• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Angle-dependent spin wave spectra of permalloy ring arrays

    2022-11-21 09:32:16ShuxuanWu吳書(shū)旋ZengtaiZhu朱增泰YunxuMa馬云旭JinwuWei魏晉武SenfuZhang張森富JianboWang王建波andQingfangLiu劉青芳
    Chinese Physics B 2022年11期
    關(guān)鍵詞:魏晉

    Shuxuan Wu(吳書(shū)旋) Zengtai Zhu(朱增泰) Yunxu Ma(馬云旭) Jinwu Wei(魏晉武)Senfu Zhang(張森富) Jianbo Wang(王建波) and Qingfang Liu(劉青芳)

    1Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China

    2Songshan Lake Materials Laboratory,Dongguan 523808,China

    3Key Laboratory for Special Function Materials and Structural Design of the Ministry of the Education,Lanzhou University,Lanzhou 730000,China

    We investigated the angle-dependent spin wave spectra of permalloy ring arrays with the fixed outer diameter and various inner diameters by ferromagnetic resonance spectroscopy and micromagnetic simulation. When the field is obliquely applied to the ring, local resonance mode can be observed in different parts of the rings. And the resonance mode will change to perpendicular spin standing waves if the magnetic field is applied along the perpendicular direction. The simulation results demonstrated this evolution and implied more resonance modes that maybe exist. And the mathematical fitting results based on the Kittel equation further proved the existence of local resonance mode.

    Keywords: spin waves,magnetic resonance spectra,spintronic devices

    1. Introduction

    Periodically magnetic patterned structures have been extensively studied in the last decades.[1–8]As the progress of nanofabrication techniques, it is possible to prepare the nanoscale or submicron-scale pattern arrays on the magnetic films. To date, the arrays of dots, rings, and wires have been investigated by experimental observation or micromagnetic simulation.[4,9–13]Magnetic patterned films have opened the possibility of studying and designing the new magnetic storage, magnetic logic and spintronic devices. For example,there have been many studies on nanoring magnetic tunnel junctions.[14–17]Their static and dynamic magnetic properties strongly depend on the size and topological structures. The patterned magnetic films are also known as the magnonic crystals. As the propagation of light in the photonic crystals, the propagation properties of spin waves in the magnonic crystals can be modified by the well-designed patterns.[18]Therefore,magnonic crystals are considered to offer new functionalities that are unavailable in regular electronic devices. Depending on the scale of magnetic pattern structures,exchange interaction and dipolar interaction play significant roles,respectively.In fact, the patterns introduce a kind of size confine, which makes the magnetization motion become very different from that in the continuous films. Demagnetizing field, edge pinning and anisotropy of patterns are all supposed to be important for the magnetic properties of patterned films.[5,11,19]

    Although the ferromagnetic resonance (FMR) spectra of patterned films have been wisely researched, recent studies showed rich spin wave spectra of magnetic disks and rings at different magnetized states.[13,20,21]For example,when the magnetic field was applied in the film plane, the magnetic disks at remanence showed a magnetization transition from onion to vortex state depending on the magnitude of the applied field.[22–24]On the other hand, splitting of excitation spectra was observed if the magnetic rings magnetized along the direction of out-of-plane.[21]Furthermore, the resonance spectra of ring arrays are more complex than those of disks because of the unique topological structure of rings. In other words, disks are internally connected but rings are not. The geometric ring will introduce the radial demagnetizing field,which provides more dimensions to design the spintronic devices or storage the information. The more complex structure represents more difficulties in manipulating the performance of rings. The previous research focused on the FMR spectra and dynamic magnetic properties of rings. Multi-peak resonance was always observed at both vertical and horizontal magnetization states. However,the evolution of resonance modes is still not clear, which is important to understand and adjust the dynamic magnetic properties of rings.

    In this paper, we prepared a series of permalloy ring arrays with the fixed outer diameter and various inner diameters and presented the observation of FMR spectra when the applied magnetic field rotated from in-plane to out-of-plane direction. Several absorption modes were observed at different magnetized angles. Micromagnetic simulations qualitatively agree with the experimental results and indicate the evolution of resonance modes. When the field is applied obliquely, the local resonance modes depend on the magnetic field magnitude,while the perpendicular spin standing wave(PSSW)can be observed if the magnetic field is applied vertically. Mathematical fitting results further prove the evolution pattern of resonance modes.

