• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer

    2022-11-21 09:27:42YuHe賀羽RunqiKang康潤琪ZhifuShi石致富XingRong榮星andJiangfengDu杜江峰
    Chinese Physics B 2022年11期

    Yu He(賀羽) Runqi Kang(康潤琪) Zhifu Shi(石致富)Xing Rong(榮星) and Jiangfeng Du(杜江峰)

    1CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences,

    University of Science and Technology of China,Hefei 230026,China

    2CAS Center for Excellence in Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    3Chinainstru&Quantumtech(Hefei)Co.,Ltd,Hefei 230031,China

    We report a new design of resonant cavity for a W-band electron paramagnetic resonance(EPR)spectrometer. An improved coupling-adjusting mechanism,which is robust,compact,and suits with both solenoid-type and split-pair magnets,is utilized on the cavity,and thus enables both continuous-wave(CW)and pulsed EPR experiments. It is achieved by a tiny metal cylinder in the iris. The coupling coefficient can be varied from 0.2 to 17.9. Furthermore,two pistons at each end of the cavity allow for adjustment of the resonant frequency. A horizontal TE011 geometry also makes the cavity compatible with the two frequently used types of magnets.The coupling-varying ability has been demonstrated by reflection coefficient(S11)measurement. CW and pulsed EPR experiments have been conducted. The performance data indicates a prospect of wide applications of the cavity in fields of physics,chemistry and biology.

    Keywords: electron paramagnetic resonance,W-band,microwave cavity,coupling coefficient

    1. Introduction

    Electron paramagnetic resonance (EPR) spectroscopy is widely used in many fields, such as biology,[1–3]chemistry,[4,5]and physics.[6,7]Developments of superconducting magnet[8,9]and microwave technology in the terahertz region[10,11]have created a boom in high-field/highfrequency EPR(HF-EPR).It offers many advantages over traditional EPR spectroscopy, such as S-band and X-band EPR.HF-EPR provides higher spectral resolution, stronger orientational selectivity and less requirement on sample volume,and opens the path to understanding the fast motional dynamics of molecules.[12]Some analogous technologies, such as nuclear magnetic resonance (NMR)[13]and muon spin rotation/relaxation/resonance(μSR),[14]also benefit from highfrequency high-magnetic field.[15,16]

    A microwave (mw) resonator is one of the most significant parts in an EPR spectrometer since it greatly influences the performance of the spectrometer. At W-band, a singlemode cavity is usually the best choice for resonance because of its high microwave-power-to-magnetic-field conversion factor,relatively high filling factor and appropriate size.[17,18]These properties result in a high sensitivity and make the cavity easy to fabricate. When the microwave is coupled into the resonant cavity,it generates an oscillating magnetic fieldB1,perpendicular to the external static magnetic fieldB0. If the frequency of microwave matches the splitting of the energy levels of the sample, resonance absorption will occur. Coupling between the cavity and the waveguide is achieved through a hole(iris).The coupling strength is characterized by the coupling coefficientβ, which is defined as the ratio of energy leakage from the iris to the energy loss in the cavity wall and the sample.

    Generally,both continuous-wave(CW)and pulsed experiments are desired in studies. The ability to delicately adjust the coupling strength is significant in CW experiments for perfect impedance matching and maximized sensitivity.On the contrary,overcoupling is demanded in pulsed EPR for broad bandwidth, high sensitivity, and short deadtime.[19]As a result, the coupling strength between the cavity and the input/output waveguide should be adjustable among critical coupling and overcoupling, so that the coupling coefficient can cover the need for both CW and pulsed experiments. This is challenging for the design of cavities, especially for highfrequency cavities,such as cavities for W-band EPR.

