| 亚洲熟女毛片儿| 精品久久久久久久毛片微露脸| 亚洲男人的天堂狠狠| 老司机靠b影院| 亚洲性夜色夜夜综合| 国产精品 欧美亚洲| 日韩免费av在线播放| 两个人视频免费观看高清| 黑人欧美特级aaaaaa片| 午夜福利欧美成人| bbb黄色大片| 日韩精品中文字幕看吧| 亚洲人成77777在线视频| 日本三级黄在线观看| 成人av一区二区三区在线看| 电影成人av| 久久国产亚洲av麻豆专区| 97人妻精品一区二区三区麻豆 | 亚洲欧美一区二区三区黑人| 国产99久久九九免费精品| 无遮挡黄片免费观看| www.www免费av| 亚洲中文日韩欧美视频| 国产欧美日韩一区二区三| 三级毛片av免费| 欧美不卡视频在线免费观看 | 久久天堂一区二区三区四区| 女人精品久久久久毛片| 精品电影一区二区在线| av视频在线观看入口| 人妻丰满熟妇av一区二区三区| 日本欧美视频一区| 黄色片一级片一级黄色片| 777久久人妻少妇嫩草av网站| 长腿黑丝高跟| 欧美成人免费av一区二区三区| 色哟哟哟哟哟哟| 国产伦人伦偷精品视频| 人妻丰满熟妇av一区二区三区| 啦啦啦免费观看视频1| 香蕉国产在线看| 一本大道久久a久久精品| 国产成年人精品一区二区| 久久草成人影院| 身体一侧抽搐| 夜夜爽天天搞| 久久精品国产综合久久久| 亚洲激情在线av| 国产麻豆69| 亚洲五月色婷婷综合| 黑丝袜美女国产一区| 精品第一国产精品| 两个人免费观看高清视频| 久久久精品国产亚洲av高清涩受| 999精品在线视频| 日韩av在线大香蕉| 香蕉久久夜色| 亚洲精品国产精品久久久不卡| 欧美国产日韩亚洲一区| 美女免费视频网站| 女人精品久久久久毛片| 老汉色∧v一级毛片| 亚洲七黄色美女视频| 一级毛片精品| 丁香欧美五月| 91成年电影在线观看| 嫁个100分男人电影在线观看| 欧美日韩亚洲国产一区二区在线观看| 黑人巨大精品欧美一区二区mp4| 99精品欧美一区二区三区四区| 热99re8久久精品国产| 9色porny在线观看| 国产免费男女视频| 久久久久亚洲av毛片大全| 午夜福利,免费看| 亚洲黑人精品在线| 老司机福利观看| 老司机在亚洲福利影院| 精品一品国产午夜福利视频| 色精品久久人妻99蜜桃| 久久人妻av系列| 悠悠久久av| 淫秽高清视频在线观看| 久久这里只有精品19| 熟妇人妻久久中文字幕3abv| 国产精品香港三级国产av潘金莲| cao死你这个sao货| 国产aⅴ精品一区二区三区波| 国产亚洲精品久久久久久毛片| 国产私拍福利视频在线观看| 久久久久国产一级毛片高清牌| 成人av一区二区三区在线看| 成年人黄色毛片网站| 手机成人av网站| av有码第一页| 人妻丰满熟妇av一区二区三区| 久热这里只有精品99| 欧美丝袜亚洲另类 | 欧美黄色淫秽网站| 成人国产一区最新在线观看| 一区在线观看完整版| 精品少妇一区二区三区视频日本电影| 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看 | 国产熟女午夜一区二区三区| 亚洲精品在线美女| 电影成人av| 免费在线观看视频国产中文字幕亚洲| 黑丝袜美女国产一区| 校园春色视频在线观看| 午夜福利高清视频| 午夜福利视频1000在线观看 | 99精品久久久久人妻精品| 九色亚洲精品在线播放| 夜夜爽天天搞| 亚洲av五月六月丁香网| 久久久久久久精品吃奶| 欧美日本视频| 久久精品人人爽人人爽视色| 99精品在免费线老司机午夜| 91麻豆精品激情在线观看国产| 欧美日韩亚洲国产一区二区在线观看| 巨乳人妻的诱惑在线观看| 国产精品秋霞免费鲁丝片| 老汉色∧v一级毛片| 国产成人影院久久av| 女性被躁到高潮视频| 99国产综合亚洲精品| 看片在线看免费视频| 午夜福利,免费看| 高清在线国产一区| 少妇被粗大的猛进出69影院| 亚洲国产精品久久男人天堂| 国产av一区二区精品久久| 老司机午夜福利在线观看视频| 亚洲国产欧美日韩在线播放| 长腿黑丝高跟| 一进一出抽搐动态| av免费在线观看网站| 99在线人妻在线中文字幕| 精品欧美一区二区三区在线| 一区二区三区高清视频在线| 18禁美女被吸乳视频| 黄色毛片三级朝国网站| 在线视频色国产色| 制服诱惑二区| 