• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm

    2022-11-21 09:27:42WeiXiaLuo羅偉霞XueLuLiu劉雪璐XiangDongLuo羅向東FengYang楊峰
    Chinese Physics B 2022年11期
    關(guān)鍵詞:楊峰向東

    Wei-Xia Luo(羅偉霞) Xue-Lu Liu(劉雪璐) Xiang-Dong Luo(羅向東) Feng Yang(楊峰)

    Shen-Jin Zhang(張申金)4,5, Qin-Jun Peng(彭欽軍)4,5, Zu-Yan Xu(許祖彥)4,5, and Ping-Heng Tan(譚平恒)1,2,?

    1State Key Laboratory of Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences(CAS),Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering&CAS Center of Excellence in Topological Quantum Computation,University of Chinese Academy of Sciences,Beijing 100049,China

    3Jiangsu Key Laboratory of ASIC,Nantong University,Nantong 226019,China

    4Key Laboratory of Solid State Laser,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    5Key Laboratory of Function Crystal and Laser Technology,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    Photoreflectance (PR) spectroscopy is a powerful and non-destructive experimental technique to explore interband transitions of semiconductors. In most PR systems,the photon energy of the pumping beam is usually chosen to be higher than the bandgap energy of the sample. To the best of our knowledge, the highest energy of pumping laser in reported PR systems is 5.08 eV(244 nm), not yet in the vacuum ultraviolet(VUV)region. In this work, we report the design and construction of a PR system pumped by VUV laser of 7.0 eV (177.3 nm). At the same time, dual-modulated technique is applied and a dual channel lock-in-amplifier is integrated into the system for efficient PR measurement. The system’s performance is verified by the PR spectroscopy measurement of well-studied semiconductors,which testifies its ability to probe critical-point energies of the electronic band in semiconductors from ultraviolet to near-infrared spectral region.

    Keywords: photoreflectance spectroscopy, vacuum ultraviolet laser, electronic band structure, critical points of electron density of states

    1. Introduction

    Electromodulation (EM) spectroscopy, including photoreflectance (PR), electroreflectance (ER), and contactless electroreflectance (CER), has contributed significantly to the investigation of electronic structures, interband transitions,and alloy composition in semiconductors.[1,2]The derivative nature of this technique emphasizes features at the energy of critical points in band structure,which is realized by modulating the built-in electric field of sample to cause perturbation in its reflectance amplitude. Compared to applying an external electric field in ER and CER spectroscopy, PR spectroscopy utilizes photoinjection of electron–hole pairs via a chopped pumping beam,usually an incident laser,to modulate the builtin electric field.Therefore,a conventional PR system typically chooses the photon energy of the pumping laser to be higher than the bandgap of the semiconductor under investigation.Since the modulated electric field affects the overall electronic structure of the tested sample, even critical points at energy higher than the pumping beam are proven to be detectable in narrow bandgap semiconductors.[3,4]Below-bandgap pumping through impurities or defects states at sub-bandgap energies is used very rarely since the traps and recombination centers could reduce the effectiveness of modulation and PR signal amplitude varies from sample to sample.[5,6]Also the spectral feature obtained by below-bandgap pumping differs from that of the conventional PR spectra with above-bandgap pumping due to their different modulation distribution.[7,8]Therefore, for the investigation of wide bandgap materials in the UV region,vacuum ultraviolet(VUV)pumping sources in the wavelength region between 100 nm and 200 nm are more desired.

    To the best of our knowledge, the highest pumping energy in reported PR systems is 5.08 eV (244 nm) from a frequency-doubled Ar+laser line,[9,10]not yet in the VUV region. Based on the breakthrough on the nonlinear crystal KBe2BO3F2(KBBF) growth and KBBF prism-coupled device (KBBF-PCD), DUV diode-pumped solid-state lasers(DUV-DPL) with emission at 7.0 eV (177.3 nm) have been developed using KBPBF-PCD with Nd:YAG as the basic light sources.[11,12]This DUV-DPL has already successfully been coupled with various scientific techniques to construct cuttingedge instruments.[13–16]With its high photon density, large photon flux and high energy resolution,this VUV laser is expected to be utilized in PR system to active the exploration of interband transition located in high-energy region. It is also worth noting that although the use of visible light as pumping and probing beams is effective for a broad range of semiconductor materials, but the penetration depth of visible light is typically hundreds of nanometers. For microscale structure,light travels through the multilayered films or superlattices and thus PR signals from different mediums inevitably overlap and be affected by interference effect.[17]While pumping with UV laser can provide not only a much stronger absorption with photon energy much above the bandgap, but also relatively shallow depth down to few nanometers,[18]which can be used to effectively distinguish surface PR signals from inner space,in ways not possible when using visible laser as the pumping beam.

    In this work,we design and construct a PR system under the pumping of a VUV laser at 177.3 nm. The instrumental performance is demonstrated by the PR spectroscopy of the well-studied bulk GaAs and GaN from UV to near-infrared spectral region. This VUV-PR system is technically operable and efficient for practical use to probe critical-point energies of the electronic band structures in semiconductors.