    2. Experimental and simulation methods

    Isotropic permalloy(Py,Fe20Ni80)film was deposited on Si(100)wafer by radio frequency magnetron sputtering technique. The base pressure of the sputtering chamber was better than 5×10-5Pa. Based on the sectional images of scanning electron microscopy (SEM), the thickness of the permalloy film was about 220 nm. The as-deposited film was divided into several 5 mm×5 mm square chips. Periodic ring arrays were fabricated on the prepared samples by using a laser direct write lithography (DWL, Heidelberg 66FS) and lift-out processes. The outer diameters(D)of rings were fixed at 30 μm.The inner diameters(d)were 10 μm,15 μm, 20 μm, 25 μm,respectively. The space between centers of rings was kept at 40 μm.For convenience,the samples withdof 10 μm,15 μm,20 μm, 25 μm are represented as sample 1–4, respectively.The morphology of the prepared ring arrays was characterized by field emission scanning electron microscopy(FESEM,Tescan Mira 3 xmu, Czech Republic). Dynamic properties were characterized by electron spin resonance (ESR, JES-FA300)commercial equipment. All measurements were conducted at room temperature.

    To validate the experimental results,micromagnetic simulation is performed by the MuMax3 code.[25]The magnetization dynamics of a ring is governed by the Landau–Lifshitz–Gilbert(LLG)equation[26]

    whereMrepresents the magnetization,Msis the saturation magnetization,Heffis the effective magnetic field,γis the gyromagnetic ratio andαis the dimensionless Gilbert damping constant. The magnetic parameters of the Py film are chosen asMs=8.0×105A/m, exchange constantA=1.3×10-11J/m, uniaxial anisotropy constantKu= 0 J/m3,α=0.02 in the simulation. The unit cell size of a single ring is set as 5 nm×5 nm×4 nm. To indicate the spatial profiles of resonance amplitude for dynamic magnetization at different fields, the excitation field is applied with sinc function type,H=H0sinc(2π f0(t-t0)), where the amplitudeH0=5 mT,frequencyf0=9 GHz,andt0=1 ns. Then,the magnetization components as a function of time and space are computed by the fast Fourier transform. Therefore, the resonance frequencies of different spin excitation modes can be acquired,as well as the spatial distributions of the fast Fourier transformation amplitude at specific oscillation frequency.

    3. Results and discussion

    Figure 1 shows the SEM image of sample 4. It can be seen that uniform edges were achieved in most of the rings.The measured diameters of rings are the same as the designed one. For convenient description,we will use the designed size to represent the samples in the following text.

    Fig.1.Scanning electron micrograph of permalloy ring arrays with the inner diameter of 25 μm.

    Fig. 2. The coordinate system used for the measurement and analysis of FMR,and the spatial relationship between Happ, hrf, and M. The sample lies in the xy-plane.

    Figure 2 shows the coordinate system used to analyze FMR results.Happandhrfare the applied DC and microwave magnetic fields, respectively.θis the angle betweenHappand film plane.θMis the angle betweenMand film plane.Figure 3 shows the in-plane (θ=0) field-swept FMR differential spectra of samples at 9 GHz. As can be seen, high field (HF) mode and low field (LF) mode are observed for sample 1. Similar results were also found in nano-ring magnetic tunnel junction samples, where HF and LF modes were identified as acoustic-like and optical-like fundamental resonance modes,respectively.[16,17]The HF mode exhibits larger intensity. When the inner diameter increased, the HF mode weakened while the LF mode enhanced. Meanwhile,a transition resonance mode is clearly visible between the two modes whend=20 μm. Furthermore,resonance peaks shift slightly with the change ofd. Since all the resonance modes should follow the Kittel equation, this can be explained as the result of spatial variations of demagnetizing fields.

    In order to understand how the magnetization state affects resonance spectra, we measured the out-of-plane FMR spectra of samples. Figure 4 shows the FMR spectra of different samples as a function ofθ,which is the angle between film plane and applied magnetic field. The resonance fields would increase when the applied field rotates from the easy axis (in-plane) to the hard axis (out-of-plane). Let us focus on the resonance spectra of sample 1 as shown in Fig. 4(a).Whenθchanged from 2°to 72°,noticeable mutation was not observed no matter in relative intensity or the number of resonance peaks. Whenθchanged from 72°to 81°, two resonance peaks tended to merge into one peak with a relatively larger linewidth. If the magnetic field was close to the perpendicular direction (θ=90°), the resonance peak split into 3 modes in which the intensity increased with magnetic field.For samples 2–4, the similar trend was observed as shown in Figs.4(b)–4(d). That is,resonance peaks gradually merged at lower angle and re-split at higher angle,which happened nearθ=70°,80°. But for sample 3,the transition mode is always visible whenθ ≤80°. To conclude,the resonance modes are divided into three stages with the rise ofθ, and 70°, 80°are two characteristic points of mode evolution.