    Changing the size of the iris by a screw is the most general means to vary coupling.[17,19,20]However, as the frequency goes high, the size of cavities shrinks with the mw wavelength. Therefore, the coupler has to be extremely small.Similar designs, where the coupling strength is changed by a sliver sphere held by a thin rod[21]or a sliver plated needle,[22]prove to be feasible at W-band. However, such structures are hard to fabricate, fragile, and peculiarly prone to suffer from microphonic effects. Many other methods for adjustment of coupling strength at W-band have also been developed. One idea is to change the polarization of the travelling wave in the waveguide relative to the standing wave in the cavity. This can be realized by a series of twists in a circular waveguide.[23]However, in rectangular waveguides, which has much larger bandwidth for only a single mode,this method is invalid. Another way is simply rotating the whole cavity,but the range and precision of variation cannot be balanced.[24,25]The Gordontype coupler also has the potential to be applied in W-band cavities,but it allows only a narrow adjustable range,and fails to achieve strong overcoupling.[26]

    In this work,we report a novel design of resonant cavity.The cavity operates on the T011mode with its cylindrical axis in the horizontal plane,so it is compatible with both solenoids and split-pair magnets. A novel variable coupling mechanism using a teflon-held metal cylinder is applied. It is robust and compact. Remote control is also feasible through such design.The coupling coefficient can be varied from 0.2 to 17.9. Three modulation coils are integrated with the cavity.They are selectively activated depending on the working conditions.A series of experiments are conducted to test the cavity. The couplingadjusting ability is verified and the performance of the cavity is demonstrated by CW and pulsed EPR experiments.

    2. Design

    The structure of the cavity is shown in Fig.1.It is a cylindrical brass cavity [Fig. 1(a1)] operating on the TE011mode,which is similar to that described before.[24]The inner diameter of the cavity is 4.22 mm. The inner surface of the cavity is plated with silver to improve theQfactor,and thus enhance the sensitivity.

    A Teflon plunger[Fig.1(a4)]holding a tiny metal cylinder [Fig. 1(a2)] is inserted in the end of the copper flange[Fig. 1(a3)]. The flange is used for connecting the cavity to the rectangular waveguide tube, and is fastened to the cavity by a hoop [Fig. 1(a5)]. Variable coupling is achieved by the metal cylinder, which is inserted into the tail of the plunger and plugged into the 1.1-mm (inner diameter) coupling hole of the cavity. The plunger is rigid enough, so the coupling mechanism does not suffer from microphonic effects. The cylinder is plated with gold, which has two functions: reducing the loss of the microwave and protecting the cylinder from being oxygenated. Moving the cylinder up and down by two gears[Fig.1(a6)]sandwiching the head of the plunger changes the coupling strength between the cavity and the waveguide.This can be achieved automatically through a motor with a gear. The coupling strength can be varied among undercoupling(down to 0.2),critical coupling and overcoupling(up to 17.9). A typical loadedQfactor of the cavity at critical coupling is 2000.

    The resonant frequency of the cavity has a variation range from 92.3 GHz to 95.6 GHz. Delicate resonant frequency adjustment is realized by moving the pistons [Fig. 1(a8)] at the two ends of the cavity in and out, which changes the length of the cavity. A micrometer-like structure,including the screw threads on the pistons and the main body of the cavity,together with the sleeves[Fig.1(a7)],allows for subtle adjustments of the position of the pistons.

    Fig. 1. (a) Schematic diagram of the resonant cavity. (b) Photograph of the actual cavity. (1)The main body of the cylindrical cavity,(2)the coupling adjusting cylinder, (3) the flange that connects the cavity to the waveguide,(4)the Teflon plunger that holds the coupling adjusting cylinder,(5)the hoop,(6)the gears used for moving the Teflon plunger,(7) sleeves of the pistons, (8) the tuning pistons, (9) the Teflon of the modulation coils,(10)and(11)the modulation coils.

    The direction of the microwave magnetic fieldB1is along the cylindrical axis of the cavity,e.g., always in thexyplane. Therefore, no matter whether the external magnetic fieldB0is provided by solenoids,along thez-axis,or by splitpair magnets, in thexy-plane, we can always find a direction whereB1is perpendicular toB0. Three coils wounding around the Teflon support[Fig.1(b9)]provide the modulation fields. When the cavity operates in a solenoid, the coil below[Fig.1(b11)]is activated to generate a vertical modulation magnetic field. In the split-pair-magnet case, the horizontal modulation coils [Fig. 1(b10)] enable us to provide modulation magnetic field in the same direction as the external field.For effective penetration of the modulation field,the modulation frequencyfmis set to 6.25 kHz.