    2. System configuration

    We first briefly remind the basic principle of PR spectroscopy. Normally, a pumping beam excites the sample to generate electron–hole pairs and modify the built-in electric field. Subsequently,the material’s reflection coefficient is perturbed and its reflectance intensity experiences subtle deviation at the energy corresponding to direct interband transitions.Experimentally,a probing beam illuminates the sample and its reflectanceRoff the sample surface as a function of photon energy is monitored. A modulated pumping laser beam focuses on the sample at the same point and causes a subtle deviation ΔRinR. Because PR spectroscopy in the form of ΔR/Ris on the order of 10-6–10-4, a phase-sensitive lock-in amplifier (LIA) is also used to synchronously extract ΔRfrom the prominent reflectance signalRand background noise.

    To construct a PR system based on VUV laser,one must design high vacuum chamber and optimize the corresponding optical system with optical beam paths,UV-enhanced mirror coatings,diffraction gratings,and VUV-enhanced detector.Also,it is practically sophisticated to adjust the collimation of the VUV laser and probing beam and align optical elements,as the VUV beam is strongly absorbed by the ambient air and all optics have to be placed in vacuum or chamber filled with inert gas. The detailed configuration is depicted in Fig.1. The system is composed of three modularized parts: (i) Pumping module with the VUV laser, (ii) high vacuum chamber with cryostat,and(iii)probing and acquisition module. The design principles and techniques are introduced in the following.

    Fig.1. Configuration of the PR system based on a VUV laser at 177.3 nm.

    2.1. Pumping module with VUV laser

    The VUV laser used in this system is DUV-DPL with emission at 177.3 nm,which is achieved from the second harmonic generation from a picosecond 355-nm laser using the KBBF crystal. Due to the strong absorption of 177-nm photons in air,all optics,including the KBBF crystals,are placed in a chamber filled with high-purity nitrogen. The VUV laser has pulse duration of 12 ps and repetition rate of 120 MHz.The average output power exceeds 1 mW as an effective pumping beam in PR spectroscopy measurement. More details of the DUV-DPL mechanism can be found in Refs. [11,12,19].Since VUV beam is strongly absorbed in the atmosphere and all the optics are placed in chamber, this VUV laser is also designed to include a visible laser at 633 nm for sake of prealignment of the optical elements and couple into this system.The pumping module also includes another alternative visible laser, which is exposed in the ambient air and can be quickly switched for any other lasers. As discussed in the introduction,the use of pumping beams with different wavelengths in beneficial for separating PR signals from the surface and complex inner structure due to their different penetration depths.This can extend the functionality of this PR system for probing distribution in multilayered films and superlattices in practical applications.

    2.2. High vacuum chamber with cryostat

    All the optics in the light path are placed in a vacuum chamber to avoid the strong absorption of the atmospheric environment. The vacuum chamber can maintain a high vacuum degree of 1.9×10-6hPa. The chamber has an air outlet connecting to a molecular pump for vacuum evacuation and an air inlet for vacuum release. All optical components are optimized for VUV region to enhance the transmission efficiency of the VUV laser.The MgF2optical windows with wide transparency range are equipped on the VUV laser entrance port(P1), alternative laser entrance port (P2), probing light port(P3), and acquisition port (P4). In the beam path inside the high vacuum chamber,plane mirror(M1)and spherical mirror(S1)are used to align the probing beam from P3 and focus onto the sample surface,while plane mirror(M2)and spherical mirror(S2)are used to efficiently collect the reflected light from the sample surface and collimate into P4, as demonstrated in Fig.1. The mirror orientation can be finely adjusted by picomotors under the vacuum condition. This optical design can guarantee high collection efficiency for reflectance signals and suppression of Rayleigh line and background noise. The mirrors are all Al-MgF2coated which have a low extinction coefficient to enhance reflectivity down into the VUV spectral region.Additionally,UV light irradiation is effective for oxygen desorption from the sample surface, which is reported to reduce surface Fermi level and surface electric field in PR measurement. Consequently, the PR amplitude decreases largely when the ambient medium of the sample is changed from air to vacuum.[20]A vacuum environment can help to reveal the intrinsic modulation of the pumping beam and avoid misinterpretation of PR spectra. In order to guarantee that the probed area can be fully modulated by the pumping laser, the laser spot was designed to overlap the illuminated probing spot.The laser spot of VUV laser has millimeter-size on the sample surface. The size of the probed spot on the sample can be adjustable by the slit of the excitation monochromator. In order to reduce the amount of Rayleigh line signals being collected along with reflectance signals, the pumping laser is designed to focus onto the sample at near normal incidence to maximize the absorption in the sample. A reflecting mirror (M3)and mechanically movable mirror(M4)are used for switching the 177.3 nm to the alternative 532-nm laser. The lens L1 and L2 are optimized for collimation on the sample. L1 and L2 are made of CaF2. L2 is mounted on anx–y–zmanipulated motor to coordinate with L1 for the position adjustment and collimation at the two laser wavelengths under vacuum. Since it is difficult to check the sample position and coincidence situation under vacuum,a camera is equipped to capture live images of the sample surface.

    A closed-cycle cryostat refrigerator system (CCS-XGHV/204N, Janis Research Company, Inc.) composed of Helium compressor, cold head, and cryostat is integrated in the chamber. Helium exchange gas transfers heat and cools the sample in the process. The cold head is suspended within an exchange gas chamber of nitrogen. The sample is mounted on the cold finger extension allowing temperature varying between 8 K to 325 K. The cryostat is equipped with a vibration isolation system to reduce vibration from the operation of the cold head, as well as a vertical translation system allowing adjusting the height of the sample holder under vacuum.The thermometer is provided on the sample mount of the cold finger extension for monitoring and varying the sample temperature.