    Fig.3. In-plane FMR spectra of samples with different d at 9 GHz.

    Fig.4. Angle-dependent out-of-plane FMR spectra of samples with different d at 9 GHz. The angle indicated in the figure is the angle between the external magnetic field and the film plane.

    Micromagnetic simulation was used to further understand the evolution of resonance modes. Figure 5 shows the simulation results of angle-dependent FMR differential spectra and resonance mode profiles for a Py ring with the size ofD=1200 nm andd=1000 nm. The thickness of the ring is 4 nm. The ratio ofDanddfor simulation item is the same as that of sample 4. DC magnetic field is along thexaxis,and excitation field is along theyaxis. We have selected four characteristic points of 0°, 70°, 80°, and 90°to simulate the actual resonance evolution in the samples. Simulation results show two distinctly different resonance modes when the field is obliquely or horizontally applied on the Py ring. These two resonance modes correspond to LF and HF modes in the experimental results.For LF mode,the magnetization precession mainly occurs in area B,as the gray part shown in Fig.2. For HF modes,multiple resonance peaks are observed. The magnetization precession mainly occurs in area A.The upper parts of Fig.5 show the resonance profiles under different DC magnetic fields,which shows that the multiple HF modes are spin standing waves(SSW)of different orders. For area A,the DC magnetic field is applied along the radial direction of the Py ring. The limited size of radial direction promotes the formation of SSW,which makes multi-order HF modes easier to be observed than the LF mode. High-order HF modes were not observed in the experimental FMR spectra.This may be due to the first-order HF mode with a strong intensity, which makes other high-order signals difficult to be measured. Whenθis 70°and 80°[Figs. 5(b) and 5(c)], the main resonance modes are still LF mode and multi-order HF mode,and the resonance fields of each modes rise slightly. Whenθis 90°[Fig.5(d)],the resonance mode transforms to the PSSW mode.[27]The resonance profiles of the Py ring show that the precession of magnetization occurs throughout the sample instead of local resonance mode.

    A distinct difference between experimental and simulation results is the critical angle of mode evolution. For experimental results, as we have pointed out,θ=70°, 80°are two characteristic points. However, whenθ ≤80°, simulation results maintain the similar local resonance mode. Whenθ=90°,the resonance mode of the Py ring changes to PSSW mode of multiple orders,as shown in Fig.5(d). the evolution of resonance modes from local resonance to PSSW probably takes place between 80°and 90°. Because of the different sizes between experimental and simulation samples,the positions of peaks in simulation results would not agree well with the experimental data. Despite this,the simulation results give a reliable evolutionary tendency of the resonance spectra.

    To further verify the reliability of simulation results, the Kittel equation is used to analyze resonance field (Hr) as a function ofθ.Considering the geometric structure of Py rings,the demagnetizing fields are important parameters. Based on the coordinate system shown in Fig. 2, the demagnetization factors ofx,yandzdirections are represented asNx,Ny, andNz,respectively.For the HF mode existing in area A,the Kittel equation can be written as[28]

    whereωis the angular frequency of the AC excitation field.Also,for the LF mode,

    here,θMis the angle between magnetization and film plane.We use Eq. (5) to fit the FMR data. Figure 6 shows the experimental results (dots) and fitting results (lines) ofHras a function ofθ. Obviously,the fitting lines agree well with the experimental results, which strongly verifies our discussion about the evolution of resonance modes. The fitting parameters of all the samples are listed in Table 1. With the rise ofd,Meffgradually decreases, which is due to the reduction ofNz. At the same time,HRdgrows with the rise ofd. In other words,the effective radial demagnetizing field will increase if the ring becomes narrower.

    Fig.5. Simulation FMR spectra and the profiles of resonance modes at different resonance fields. The angle between film plane and applied magnetic field is (a) 0°, (b) 70°, (c) 80°, and (d) 90°, respectively. The coordinate system shown in (d) is applicable for all the simulation results,which is the same as Fig.2.

    Fig.6. Experimental(dots)and fitting(lines)results of FMR resonance field as a function of θ. (a)d=0 μm;(b)d=15 μm;(c)d=20 μm;(d)d=25 μm.

    Table 1. The magnetic parameters obtained from FMR theoretical fitting for all the samples.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12074158, 12174166, and 12104197).