    The sample area is up to 0.9 mm in diameter. In this region,the magnetic field reaches the strongest and the electric field is almost zero. During experiments, samples in a sample tube are loaded into the cavity from the hole at the axis of the piston. The microwave-power-to-magnetic-field conversion factor is 4.7 Gauss/W1/2obtained by Rabi oscillation experiment described in the following. Such a relatively high conversion factor allows high signal-to-noise ratio even at low sample concentrations and shortπandπ/2 pulses.

    3. Experimental setup

    For testing of this novel resonant cavity, a W-band EPR spectrometer named EPR-W900, which has been developed by University of Science and Technology of China and Chinainstru & Quantumtech (Hefei) Co.,Ltd, is utilized. As shown in Fig.2,besides the cavity,the spectrometer includes two magnets and a microwave bridge.

    3.1. Magnets

    Two types of magnets have been utilized in our experiments to show that the cavity can be used with these magnets. One is a solenoid-type magnet[Fig.2(a)],which is produced by Cryomagnetics Inc. The other is a split-pair magnet[Fig.2(b)]. For the split-pair magnet,two pairs of Helmholtz coils are used to provide the external field. All of them are cooled down to below 3 K using a Gifford–McMahon cryocooler and compressor so that the coils are superconductive. The compressor is cooled by water. The current passing through the main coils can be at most 162 A, creating a static magnetic field up to 6 T. High electrical inductance of the main coils limits the rate of change of current(≤0.02 A/s).For saving time when conducting narrow filed-swept experiments, a second pair of field-sweeping coils is used. The field-sweeping coils carry currents from-40 A to 40 A,corresponding to the magnetic field from-0.1 T to 0.1 T,and the maximum rate of change of current on it is 1.6 A/s.

    Fig. 2. (a) Block diagram of the W-band EPR spectrometer equipped with a solenoid-type magnet. (b) Block diagram of the W-band EPR spectrometer equipped with a split-pair magnet. (c) The detailed information about the W-band EPR spectrometer. The Helmholtz coils are cooled down to below 3 K to maintain superconductive. The W-band mw bridge is built based on an X-band mw bridge we developed before.The X-band mw bridge outputs and processes a 9–10-GHz IF mw signal. Box 1 stands for the transmitter part. An 84.5-GHz microwave is generated and mixed with the IF signal, forming a 93.5–94.5-GHz W-band microwave. The mw bridge is able to operate in both CW and pulsed modes. Switching between the two modes is realized by two switches. Box 2 stands for the receiver part. The EPR signal is amplified by a low-noise amplifier (LNA) and mixed with the 84.5-GHz reference signal. The output IF signal is fed into the X-band mw bridge and further processed. Amp.: amplifier,Att.: attenuator,Cir.: circulator.

    3.2. Microwave bridge

    The W-band microwave bridge is shown in Fig. 2(c).It is based on an X-band microwave bridge we developed before,[27]which outputs and receives a 9–10 GHz intermediate frequency(IF)mw signal. A mw signal of 10.5625 GHz is generated by a mw source and octupled and filtered,forming an 84.5-GHz microwave. It is used to convert an X-band signal to a W-band one or vise versa,enabling W-band excitations and readouts. One arm of the 84.5-GHz mw is up-converted with an IF signal of 9–10 GHz to form a W-band signal of 93.5–94.5 GHz. Then the W-band mw signal is filtered and amplified by a band-pass filter(BPF)and an amplifier before the mode-selecting switch. In the CW mode, the mw signal straightly passes the switch and a variable attenuator, then is fed into the cavity through a circulator. In the pulsed mode,a cascade of an amplifier, an isolator and a switch driven by high-speed square waves is inserted between the amplifier and the variable attenuator. Switching between the two modes is controlled by the computer. Another arm of the 84.5-GHz mw is mixed with the EPR signal amplified by a low-noise amplifier (LNA). The output of the mixer is an IF signal of 9–10 GHz,which is then processed by the X-band mw bridge.

    4. Performance

    The ability of the cavity to change the coupling strength is demonstrated by reflection coefficient(S11)measurement. For testing the EPR performance of the cavity, both continuouswave experiments and pulsed experiments are carried out.