国产伦一二天堂av在线观看| 两个人免费观看高清视频| 精品一区二区三区四区五区乱码| 国语自产精品视频在线第100页| 精品国产美女av久久久久小说| 久久精品国产综合久久久| 久久婷婷人人爽人人干人人爱 | 久久婷婷成人综合色麻豆| 免费看美女性在线毛片视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲自拍偷在线| 国产精品久久视频播放| 精品卡一卡二卡四卡免费| 国产精品免费一区二区三区在线| 亚洲成国产人片在线观看| 久久久久久免费高清国产稀缺| 欧美日韩亚洲综合一区二区三区_| 亚洲欧洲精品一区二区精品久久久| 韩国精品一区二区三区| 免费搜索国产男女视频| 老司机福利观看| 777久久人妻少妇嫩草av网站| 国产精品九九99| 色综合欧美亚洲国产小说| 亚洲熟女毛片儿| 国产精品自产拍在线观看55亚洲| 午夜久久久在线观看| 老司机靠b影院| 满18在线观看网站| 我的亚洲天堂| 午夜福利欧美成人| 欧美人与性动交α欧美精品济南到| 亚洲自偷自拍图片 自拍| 欧美黄色片欧美黄色片| 非洲黑人性xxxx精品又粗又长| 国产精品99久久99久久久不卡| АⅤ资源中文在线天堂| 精品日产1卡2卡| 午夜视频精品福利| av网站免费在线观看视频| 一级毛片女人18水好多| 村上凉子中文字幕在线| 国产色视频综合| 久久久久国产精品人妻aⅴ院| 女生性感内裤真人,穿戴方法视频| 中文字幕久久专区| av有码第一页| 亚洲国产日韩欧美精品在线观看 | 亚洲免费av在线视频| 乱人伦中国视频| 精品无人区乱码1区二区| 日韩精品青青久久久久久| 国产欧美日韩综合在线一区二区| 午夜福利高清视频| 97超级碰碰碰精品色视频在线观看| 精品人妻1区二区| 免费不卡黄色视频| 国产精品久久久av美女十八| 人妻久久中文字幕网| 精品国产一区二区三区四区第35| 久久伊人香网站| 婷婷六月久久综合丁香| 国产日韩一区二区三区精品不卡| 欧美日本中文国产一区发布| 精品高清国产在线一区| av在线天堂中文字幕| 精品久久久精品久久久| 男女下面插进去视频免费观看| 亚洲午夜精品一区,二区,三区| 免费人成视频x8x8入口观看| 亚洲中文字幕日韩| 麻豆国产av国片精品| 老司机靠b影院| bbb黄色大片| av天堂在线播放| 国产精品亚洲av一区麻豆| 无遮挡黄片免费观看| 精品午夜福利视频在线观看一区| 午夜福利一区二区在线看| 亚洲欧洲精品一区二区精品久久久| 欧美黄色片欧美黄色片| 成人欧美大片| 丝袜美腿诱惑在线| 亚洲av五月六月丁香网| 久久久久九九精品影院| 少妇粗大呻吟视频| 两人在一起打扑克的视频| 欧美av亚洲av综合av国产av| 欧洲精品卡2卡3卡4卡5卡区| 在线免费观看的www视频| 黄片播放在线免费| 亚洲精品国产精品久久久不卡| 午夜日韩欧美国产| 一夜夜www| 久久久久国产精品人妻aⅴ院| 国产精品 国内视频| 亚洲中文字幕日韩| 日本一区二区免费在线视频| 亚洲自拍偷在线| 亚洲精品国产一区二区精华液| 一区福利在线观看| 久久人人爽av亚洲精品天堂| 淫秽高清视频在线观看| 在线十欧美十亚洲十日本专区| 久久亚洲真实| 精品一区二区三区视频在线观看免费| 黄色片一级片一级黄色片| 亚洲精品中文字幕在线视频| 亚洲欧美一区二区三区黑人| 亚洲av五月六月丁香网| 久久久国产精品麻豆| 国产成人精品久久二区二区免费| а√天堂www在线а√下载| 午夜激情av网站| 一本久久中文字幕| 亚洲全国av大片| 女人精品久久久久毛片| 欧美黑人精品巨大| 久久人人爽av亚洲精品天堂| 淫秽高清视频在线观看| 一边摸一边抽搐一进一出视频| 色精品久久人妻99蜜桃| 丝袜在线中文字幕| 最新在线观看一区二区三区| 国产主播在线观看一区二区| 高潮久久久久久久久久久不卡| 国产一区二区激情短视频| 美国免费a级毛片| 久久亚洲真实| 老司机靠b影院| 极品人妻少妇av视频| 国产成人系列免费观看| 亚洲天堂国产精品一区在线| 视频区欧美日本亚洲| 91老司机精品| 国产私拍福利视频在线观看| 精品久久久久久成人av| 在线观看一区二区三区| 午夜影院日韩av| 亚洲av熟女| 国产成人av激情在线播放| 一级a爱片免费观看的视频| 