    4. Conclusions

    In summary,the experimental,micromagnetic simulation and mathematical fitting results drew a picture of resonance modes evolution for the Py rings. WhenHappwas applied on the film plane, it would break the original symmetry of Py rings at remanence. Local resonance modes consisting of the high and low field modes occurred at different parts of the rings. The simulation results revealed the existence of high-order high field modes, which were the SSW resonances derived from size limitation. As the magnetic field angle increased, the asymmetry of Py rings gradually disappeared. The high and low field modes merged to a single resonance peak with a relatively larger linewidth. When the magnetic field was applied vertically to the film plane, the multiple resonance peaks shown in the FMR spectra were actually PSSW resonance mode, which was due to the size limitation in the thickness direction of the thin films. Even though multiple peaks were usually measured in the FMR spectra of the magnetic patterned films,which probably possess completely different resonance modes. Our results revealed the evolution of resonance modes at different magnetization state for the Py ring arrays, which is meaningful in designing the microwave and spintronic devices.

    猜你喜歡
    魏晉
    魏晉時(shí)期的清廉與貪腐
    公民與法治(2022年8期)2022-08-12 01:23:38
    小議魏晉琴畫(huà)中的自然與美
    魏晉士人的“身名俱泰”論
    原道(2020年2期)2020-12-21 05:47:10
    魏晉清談探析
    沒(méi)落期|魏晉南北朝至唐代
    “魏晉隋唐交通與文學(xué)圖考”簡(jiǎn)介
    關(guān)于魏晉文學(xué)中的“嘯傲”
    魏晉南北朝時(shí)期楚辭的接受
    魏晉風(fēng)流,縱是靜坐也繁華……
    火花(2015年7期)2015-02-27 07:44:01
    美人骨——回到魏晉
    火花(2015年7期)2015-02-27 07:43:11