    2.3. Probing and acquisition module with dual-channel LIA for synchronic demodulation

    Since the reflectance variation due to modulation of the pumping laser is normally more than four orders of magnitude smaller than the reflectance itself, the stability of the probing light is quite crucial during the measurement to avoid signal deviation.Continuous emission in the VUV region is also necessary for high energy probing. Xenon arc lamps was usually used to provide as probing source in UV to visible region and quartz tungsten halogen lamp in visible and near-infrared region. Instead of those,a laser-driven light source(EQ-99,Energetiq Technology Inc.) with ultra-high brightness and longterm power stability is integrated in the VUV-PR system. This light source exhibits broad-band light from 170 nm through visible and beyond, which assures the system’s capability for shorter wavelength extension.

    Photoreflectance system use a double monochromators configuration to synchronously scan during the measurement.[21]The excitation monochromator provide monochromatic probing beam by dispersing the supercontinuum light source, while emission monochromator acts as a tunable narrow bandpass filter to suppress spurious signals such as luminescence and Rayleigh scattering to improve the signal-to-noise ratio. Therefore,no filters are required in front of the monochromators or detector. The two monochromators(HORIBA, iHR550) with 550-mm focal length are equipped with 300 gr/mm, 1200 gr/mm, and 1800 gr/mm gratings. All the optics in the monochromators are also MgF2-coated. The monochromator can be insulated with nitrogen gas for the purpose to work in the VUV range. A single-channel solid state silicon detector is equipped in the emission monochromator for signal acquisition.

    PR signals are normally measured by LIA with the pumping modulation frequency as the reference due to the phasesensitive technique. Only the signals carrying the modulation frequency can be isolated from signals with other frequency components. But spurious signals such as photoluminescence (PL) from the sample, which also carries modulation frequency of the pumping laser, can be also collected.The PL signal coincides with and even swamps the PR features around the bandgap energy,particularly for the measurement on semiconductors with a direct bandgap or at low temperatures,which are disadvantageous for PR measurement.[22]To overcome aforementioned situation, dual-modulated technique was utilized to filter off PL signal and improve signalto-noise ratio,in which both the pumping and probing beams are modulated by the corresponding choppers at different frequencies.[23,24]The PR intensity is defined as ΔR/R=(R0-R)/R0,whereRandR0are the reflectance intensity with and without pumping. The reflectance intensity under dualmodulation technique has the amplitude modulation form of

    Then,R0can be obtained uniquely from the component with frequency offprobe.ΔRcan be obtained either from the component with sum frequencyfprobe+fpumpor difference frequencyfprobe-fpump. Then PR signal can be spectrally separated from PL and any other laser-related signals. This VUV-PR system uses this dual-modulated configuration with the pumping chopper housed at laser path and probing chopper at the export of excitation monochromator.

    Since a slight change in the pumping or probing intensities could lead to serious variation in reflectance intensity,separate acquisition and demodulation of ΔRandR0is not desired from the experimental view. Early attempt of synchronic demodulation of ΔRandR0was accomplished by tandem demodulation by using two separate LIAs at respective reference frequency[25]or tandem LIA with digital signal processor.[26]However, to recover the amplitude of ΔR, a third LIA is necessary to demodulate the phaseφ. The different integral time constant,gain,and phase stability between LIAs may result in more signal errors and lower accuracy. Here we use a digital dual-channel LIA (HF2LI, Zurish Instruments) contains 2 input channels, which can simultaneously demodulate at the three frequenciesfprobeandfprobe± fpump. This dual-channel LIA ensures the correct phase relationship for the demodulations and eliminates redundant analog-to-digital (AD) and digital-to-analog(DA)conversions. In this PR system,the frequency of pump chopper and probe chopper are fed into the LIA together. It has more than two demodulators to simultaneously extractfprobeandfprobe+fpumpcomponents,which facilitates quick calibration and avoids short-term fluctuations caused by unstable pumping or probing light.

    The multiple choppers and dual-channel LIA also facilitate the VUV-PR system for the multifunctional realization in a single setup. It should be noted that, although dualmodulated configuration can enhance the detecting sensitivity of the fine structures in the interband transitions around bandgap energy by getting rid of the interference of PL signals, the signal intensity is reduced by a factor of 1/πthan that in single-modulated configuration.[27]As an option, this VUV-PR system can switch for single-modulated PR measurement when only the pumping chopper is activated and the reflectance signal carrying the frequency offprobeis demodulated. Alternatively, the system can further switch for PL measurement when only the pumping chopper is activated and the PL signal carrying the frequency offpumpis demodulated.

    3. System performance

    To validate the system’s performance, we measured and compare the PR spectroscopy of well-studied GaAs and GaN.The pumping laser beam was chopped atfpump= 177 Hz,and the chopping frequency of probing lightfprobeis set at 220 Hz. Bothfprobe-fpumpandfprobe+fpumpcarry the ΔRsignal.In order to avoid the interference of the frequency multiplication offprobe-fpump,the sum frequencyfprobe+fpumpis preferred for demodulation of ΔR.[28]The standard fitting procedure with a model[29]of the third derivative functional form ΔR/R=Re[∑mj=1Cjeiθ j(E-Ej+iΓj)-n]is applied,whereCjandθjare the resonance amplitude and phase angle of the line shape,Eis the photon energy,EjandΓjare the energy and the broadening parameter of thej-th transition, respectively.The exponentndepends on the type of critical point in the Brillouin zone.