    4.1. Coupling adjusting ability

    We test the reflection coefficient (S11) at different coupling strengths of the empty resonant cavity. The mw frequency is swept from 93.77 GHz to 94.77 GHz. Power of the reflected microwave is measured and plotted in Fig.3. The black lines show experimental data. They are fitted by using the equation

    whereQ0is the unloaded quality factor,f0is the resonant frequency,βis the coupling coefficient, andbis a constant that reflects the transmission loss outside the cavity. Fitting results are shown as the red dotted lines. Reflection coefficient measurement at critical coupling(β=1)is shown in Fig.3(a).The extremely sharp and deep absorption peak is a symbol of high frequency selectivity and strong absorption,which is preferred in CW EPR experiments.The fitted value ofQ0is 4066,so the loaded quality factor,defined asQ=Q0/(1+β),is 2033.

    Fig.3.Reflection coefficient S11 versus frequencies under different coupling conditions. The black lines are the experimental data and the red dotted lines are the fitting results. (a) Reflection coefficient at critical coupling. (b) Reflection coefficient at undercoupling. (c) Reflection coefficient at overcoupling.

    Figure 3(b)shows the undercouplingS11curve. The absorption peak is narrow but shallow,indicating relatively high frequency selectivity but weak absorption. Here,βis fitted to be 0.2. The condition of overcoupling is shown in Fig. 3(c).The peak is very shallow and broad. This is because in overcoupling status the cavity is able to absorb microwaves in a wide range of frequencies,resulting in a broad bandwidth.The fitted value ofβis 17.9. Pulsed EPR experiments are carried out in this range.

    4.2. CW EPR experiment

    For testing the continuous-wave EPR performance of the cavity,field-swept EPR experiments at room temperature with starch and lignite powder were carried out.CW EPR is utilized for analyzing the properties and structures of materials.[28,29]Nitrogen oxide radicals are tagged to starch molecules by chemical synthesis. For the sample being starch, both Xband and W-band room temperature powder EPR spectra have been recorded as shown in Figs.4(a)and 4(b). The solid blue lines stand for the experimental result and the dashed red lines stand for the simulation. For the W-band EPR experiment in Fig. 4(b), a split-pair magnet has been utilized. The input power of the microwave is 0.63 mW. The external fieldB0is swept from 3.325 T to 3.355 T.At W-band, the experimental spectrum of starch is fitted well with the simulated one,but is totally different from that at X-band.

    Fig.4. Experimental and simulated CW EPR spectra of starch at room temperature with modulation amplitude of 2 Gauss. Blue lines are experimental data and the red dashed lines are the simulations. (a)The X-band EPR spectrum of starch. The frequency of the microwave is 9.82 GHz and the power is 1.0 mW. The modulation frequency is 100 kHz. (b) The W-band EPR spectrum of starch with a split-pair magnet. The mw frequency is 94.2 GHz with an input power of 0.63 mW. The modulation frequency is 6.25 kHz.(c) The W-band EPR spectrum of lignite with a solenoid-type magnet. The mw frequency is 94.1 GHz with an input power of 0.63 mW.The modulation frequency is 6.25 kHz.

    The characteristic shape of the spectrum is due to the anisotropy ofgfactor and hyperfine splitting.[12]Thegzzpeak splits into three because of theAzzhyperfine-tensor component. They are corresponding to the three peaks observed in Fig.4(a). Thegxxandgyypeaks,which are hidden at X-band,are resolved clearly at W-band. Figure 4(c)shows the experimental result at W-band using the cavity with a solenoid-type magnet, when the sample is lignite powder. It is the combination of a singlet contributed from carbon atoms and a sextet contributed from Mn2+ions.[30]The power of the microwave is set to 0.6 mW and the frequency of the microwave is 94.1195 GHz. The frequency of the modulation field is 6.25 kHz,and the amplitude of the modulation field is 2 Gauss.Our experiments show that the cavity suits with both types of magnets.