    成人欧美大片| 午夜福利成人在线免费观看| 热re99久久国产66热| 久热爱精品视频在线9| av中文乱码字幕在线| 久久中文看片网| 51午夜福利影视在线观看| 日韩一卡2卡3卡4卡2021年| 中文字幕久久专区| 午夜福利高清视频| 免费在线观看完整版高清| 69av精品久久久久久| 性欧美人与动物交配| 在线国产一区二区在线| 欧美日韩黄片免| 50天的宝宝边吃奶边哭怎么回事| 亚洲专区国产一区二区| 18禁国产床啪视频网站| 两个人视频免费观看高清| 国产日本99.免费观看| 日日爽夜夜爽网站| 国产精品影院久久| 欧美激情高清一区二区三区| 欧美一级毛片孕妇| 国语自产精品视频在线第100页| 成人三级黄色视频| 亚洲国产精品成人综合色| 美女 人体艺术 gogo| 亚洲 欧美一区二区三区| 在线观看www视频免费| 欧美午夜高清在线| 日韩大码丰满熟妇| 日韩欧美国产在线观看| 国产一区二区三区视频了| www日本黄色视频网| 搡老岳熟女国产| 一级毛片精品| 搡老熟女国产l中国老女人| 国产免费男女视频| 久久久久国产精品人妻aⅴ院| 老熟妇乱子伦视频在线观看| 成人18禁在线播放| 国内精品久久久久久久电影| 亚洲五月天丁香| 99在线视频只有这里精品首页| 精品欧美国产一区二区三| 嫁个100分男人电影在线观看| 国产真实乱freesex| 97超级碰碰碰精品色视频在线观看| 国产单亲对白刺激| 国产精品久久电影中文字幕| 国产av一区在线观看免费| 日韩av在线大香蕉| 美女扒开内裤让男人捅视频| 在线观看免费视频日本深夜| 国产欧美日韩一区二区三| 在线观看午夜福利视频| 午夜免费鲁丝| 人人妻人人澡欧美一区二区| 亚洲国产精品成人综合色| 香蕉丝袜av| 一级片免费观看大全| 成年女人毛片免费观看观看9| 欧美乱色亚洲激情| 美女大奶头视频| а√天堂www在线а√下载| 18禁黄网站禁片午夜丰满| 青草久久国产| 亚洲美女黄片视频| 国产亚洲精品第一综合不卡| av欧美777| 少妇粗大呻吟视频| 不卡一级毛片| 人人妻人人澡欧美一区二区| 国产亚洲av高清不卡| 最近最新中文字幕大全电影3 | 午夜福利视频1000在线观看| 在线观看免费午夜福利视频| 精品欧美一区二区三区在线| 国产精品一区二区免费欧美| 91在线观看av| 一本大道久久a久久精品| 免费在线观看日本一区| 午夜日韩欧美国产| 久久热在线av| 精品无人区乱码1区二区| 国产熟女午夜一区二区三区| 日本一区二区免费在线视频| 十分钟在线观看高清视频www| 国产亚洲欧美精品永久| 国产激情欧美一区二区| 亚洲自偷自拍图片 自拍| 啦啦啦韩国在线观看视频| 18禁黄网站禁片午夜丰满| 精品欧美国产一区二区三| 亚洲七黄色美女视频| 天天添夜夜摸| 亚洲av第一区精品v没综合| 日本 欧美在线| 热99re8久久精品国产| 亚洲精品久久国产高清桃花| 99国产综合亚洲精品| 免费在线观看完整版高清| 久热这里只有精品99| 2021天堂中文幕一二区在线观 | 后天国语完整版免费观看| 欧美色欧美亚洲另类二区| 观看免费一级毛片| 久久国产亚洲av麻豆专区| 三级毛片av免费| 日本一区二区免费在线视频| 久久九九热精品免费| 久久午夜亚洲精品久久| xxxwww97欧美| 欧美日韩瑟瑟在线播放| 亚洲激情在线av| 免费搜索国产男女视频| 欧美色视频一区免费| 亚洲av熟女| 亚洲性夜色夜夜综合| 久久久久久大精品| 搡老妇女老女人老熟妇| 色精品久久人妻99蜜桃| 欧美人与性动交α欧美精品济南到| 老司机午夜十八禁免费视频| 成熟少妇高潮喷水视频| 国产精品 欧美亚洲| 精品久久久久久久人妻蜜臀av| 国产精品99久久99久久久不卡| 美女国产高潮福利片在线看| 亚洲av片天天在线观看| 欧美最黄视频在线播放免费| 色综合婷婷激情| 欧美国产精品va在线观看不卡| 黄色成人免费大全| 老汉色∧v一级毛片| 97碰自拍视频| 精品久久久久久,| 99在线人妻在线中文字幕| 日韩欧美三级三区| 国产精品九九99| 成人亚洲精品一区在线观看| 91成年电影在线观看| 久久久久久国产a免费观看| 欧美激情高清一区二区三区| 午夜福利在线观看吧| 国产成人一区二区三区免费视频网站| www.熟女人妻精品国产| 午夜成年电影在线免费观看| 亚洲av电影不卡..在线观看| 校园春色视频在线观看| 成人亚洲精品av一区二区| 国产精品亚洲一级av第二区| 亚洲国产精品sss在线观看| 久久久久久国产a免费观看| 黑丝袜美女国产一区| 久久久久久大精品| 老汉色av国产亚洲站长工具| 变态另类丝袜制服| 国产蜜桃级精品一区二区三区| 日韩欧美一区二区三区在线观看| 成在线人永久免费视频| av超薄肉色丝袜交足视频| 亚洲成国产人片在线观看| 91大片在线观看| 精品久久久久久久久久免费视频| 一区二区三区国产精品乱码| 中文资源天堂在线| 国产成+人综合+亚洲专区| 午夜激情av网站| 欧美日本亚洲视频在线播放| 欧美黑人欧美精品刺激| www.www免费av| 