    As shown in Fig.2,n=2.5 was used for fitting of semiinsulating GaAs.[30]No signs of Franz–Kyldysh oscillations appear in PR spectra indicating that the modulation is within the low electric field region. The derived critical points are marked by vertical arrows. The spectral features near the bandgap atE0=1.43 eV andE0+Δ0=1.76 eV are wellresolved,which correspond to the fundamental transition and the transition between the conduction band and spin–orbit splitting valence subband atΓpoint of the Brillouin zone,respectively. The origin of the interband transition marked with asterisk is not determined but it also appears under 532-nm pumping,[3]further studies are required to clarify this.The spectral features above the bandgap atE1=2.94 eV andE1+Δ1=3.18 eV correspond to the transition along theΛdirection in Brillouin zone. These features are in good accordance with previous reports by PR and ER spectroscopy.[1]In the UV region, according to the interband energies of GaAs derived from the dielectric function,[31]the spectral features can be attributed to interband transitions at theΓpoint of Brillouin zone:E′0(Γv8-Γc7)=4.45 eV,E′0+Δ′0(Γv8-Γc8)=4.69 eV,andE′0+Δ′0+Δ0(Γv7-Γc8)=5.04 eV.A higher feature atE2(X)=5.46 eV is assigned to the transition atXpoint of Brillouin zone,which is not clearly resolved under 532-nm pumping.[3]The experimental results agree well with calculated critical points energies[32]and results derived by spectroscopic ellipsometry.[31]The spectral feature related toE′0+Δ′0has an amplitude of 2×10-5,which demonstrates a sensitivity better than 10-5level can be warranted by this system.

    Fig. 2. Dual-modulated PR spectra of semi-insulating GaAs pumped at 177.3 nm. The gray circles show the experimental data and solid lines the fitting results. The arrows indicate the corresponding interband transitions.

    The photoreflectance system based on VUV laser at 177.3 nm was also applied to investigate PR spectra of wurtzite GaN on Al2O3at 8 K and 295 K, as shown in Fig. 3. GaN is a typical well-studied wide bandgap semiconductor and has prominent PL signal under UV excitation, which can be avoided in this dual-modulated configuration.n=2 is used to fit the PR spectra in accordance with previous reports.[33]The energy positions obtained by fitting are indicated by the vertical arrows in Fig. 3. The well-resolved features are related to excitonic transitions corresponding to previous report:[6,33]A:exciton(Γv9-Γc7), B:exciton(Γv7(upper band)-Γc7), and C:exciton(Γv7(lower band)-Γc7). The exciton energy can be slightly dependent on crystal growth condition,different residual biaxial compressive strains,film thicknesses,and electron concentrations in GaN/sapphire epitaxial layers.[34,35]At 8 K,the energy positions of the A, B, and C excitons are fitted to be 3.457 eV,3.465 eV,and 3.476 eV,respectively. The energy separation of A and B excitons of 8 meV agrees well with that in reported PR measurement.[36]As the temperature increases,the PR spectral features would gradually broaden and shift towards lower energy. At 295 K, the energy positions of the A, B, and C excitons are derived at 3.388 eV, 3.401 eV, and 3.422 eV, respectively. The splitting among A, B, and C excitonic transition energies become slightly larger and C exciton becomes quite weak as the temperature increases,which is also similar to previous reports.[6,33]The above results demonstrate this VUV-PR system can be used to determine the interband transition energies of GaN with high spectral resolution.

    Fig.3. Dual-modulated PR spectra of wurtzite GaN pumped at 177.3 nm at 8 K and 295 K,respectively.The gray circles show the experimental data and solid lines the fitting results.The arrows indicate the corresponding excitonic transition energies.

    4. Conclusion

    Modularized dual-modulated VUV-PR system was designed and constructed, which is composed of three modularized parts: (i)pumping module with a VUV laser,(ii)high vacuum chamber, and (iii) probing and acquisition module.We demonstrate the capability of VUV laser at 177.3 nm can be serviced as an efficient pumping laser beam to measure PR spectroscopy, which allows for the investigation of the electronic band structure of semiconductors in the DUV to nearinfrared spectral range.

    Acknowledgments

    Project supported by the National Development Project for Major Scientific Research Facility of China (Grant No. ZDYZ2012-2), the National Natural Science Foundation of China(Grant No.11874350),and CAS Key Research Program of Frontier Sciences(Grant Nos.ZDBS-LY-SLH004 and XDPB22).