欧美日韩福利视频一区二区| 女同久久另类99精品国产91| 日本a在线网址| 黑人欧美特级aaaaaa片| 日韩 欧美 亚洲 中文字幕| 可以免费在线观看a视频的电影网站| 日韩欧美国产一区二区入口| 欧美色视频一区免费| 亚洲中文字幕一区二区三区有码在线看 | 免费观看精品视频网站| 免费在线观看完整版高清| 国产精品久久电影中文字幕| 成人三级黄色视频| 国产97色在线日韩免费| 一区二区三区高清视频在线| 真人一进一出gif抽搐免费| 黑人巨大精品欧美一区二区mp4| av有码第一页| 精品高清国产在线一区| 天天添夜夜摸| 女人爽到高潮嗷嗷叫在线视频| 成人免费观看视频高清| 日本三级黄在线观看| 黄色女人牲交| 最新美女视频免费是黄的| 久热这里只有精品99| www国产在线视频色| 美女免费视频网站| 国产激情久久老熟女| 久久国产精品男人的天堂亚洲| 久久久久国产一级毛片高清牌| 国产精品久久久av美女十八| 久久这里只有精品19| 日韩免费av在线播放| 99久久国产精品久久久| 九色亚洲精品在线播放| 中文字幕另类日韩欧美亚洲嫩草| 91九色精品人成在线观看| 99国产精品免费福利视频| 色av中文字幕| 婷婷六月久久综合丁香| www.精华液| 国产xxxxx性猛交| 精品午夜福利视频在线观看一区| 亚洲国产毛片av蜜桃av| www国产在线视频色| 男人舔女人的私密视频| 色综合亚洲欧美另类图片| 亚洲专区字幕在线| 久久精品国产亚洲av高清一级| 777久久人妻少妇嫩草av网站| a在线观看视频网站| 欧美性长视频在线观看| 黑丝袜美女国产一区| 在线观看舔阴道视频| 免费看美女性在线毛片视频| 精品久久久精品久久久| 性色av乱码一区二区三区2| 后天国语完整版免费观看| 首页视频小说图片口味搜索| 国产xxxxx性猛交| 法律面前人人平等表现在哪些方面| 男女做爰动态图高潮gif福利片 | 国产单亲对白刺激| 人人澡人人妻人| 男男h啪啪无遮挡| 精品国产乱码久久久久久男人| 午夜成年电影在线免费观看| 在线永久观看黄色视频| 中出人妻视频一区二区| 精品一品国产午夜福利视频| 国产日韩一区二区三区精品不卡| 国产精品久久久人人做人人爽| 夜夜夜夜夜久久久久| 日韩精品青青久久久久久| 又大又爽又粗| 啦啦啦韩国在线观看视频| 1024香蕉在线观看| 亚洲 欧美一区二区三区| 国产成人精品在线电影| 搞女人的毛片| 国产精品久久久久久人妻精品电影| 窝窝影院91人妻| 天天添夜夜摸| 亚洲国产日韩欧美精品在线观看 | 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看| 久久婷婷人人爽人人干人人爱 | 欧美+亚洲+日韩+国产| 一本久久中文字幕| 12—13女人毛片做爰片一| 青草久久国产| 欧美精品亚洲一区二区| 51午夜福利影视在线观看| 一级a爱视频在线免费观看| 老鸭窝网址在线观看| 成人特级黄色片久久久久久久| a在线观看视频网站| 欧美日韩黄片免| 欧美人与性动交α欧美精品济南到| 亚洲av五月六月丁香网| 视频在线观看一区二区三区| 999精品在线视频| 欧美色欧美亚洲另类二区 | 国产极品粉嫩免费观看在线| 悠悠久久av| 十分钟在线观看高清视频www| 国产成人系列免费观看| 法律面前人人平等表现在哪些方面| av视频免费观看在线观看| 国产单亲对白刺激| 一进一出好大好爽视频| 99精品在免费线老司机午夜| 亚洲av日韩精品久久久久久密| 好看av亚洲va欧美ⅴa在| 久久久久久久精品吃奶| 精品少妇一区二区三区视频日本电影| 大香蕉久久成人网| 精品电影一区二区在线| 99久久综合精品五月天人人| 99热只有精品国产| 国产成人免费无遮挡视频| 久久人妻熟女aⅴ| 中文字幕高清在线视频| 51午夜福利影视在线观看| 国产乱人伦免费视频| 欧美成狂野欧美在线观看| 韩国精品一区二区三区| 女人被狂操c到高潮| 两个人免费观看高清视频| 正在播放国产对白刺激| 亚洲激情在线av| 丝袜美足系列| 亚洲黑人精品在线| 欧美日韩黄片免| 欧美色欧美亚洲另类二区 | 中出人妻视频一区二区| 动漫黄色视频在线观看| 国产精品自产拍在线观看55亚洲| 老司机在亚洲福利影院| 国产麻豆成人av免费视频| 一a级毛片在线观看|