桃色一区二区三区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 成年人黄色毛片网站| 十八禁人妻一区二区| 黄色片一级片一级黄色片| svipshipincom国产片| 手机成人av网站| 亚洲 国产 在线| netflix在线观看网站| 国产精华一区二区三区| 不卡一级毛片| 动漫黄色视频在线观看| 亚洲午夜精品一区,二区,三区| bbb黄色大片| 成人亚洲精品av一区二区| 精品欧美一区二区三区在线| 亚洲在线自拍视频| 看片在线看免费视频| 999精品在线视频| 国产免费av片在线观看野外av| 一个人免费在线观看的高清视频| 丰满人妻熟妇乱又伦精品不卡| 午夜两性在线视频| 久久中文字幕人妻熟女| 淫妇啪啪啪对白视频| 亚洲成人久久性| 亚洲九九香蕉| 亚洲国产欧洲综合997久久, | 18禁黄网站禁片免费观看直播| 1024视频免费在线观看| 国产亚洲精品一区二区www| 国产主播在线观看一区二区| 亚洲人成伊人成综合网2020| 又紧又爽又黄一区二区| 国产精品av久久久久免费| 国产成人av教育| 日韩欧美在线二视频| 亚洲男人天堂网一区| 国内揄拍国产精品人妻在线 | www日本黄色视频网| 久久婷婷人人爽人人干人人爱| 国产主播在线观看一区二区| a级毛片a级免费在线| 少妇裸体淫交视频免费看高清 | 亚洲精品粉嫩美女一区| 日韩av在线大香蕉| 国产熟女午夜一区二区三区| 欧美黄色淫秽网站| 久久久久免费精品人妻一区二区 | 在线av久久热| 12—13女人毛片做爰片一| 国产伦人伦偷精品视频| 国产精品野战在线观看| 91麻豆精品激情在线观看国产| 美女 人体艺术 gogo| 侵犯人妻中文字幕一二三四区| 琪琪午夜伦伦电影理论片6080| 成熟少妇高潮喷水视频| 亚洲av成人不卡在线观看播放网| 俺也久久电影网| 亚洲国产日韩欧美精品在线观看 | 亚洲国产欧美网| 久久婷婷人人爽人人干人人爱| 中文字幕精品亚洲无线码一区 | 男女之事视频高清在线观看| 国产亚洲欧美精品永久| 丰满人妻熟妇乱又伦精品不卡| 国产av一区二区精品久久| 亚洲成人国产一区在线观看| 亚洲七黄色美女视频| 黄片播放在线免费| 日韩精品免费视频一区二区三区| 亚洲欧美激情综合另类| 丝袜在线中文字幕| 视频在线观看一区二区三区| 欧美绝顶高潮抽搐喷水| 天天添夜夜摸| 麻豆一二三区av精品| 久久99热这里只有精品18| 国产精品美女特级片免费视频播放器 | 少妇被粗大的猛进出69影院| 大型av网站在线播放| www.999成人在线观看| 男人舔女人的私密视频| 久久99热这里只有精品18| 啦啦啦 在线观看视频| 最近最新免费中文字幕在线| 欧美日本视频| 国产午夜精品久久久久久| 精品久久久久久成人av| 村上凉子中文字幕在线| 国产真实乱freesex| 亚洲av五月六月丁香网| 黄色视频,在线免费观看| 成人18禁高潮啪啪吃奶动态图| 国产亚洲精品第一综合不卡| 香蕉国产在线看| 欧美激情久久久久久爽电影| 99国产综合亚洲精品| 亚洲人成网站高清观看| avwww免费| 99热6这里只有精品| 在线观看免费视频日本深夜| 亚洲aⅴ乱码一区二区在线播放 | 欧美精品亚洲一区二区| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久精品电影 | 国产免费av片在线观看野外av| 欧美色欧美亚洲另类二区| 国产午夜福利久久久久久| 国产成人精品久久二区二区91| 波多野结衣巨乳人妻| 亚洲精品色激情综合| 成人三级做爰电影| 无遮挡黄片免费观看| 国产真实乱freesex| 国产亚洲精品久久久久久毛片| 免费看美女性在线毛片视频| 中文字幕高清在线视频| 黄色视频不卡| 国内精品久久久久精免费| 日韩欧美一区视频在线观看| 桃色一区二区三区在线观看| 此物有八面人人有两片| 这个男人来自地球电影免费观看| 国内精品久久久久精免费| 国产精品免费视频内射| 少妇的丰满在线观看| 热re99久久国产66热| 999久久久精品免费观看国产| 亚洲熟妇中文字幕五十中出| 成人18禁高潮啪啪吃奶动态图| 日本 av在线| 夜夜夜夜夜久久久久| 国产精品综合久久久久久久免费| 欧美成狂野欧美在线观看| 国产精品99久久99久久久不卡| 日本免费a在线| 亚洲av片天天在线观看| 美女高潮到喷水免费观看| 精品久久久久久久久久免费视频| 两个人免费观看高清视频| 国产成人欧美在线观看| 