    猜你喜歡
    楊峰向東
    我的爸爸
    河南電力(2022年3期)2022-03-18 05:48:06
    趕集歸來
    金秋(2021年24期)2021-12-01 11:15:21
    楊峰:沒有人能夠隨隨便便成功
    中國工人(2019年5期)2019-09-10 07:22:44
    于向東
    寶藏(2018年1期)2018-04-18 07:39:21
    撥亂反正 夯實基礎(chǔ)
    把握題型特征 靈動解題技能
    直角三角形斜邊上中線的性質(zhì)及其應(yīng)用
    基于“G—4聯(lián)體”適配子探針的電化學(xué)發(fā)光傳感器檢測Pb2
    火車向東
    小說月刊(2014年12期)2014-04-19 02:40:17
    狗為啥不叫
    故事會(2010年17期)2010-08-24 12:40:34
    好男人电影高清在线观看| 美女扒开内裤让男人捅视频| 亚洲欧美日韩东京热| 亚洲精品国产精品久久久不卡| 一本精品99久久精品77| 看免费av毛片| 亚洲美女视频黄频| 久久久久性生活片| 人妻夜夜爽99麻豆av| а√天堂www在线а√下载| 成人精品一区二区免费| 一区福利在线观看| 最新在线观看一区二区三区| 亚洲国产中文字幕在线视频| 脱女人内裤的视频| 老司机深夜福利视频在线观看| 欧美不卡视频在线免费观看 | 精品国产亚洲在线| 午夜影院日韩av| 亚洲国产中文字幕在线视频| 久久99热这里只有精品18| 两个人看的免费小视频| 久久久久久久久久黄片| 国产免费男女视频| 老鸭窝网址在线观看| 欧美三级亚洲精品| 日本 欧美在线| 妹子高潮喷水视频| 久久香蕉激情| 精品人妻1区二区| 可以免费在线观看a视频的电影网站| 97人妻精品一区二区三区麻豆| www.精华液| 国产区一区二久久| 两个人看的免费小视频| 国产伦一二天堂av在线观看| 三级男女做爰猛烈吃奶摸视频| 一区二区三区高清视频在线| 国产高清视频在线播放一区| 国产真人三级小视频在线观看| 亚洲欧美日韩无卡精品| 十八禁网站免费在线| 欧美日韩亚洲综合一区二区三区_| 亚洲五月婷婷丁香| 国产成人aa在线观看| 校园春色视频在线观看| 国产片内射在线| 成人精品一区二区免费| 亚洲va日本ⅴa欧美va伊人久久| 久久国产精品影院| 久久人人精品亚洲av| 黄色视频不卡| 中亚洲国语对白在线视频| 国产成人一区二区三区免费视频网站| 免费看日本二区| 午夜成年电影在线免费观看| 午夜日韩欧美国产| 日本黄大片高清| 午夜福利在线在线| 亚洲av美国av| 欧美成人性av电影在线观看| 久久性视频一级片| 欧美色欧美亚洲另类二区| 97超级碰碰碰精品色视频在线观看| 中文字幕久久专区| 国产免费男女视频| 999久久久国产精品视频| 国产精品,欧美在线| 国产成人精品久久二区二区91| 精品欧美国产一区二区三| e午夜精品久久久久久久| 黄色a级毛片大全视频| 人人妻人人看人人澡| 亚洲人成网站在线播放欧美日韩| 一区二区三区高清视频在线| 国产精品,欧美在线| 69av精品久久久久久| 精品熟女少妇八av免费久了| 久久国产精品人妻蜜桃| 老司机在亚洲福利影院| 亚洲成人中文字幕在线播放| 国产精品自产拍在线观看55亚洲| 别揉我奶头~嗯~啊~动态视频| 九色国产91popny在线| 免费在线观看视频国产中文字幕亚洲| 国产精品免费视频内射| 最好的美女福利视频网| 人人妻,人人澡人人爽秒播| avwww免费| 黄色视频不卡| 男女视频在线观看网站免费 | 久久久久免费精品人妻一区二区| 特级一级黄色大片| 国产99白浆流出| 亚洲精品一区av在线观看| 麻豆国产av国片精品| 18美女黄网站色大片免费观看| 黄片大片在线免费观看| 麻豆国产av国片精品| 中出人妻视频一区二区| 亚洲在线自拍视频| 欧美乱色亚洲激情| 欧美成人午夜精品| 国产亚洲精品第一综合不卡| 黄片小视频在线播放| 国产一区二区三区在线臀色熟女| 免费看十八禁软件| 首页视频小说图片口味搜索| 天堂av国产一区二区熟女人妻 | 村上凉子中文字幕在线| 日韩欧美一区二区三区在线观看| 亚洲18禁久久av| 51午夜福利影视在线观看| 久久午夜亚洲精品久久| 一卡2卡三卡四卡精品乱码亚洲| 精品久久久久久久人妻蜜臀av| 日本黄色视频三级网站网址| 日本黄大片高清| 一进一出好大好爽视频| 免费看美女性在线毛片视频| 老鸭窝网址在线观看| 99久久精品国产亚洲精品| 久久这里只有精品19| 久久伊人香网站| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 嫩草影院精品99| 999精品在线视频| 2021天堂中文幕一二区在线观| 亚洲国产看品久久| 国产av不卡久久| 亚洲欧美一区二区三区黑人| 99久久国产精品久久久| 亚洲男人的天堂狠狠| 精品国内亚洲2022精品成人| 又黄又爽又免费观看的视频| 小说图片视频综合网站| 欧美av亚洲av综合av国产av| 哪里可以看免费的av片| 免费看十八禁软件| 精品日产1卡2卡| 亚洲午夜理论影院| 老司机靠b影院| 丰满人妻一区二区三区视频av | 伦理电影免费视频| 757午夜福利合集在线观看| 亚洲全国av大片| 99热只有精品国产| 日本 欧美在线| 伦理电影免费视频| 熟女电影av网| 亚洲成人国产一区在线观看| 亚洲五月婷婷丁香| 一级毛片女人18水好多| 欧美日韩黄片免| 免费在线观看完整版高清| 亚洲精品久久国产高清桃花| 欧美日韩福利视频一区二区| 90打野战视频偷拍视频| 日韩成人在线观看一区二区三区| 男女之事视频高清在线观看| 国产69精品久久久久777片 | 岛国在线免费视频观看| 免费在线观看亚洲国产| 国产亚洲精品综合一区在线观看 | bbb黄色大片| 亚洲在线自拍视频| 好男人电影高清在线观看| 丝袜美腿诱惑在线| 国产视频内射| 国产高清videossex| 日日摸夜夜添夜夜添小说| 黄色成人免费大全| 久久精品aⅴ一区二区三区四区| 51午夜福利影视在线观看| 91麻豆av在线| 成年版毛片免费区| ponron亚洲| 男女下面进入的视频免费午夜| 少妇裸体淫交视频免费看高清 | 亚洲av成人一区二区三| 久久国产乱子伦精品免费另类| 丝袜美腿诱惑在线| 久久午夜亚洲精品久久| 亚洲欧洲精品一区二区精品久久久| 少妇熟女aⅴ在线视频| 国产av一区二区精品久久| 久久精品成人免费网站| 国产高清videossex| 日本熟妇午夜| 身体一侧抽搐| 91成年电影在线观看| 女警被强在线播放| 国产在线精品亚洲第一网站| 午夜两性在线视频| 免费在线观看完整版高清| 国模一区二区三区四区视频 | 99久久精品国产亚洲精品| 精品一区二区三区av网在线观看| 欧美 亚洲 国产 日韩一| 国产又色又爽无遮挡免费看| 一个人观看的视频www高清免费观看 | 中文字幕熟女人妻在线| 亚洲成av人片免费观看| 男男h啪啪无遮挡| www日本黄色视频网| 18禁美女被吸乳视频| 国产精品永久免费网站| 亚洲中文字幕一区二区三区有码在线看 | 不卡一级毛片| 久久中文字幕一级| 日韩有码中文字幕| 成人欧美大片| 亚洲一区二区三区色噜噜| 90打野战视频偷拍视频| 色综合欧美亚洲国产小说| 亚洲国产日韩欧美精品在线观看 | 特大巨黑吊av在线直播| 成人精品一区二区免费| 亚洲成人久久性| 亚洲18禁久久av| 久久亚洲真实| 成熟少妇高潮喷水视频| 欧美激情久久久久久爽电影| 五月伊人婷婷丁香| 久久久久久久精品吃奶| 午夜成年电影在线免费观看| 亚洲专区国产一区二区| 欧美午夜高清在线| 免费看十八禁软件| 欧美久久黑人一区二区| 岛国在线观看网站| 亚洲国产精品sss在线观看| 亚洲国产精品成人综合色| 国内久久婷婷六月综合欲色啪| 亚洲熟女毛片儿| 99热只有精品国产| 欧美色视频一区免费| 男男h啪啪无遮挡| 国产精品影院久久| 老鸭窝网址在线观看| 麻豆一二三区av精品| 国产av在哪里看| 少妇裸体淫交视频免费看高清 | 午夜免费成人在线视频| 亚洲精品色激情综合| 日韩高清综合在线| 91大片在线观看| 又黄又爽又免费观看的视频| 久久精品国产综合久久久| 亚洲中文字幕日韩| 久久婷婷人人爽人人干人人爱| 日韩高清综合在线| www.熟女人妻精品国产| 午夜两性在线视频| 91麻豆精品激情在线观看国产| 久久久久国内视频| 成人欧美大片| 午夜福利在线在线| 亚洲av电影在线进入| 99久久精品国产亚洲精品| 国内精品一区二区在线观看| 男女下面进入的视频免费午夜| 中亚洲国语对白在线视频| 观看免费一级毛片| 一进一出抽搐gif免费好疼| 哪里可以看免费的av片| 中文字幕精品亚洲无线码一区| 一本大道久久a久久精品| 在线观看一区二区三区| 亚洲黑人精品在线| 天堂影院成人在线观看| 国产精品av视频在线免费观看| 成年免费大片在线观看| 18禁观看日本| 午夜免费激情av| 免费在线观看视频国产中文字幕亚洲| 极品教师在线免费播放| 色综合婷婷激情| 十八禁网站免费在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美日韩无卡精品| 亚洲免费av在线视频| 两个人的视频大全免费| 大型av网站在线播放| 精品第一国产精品| 久久香蕉精品热| 亚洲精品一卡2卡三卡4卡5卡| 欧美黑人欧美精品刺激| 欧美乱妇无乱码| 99国产精品99久久久久| 亚洲美女黄片视频| 亚洲国产精品成人综合色| 看免费av毛片| 一a级毛片在线观看| 