国产亚洲精品第一综合不卡| 久久久久久亚洲精品国产蜜桃av| 国产亚洲av高清不卡| 搡老岳熟女国产| 国产精品综合久久久久久久免费| 日本精品一区二区三区蜜桃| 真人一进一出gif抽搐免费| 天堂影院成人在线观看| 午夜两性在线视频| 久久久精品欧美日韩精品| 欧美黄色淫秽网站| 好看av亚洲va欧美ⅴa在| 无遮挡黄片免费观看| 人人妻人人澡人人看| 国产99白浆流出| 一本久久中文字幕| www日本在线高清视频| 黄色视频,在线免费观看| 国产成人精品久久二区二区免费| or卡值多少钱| 亚洲一区二区三区不卡视频| 99国产综合亚洲精品| 亚洲av片天天在线观看| 国产精品av久久久久免费| 久久国产亚洲av麻豆专区| 岛国视频午夜一区免费看| www.熟女人妻精品国产| 丰满的人妻完整版| 伦理电影免费视频| 久久天堂一区二区三区四区| 少妇的丰满在线观看| 国产精品亚洲美女久久久| 色综合欧美亚洲国产小说| 高清在线国产一区| 国产99白浆流出| 琪琪午夜伦伦电影理论片6080| 免费看日本二区| 亚洲国产精品合色在线| 午夜影院日韩av| 成人免费观看视频高清| 亚洲免费av在线视频| 天天一区二区日本电影三级| 成人国产一区最新在线观看| 制服丝袜大香蕉在线| 黄片播放在线免费| 天堂动漫精品| 脱女人内裤的视频| 国产一区二区激情短视频| 国产激情欧美一区二区| 女性生殖器流出的白浆| 在线国产一区二区在线| 极品教师在线免费播放| 香蕉久久夜色| 国产精品av久久久久免费| netflix在线观看网站| 一个人免费在线观看的高清视频| 国产1区2区3区精品| 国产91精品成人一区二区三区| 制服人妻中文乱码| 天堂√8在线中文| 精品国内亚洲2022精品成人| 在线天堂中文资源库| 中文字幕av电影在线播放| 久久久水蜜桃国产精品网| 怎么达到女性高潮| 国产一区二区在线av高清观看| 脱女人内裤的视频| 国产一区二区三区在线臀色熟女| 欧美日本视频| av视频在线观看入口| 欧美精品啪啪一区二区三区| 免费搜索国产男女视频| 黄网站色视频无遮挡免费观看| 18禁裸乳无遮挡免费网站照片 | 男女下面进入的视频免费午夜 | 免费看a级黄色片| 欧美日韩一级在线毛片| 一区二区三区国产精品乱码| 亚洲一区二区三区不卡视频| 在线十欧美十亚洲十日本专区| 午夜免费成人在线视频| 欧美日韩乱码在线| 精品久久久久久成人av| 国产午夜福利久久久久久| 日韩视频一区二区在线观看| 国产单亲对白刺激| 国产99白浆流出| 久久久国产精品麻豆| 亚洲av成人一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 欧美不卡视频在线免费观看 | 久久香蕉激情| 国产精品影院久久| 久久精品国产99精品国产亚洲性色| 无遮挡黄片免费观看| 精品午夜福利视频在线观看一区| 国产精品久久久久久精品电影 | 国内毛片毛片毛片毛片毛片| 老熟妇乱子伦视频在线观看| 又大又爽又粗| 老司机靠b影院| 操出白浆在线播放| 亚洲精品一区av在线观看| 欧美丝袜亚洲另类 | 国产一级毛片七仙女欲春2 | 国产精品香港三级国产av潘金莲| 美女扒开内裤让男人捅视频| 国产私拍福利视频在线观看| 日韩大尺度精品在线看网址| 90打野战视频偷拍视频| 中文字幕精品免费在线观看视频| 久久亚洲真实| 欧美三级亚洲精品| 日韩有码中文字幕| 亚洲成人久久性| 日韩大码丰满熟妇| 在线观看免费日韩欧美大片| 两个人看的免费小视频| 一边摸一边做爽爽视频免费| 久久久久亚洲av毛片大全| 欧美人与性动交α欧美精品济南到| 亚洲 欧美 日韩 在线 免费| 国产亚洲精品久久久久5区| 午夜福利一区二区在线看| 免费在线观看黄色视频的| 两性午夜刺激爽爽歪歪视频在线观看 | 超碰成人久久| 日韩欧美三级三区| 人人澡人人妻人| 亚洲激情在线av| 亚洲国产中文字幕在线视频| 日韩欧美国产一区二区入口| 成人手机av| 国语自产精品视频在线第100页| 变态另类丝袜制服| 欧美日韩亚洲综合一区二区三区_| 国产单亲对白刺激| 老汉色∧v一级毛片| 久久久久国内视频| 国产乱人伦免费视频| 国产伦人伦偷精品视频| 国产久久久一区二区三区| 最近最新中文字幕大全电影3 | 欧美性猛交黑人性爽| 亚洲 欧美一区二区三区| 一进一出好大好爽视频| 在线播放国产精品三级| 美女大奶头视频| 最新在线观看一区二区三区| 波多野结衣高清无吗| bbb黄色大片| 