久久这里只有精品19| 国产亚洲av高清不卡| 国产精品自产拍在线观看55亚洲| 蜜桃久久精品国产亚洲av| 999精品在线视频| 18禁美女被吸乳视频| 久久人妻av系列| 最好的美女福利视频网| 国产成人影院久久av| 91在线观看av| 免费av毛片视频| 国产单亲对白刺激| 亚洲中文字幕日韩| 少妇被粗大的猛进出69影院| 后天国语完整版免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久人人做人人爽| 国产熟女午夜一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 国产黄色小视频在线观看| 美女扒开内裤让男人捅视频| 国产精品亚洲一级av第二区| 19禁男女啪啪无遮挡网站| 中出人妻视频一区二区| 成人特级黄色片久久久久久久| 久久久国产精品麻豆| 成熟少妇高潮喷水视频| 国产一区二区三区视频了| av在线天堂中文字幕| svipshipincom国产片| 黄色 视频免费看| 欧美一区二区国产精品久久精品 | 一二三四在线观看免费中文在| 国产一区二区在线av高清观看| 色av中文字幕| 悠悠久久av| 亚洲精品中文字幕一二三四区| 久久久久久久久免费视频了| 精品人妻1区二区| 久久精品国产99精品国产亚洲性色| 中文字幕av在线有码专区| 午夜福利欧美成人| 精品欧美国产一区二区三| 熟妇人妻久久中文字幕3abv| 久久精品国产清高在天天线| 国产成人av教育| 亚洲av五月六月丁香网| 久久久水蜜桃国产精品网| 精品欧美一区二区三区在线| 999久久久精品免费观看国产| 极品教师在线免费播放| 最近最新中文字幕大全电影3| 女人高潮潮喷娇喘18禁视频| 中亚洲国语对白在线视频| 中文字幕av在线有码专区| 两个人免费观看高清视频| 国产精品美女特级片免费视频播放器 | 怎么达到女性高潮| 女人高潮潮喷娇喘18禁视频| 久久天躁狠狠躁夜夜2o2o| 99精品在免费线老司机午夜| 一进一出抽搐gif免费好疼| 国产欧美日韩精品亚洲av| 性欧美人与动物交配| 久久精品亚洲精品国产色婷小说| 精华霜和精华液先用哪个| 久久性视频一级片| 色综合婷婷激情| 长腿黑丝高跟| 精品久久久久久成人av| 少妇粗大呻吟视频| 国产精品久久久久久人妻精品电影| 中文字幕久久专区| 日韩 欧美 亚洲 中文字幕| 免费在线观看黄色视频的| 精品不卡国产一区二区三区| 我要搜黄色片| 精品第一国产精品| 一级a爱片免费观看的视频| 精品无人区乱码1区二区| 首页视频小说图片口味搜索| 成人高潮视频无遮挡免费网站| 女生性感内裤真人,穿戴方法视频| 欧美另类亚洲清纯唯美| 午夜免费成人在线视频| 俺也久久电影网| 亚洲精品一卡2卡三卡4卡5卡| 欧美成人性av电影在线观看| 久久精品亚洲精品国产色婷小说| 国产高清视频在线观看网站| 99久久精品国产亚洲精品| 国产午夜福利久久久久久| 久久精品aⅴ一区二区三区四区| 在线免费观看的www视频| 99久久精品国产亚洲精品| 一二三四在线观看免费中文在| 麻豆成人av在线观看| 国产免费av片在线观看野外av| 亚洲成a人片在线一区二区| 亚洲精品在线美女| 国产成人精品久久二区二区91| 亚洲av成人一区二区三| 宅男免费午夜| 99久久精品国产亚洲精品| 两个人的视频大全免费| 一级片免费观看大全| 亚洲 欧美一区二区三区| 久久人妻av系列| 亚洲真实伦在线观看| 男插女下体视频免费在线播放| 欧美激情久久久久久爽电影| 91成年电影在线观看| 久久人妻av系列| 国内揄拍国产精品人妻在线| 午夜精品久久久久久毛片777| 无限看片的www在线观看| 视频区欧美日本亚洲| 一级毛片女人18水好多| 亚洲国产精品999在线| 美女 人体艺术 gogo| 在线a可以看的网站| 香蕉丝袜av| 制服人妻中文乱码| 国产在线观看jvid| 国产97色在线日韩免费| 日韩免费av在线播放| 俺也久久电影网| 国产精品98久久久久久宅男小说| 嫩草影院精品99| 怎么达到女性高潮| 岛国视频午夜一区免费看| 久久午夜综合久久蜜桃| 婷婷六月久久综合丁香| 国产v大片淫在线免费观看| 午夜影院日韩av| 在线看三级毛片| 亚洲全国av大片| 亚洲五月婷婷丁香| 亚洲欧美精品综合一区二区三区| 一夜夜www| 国产激情欧美一区二区| 一进一出好大好爽视频| 校园春色视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 女警被强在线播放| 亚洲精品中文字幕在线视频| 日本 欧美在线| 国产精品乱码一区二三区的特点| 少妇人妻一区二区三区视频| 又爽又黄无遮挡网站| 国产高清激情床上av| 欧美久久黑人一区二区| a级毛片a级免费在线| 不卡av一区二区三区| 午夜福利在线观看吧| 国产一区二区三区视频了| 午夜老司机福利片| 男女下面进入的视频免费午夜| 黄色丝袜av网址大全| 老汉色av国产亚洲站长工具| 香蕉久久夜色| 麻豆av在线久日| 欧美日韩黄片免| x7x7x7水蜜桃| 国产高清激情床上av| 久久久精品大字幕| 最近视频中文字幕2019在线8| 亚洲国产精品合色在线| 亚洲成av人片免费观看| 亚洲真实伦在线观看| 熟女少妇亚洲综合色aaa.