欧美日韩黄片免| 中亚洲国语对白在线视频| 在线十欧美十亚洲十日本专区| 欧美性猛交╳xxx乱大交人| 九色国产91popny在线| 国产不卡一卡二| 免费看美女性在线毛片视频| 91国产中文字幕| 婷婷亚洲欧美| 校园春色视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲avbb在线观看| 国产精品影院久久| 欧美黄色淫秽网站| 日韩 欧美 亚洲 中文字幕| 可以免费在线观看a视频的电影网站| 亚洲国产毛片av蜜桃av| 很黄的视频免费| 最好的美女福利视频网| 一级作爱视频免费观看| 亚洲成人久久性| 热99re8久久精品国产| 日韩免费av在线播放| 非洲黑人性xxxx精品又粗又长| 亚洲精品一区av在线观看| 亚洲欧美激情综合另类| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| 亚洲国产欧美日韩在线播放| 久久性视频一级片| 久久香蕉精品热| 久久精品国产亚洲av高清一级| 精品久久久久久久久久久久久 | 国产欧美日韩精品亚洲av| 午夜成年电影在线免费观看| 欧美+亚洲+日韩+国产| 香蕉丝袜av| 一级毛片精品| 搡老岳熟女国产| www国产在线视频色| 妹子高潮喷水视频| 青草久久国产| 中文字幕精品免费在线观看视频| 成人亚洲精品一区在线观看| 看片在线看免费视频| 国产av不卡久久| 我的亚洲天堂| 国产av不卡久久| 亚洲人成网站高清观看| 国产在线观看jvid| 十分钟在线观看高清视频www| 少妇熟女aⅴ在线视频| 国产亚洲精品久久久久5区| 国产高清videossex| 侵犯人妻中文字幕一二三四区| 免费人成视频x8x8入口观看| 亚洲av五月六月丁香网| 日韩高清综合在线| 亚洲 欧美 日韩 在线 免费| 亚洲aⅴ乱码一区二区在线播放 | 国产伦在线观看视频一区| av在线天堂中文字幕| 麻豆一二三区av精品| 女性生殖器流出的白浆| 好看av亚洲va欧美ⅴa在| 欧美zozozo另类| 亚洲精品一卡2卡三卡4卡5卡| 18美女黄网站色大片免费观看| 国产亚洲av高清不卡| 亚洲成av人片免费观看| 国产精品综合久久久久久久免费| 18禁黄网站禁片午夜丰满| 黄色 视频免费看| 国产熟女午夜一区二区三区| 99在线视频只有这里精品首页| 精品高清国产在线一区| 天堂动漫精品| 一级毛片女人18水好多| 久久久水蜜桃国产精品网| 看免费av毛片| 亚洲精品粉嫩美女一区| 国产伦在线观看视频一区| 欧美黑人巨大hd| 亚洲国产高清在线一区二区三 | 国产精品 欧美亚洲| 亚洲成人国产一区在线观看| 黄色毛片三级朝国网站| 免费高清在线观看日韩| av电影中文网址| 成人午夜高清在线视频 | 人成视频在线观看免费观看| 国产精品国产高清国产av| 最近最新中文字幕大全免费视频| 欧美 亚洲 国产 日韩一| 最近最新中文字幕大全免费视频| 侵犯人妻中文字幕一二三四区| 一区二区三区精品91| 久久久久久人人人人人| 老司机午夜十八禁免费视频| 成人av一区二区三区在线看| 国产精品,欧美在线| 人妻丰满熟妇av一区二区三区| 女生性感内裤真人,穿戴方法视频| 亚洲一区二区三区不卡视频| 亚洲精品中文字幕一二三四区| 一级黄色大片毛片| 好男人在线观看高清免费视频 | 午夜福利高清视频| 久久亚洲真实| 身体一侧抽搐| av片东京热男人的天堂| 一区福利在线观看| 精品国产乱子伦一区二区三区| 一个人免费在线观看的高清视频| 日韩精品中文字幕看吧| 久久精品成人免费网站| 成人av一区二区三区在线看| 美女 人体艺术 gogo| 午夜影院日韩av| 美女扒开内裤让男人捅视频| 免费在线观看完整版高清| 我的亚洲天堂| 丰满的人妻完整版| 亚洲精品粉嫩美女一区| 成人欧美大片| 淫秽高清视频在线观看| 一本综合久久免费| 亚洲aⅴ乱码一区二区在线播放 | 国产国语露脸激情在线看| 999精品在线视频| 久99久视频精品免费| 亚洲精品一区av在线观看| 亚洲av电影不卡..在线观看| 久久中文看片网| 热re99久久国产66热| av视频在线观看入口| 夜夜看夜夜爽夜夜摸| 国产欧美日韩一区二区精品| 女人高潮潮喷娇喘18禁视频| √禁漫天堂资源中文www| 国内揄拍国产精品人妻在线 | 国产午夜精品久久久久久| 男男h啪啪无遮挡| 男女之事视频高清在线观看| 久久香蕉精品热| 亚洲成a人片在线一区二区| 久久99热这里只有精品18|