| 在线免费观看的www视频| 男男h啪啪无遮挡| 日日干狠狠操夜夜爽| 一级黄色大片毛片| bbb黄色大片| 精华霜和精华液先用哪个| 欧美大码av| www.999成人在线观看| 夜夜躁狠狠躁天天躁| 亚洲中文字幕一区二区三区有码在线看 | 国产高清videossex| 亚洲国产精品sss在线观看| 国产成人av教育| 国产一级毛片七仙女欲春2| 精品午夜福利视频在线观看一区| 国产精品影院久久| 亚洲成人久久爱视频| 黄色 视频免费看| 真人一进一出gif抽搐免费| 精品福利观看| а√天堂www在线а√下载| 国产伦一二天堂av在线观看| 亚洲狠狠婷婷综合久久图片| 精品高清国产在线一区| 变态另类丝袜制服| 99精品在免费线老司机午夜| 老汉色av国产亚洲站长工具| 一级毛片女人18水好多| 国产欧美日韩精品亚洲av| 午夜精品一区二区三区免费看| 日韩欧美三级三区| 国产又黄又爽又无遮挡在线| 亚洲成人国产一区在线观看| 国产人伦9x9x在线观看| 欧美午夜高清在线| 成人18禁高潮啪啪吃奶动态图| 色综合亚洲欧美另类图片| 国产片内射在线| 国产91精品成人一区二区三区| 91大片在线观看| 两个人免费观看高清视频| 成人18禁在线播放| avwww免费| 欧洲精品卡2卡3卡4卡5卡区| 国产精品免费一区二区三区在线| 一级毛片高清免费大全| 亚洲国产欧美一区二区综合| 好男人电影高清在线观看| 免费在线观看影片大全网站| 少妇的丰满在线观看| 在线免费观看的www视频| 久久久久免费精品人妻一区二区| 日韩高清综合在线| 99国产极品粉嫩在线观看| svipshipincom国产片| 国产精品日韩av在线免费观看| 少妇熟女aⅴ在线视频| 亚洲色图 男人天堂 中文字幕| 少妇人妻一区二区三区视频| 亚洲欧美日韩高清在线视频| 黄频高清免费视频| 中文亚洲av片在线观看爽| av片东京热男人的天堂| 精品国产美女av久久久久小说| 亚洲国产欧美网| 国产精品 国内视频| 久久久久久九九精品二区国产 | 国产欧美日韩一区二区三| 亚洲av中文字字幕乱码综合| 亚洲精华国产精华精| 日韩精品青青久久久久久| 老司机午夜福利在线观看视频| www.999成人在线观看| 少妇熟女aⅴ在线视频| 99在线视频只有这里精品首页| www日本黄色视频网| 99精品在免费线老司机午夜| 一个人观看的视频www高清免费观看 | 精品不卡国产一区二区三区| 亚洲成a人片在线一区二区| 美女黄网站色视频| 欧美日韩国产亚洲二区| 一个人免费在线观看电影 | 精品不卡国产一区二区三区| a在线观看视频网站| 亚洲熟女毛片儿| 成人手机av| 国产高清视频在线播放一区| 久久这里只有精品19| 黄色女人牲交| 国产熟女xx| 午夜福利视频1000在线观看| 国产在线观看jvid| 可以在线观看毛片的网站| 69av精品久久久久久| 伊人久久大香线蕉亚洲五| 国产片内射在线| 久久中文字幕一级| 麻豆久久精品国产亚洲av| 欧美另类亚洲清纯唯美| 91成年电影在线观看| 全区人妻精品视频| 亚洲欧美精品综合久久99| 日韩三级视频一区二区三区| 一二三四在线观看免费中文在| av片东京热男人的天堂| 国产精品一区二区三区四区久久| 成人国产综合亚洲| 很黄的视频免费| 88av欧美| 亚洲午夜精品一区,二区,三区| 麻豆成人午夜福利视频| 日本 av在线| 看黄色毛片网站| 桃红色精品国产亚洲av| www日本黄色视频网| 波多野结衣巨乳人妻| 俺也久久电影网| 美女免费视频网站| 丁香六月欧美| 丝袜人妻中文字幕| 一级a爱片免费观看的视频| 中文字幕最新亚洲高清| 麻豆国产97在线/欧美 | 免费在线观看成人毛片| 亚洲欧美日韩东京热| av视频在线观看入口| 国产精品亚洲一级av第二区| 精品熟女少妇八av免费久了| 最好的美女福利视频网| www.精华液| 天堂√8在线中文| 一本综合久久免费| 母亲3免费完整高清在线观看| 亚洲精品中文字幕在线视频| 免费在线观看成人毛片| 一区福利在线观看| 国内精品久久久久精免费| 极品教师在线免费播放| 精品福利观看| 久久香蕉激情| 在线视频色国产色| 亚洲第一电影网av| 国产午夜精品久久久久久| 日韩国内少妇激情av| 嫁个100分男人电影在线观看| 精品电影一区二区在线| 亚洲欧美精品综合久久99| 日韩欧美三级三区|