    4.3. Pulsed EPR experiment

    For testing the performance of the cavity in pulsed experiments, Rabi oscillation and relaxation-time experiment are conducted with lignite. Pulsed EPR technology has a wide range of applications in fields such as quantum information.[31,32]It also helps to understand the spin–spin and spin–environment interactions, which are highly concerned in chemistry and biology.[33]Since Mn2+ions relax extremely fast, all the pulsed EPR signal can be attributed to carbon atoms.[34]

    For Rabi oscillation experiment,the microwave pulse sequence is shown as the inset of Fig.5(a). The frequency of the microwave is 93.7343 GHz and the peak microwave power is 200 mW. The direction of the external fieldB0is defined asz-axis and that ofB1asy-axis. Firstly a pulse with durationτpis applied to rotate Bloch vectors of the spins around thex-axis in the frame that is rotating withB1. Bloch vectors rotate around the external field at Larmor frequencyωL=γeB0.Since the external field is not perfectly uniform, the vectors have slightly different angular speeds and diffuse when rotating. After a period of evolution timeτ0,aπpulse is applied so that the Bloch vectors rotate 180°around thex-axis and begin to refocus. After anotherτ0the effect of diffusion is almost canceled and the Bloch vectors gather in one place,forming a spin echo. Here we setτ0as 300 ns. As shown in Fig. 5(a),different lengths of the first pulse are corresponding to different polarizations,so the amplitude of the echo signal oscillates with the pulse length. The pulse length of theπ/2 (π) pulse is measured to be 42(85)ns. The amplitude of theB1field is 2.1 Gauss while the power of the microwave pulses is 200 mW.Thus the microwave-power-to-magnetic-field conversion factor is 4.7 Gauss/W1/2.

    To measure the transverse(spin–spin)relaxation timeT2,we set the first mw pulse as theπ/2 pulse and vary the evolution timeτwin the Hahn echo sequence. Since the spins are not isolated but interact with each other, the Bloch vectors in thexy-plane continue to shorten,and as a result,the refocused spin echo exponentially decays over time. The echo signal can be fitted by

    whereSis the signal intensity,T2is the spin-spin relaxation time,A1andA2are fitting constants. According to the experimental data shown in Fig.5(b),T2=248.3±4.0 ns.

    Fig. 5. Pulsed EPR experiments with lignite. The inset in each subplot shows the pulse sequence for each experiment. The microwave has the frequency of 93.7343 GHz and input power of 200 mW.The pulse lengths of the π/2 pulse and π pulse are 42 and 85 ns,respectively. (a)The Rabi oscillation experiment. The duration of the first pulse τp is swept from 20 ns to 240 ns in the 4-ns step. The interval between two pulses τ0 is set to 300 ns.(b)Experimental data of measurement of the transverse relaxation time.The interval between two pulses τw varies in the 24-ns step with an initial value of 300 ns. The fitting gives T2=248.3±4.0 ns.

    5. Conclusion

    In summary, we have designed a new type of resonant cavity for W-band EPR. A novel, improved coupling mechanism is developed. The coupling strength can be adjusted from 0.2 to 17.9. The cavity is compatible with both types of magnets that are commonly used in EPR spectrometers. It is installed in a W-band EPR spectrometer and tested with two types of magnets.

    The results of field-swept CW experiments show that our cavity suits with both types of magnets.By pulsed EPR experiments,it is demonstrated that the cavity is qualified for quantum state manipulation and dephaseing-time measurements.The microwave-power-to-magnetic-field conversion factor up to 4.7 Gauss/W1/2is also achieved.

    Acknowledgements

    Project supported by the Chinese Academy of Sciences(Grant Nos. XDC07000000 and GJJSTD20200001). X. R.thanks the Youth Innovation Promotion Association of Chinese Academy of Sciences for the support.

    国产美女午夜福利| 黄色日韩在线| 在线观看免费日韩欧美大片 | 男人舔奶头视频| 亚洲怡红院男人天堂| 国国产精品蜜臀av免费| 国产免费一区二区三区四区乱码| 亚洲成人一二三区av| 欧美一级a爱片免费观看看| 国产黄片美女视频| 亚洲美女黄色视频免费看| 亚州av有码| 久久精品久久精品一区二区三区| 国产69精品久久久久777片| 欧美一级a爱片免费观看看| 看十八女毛片水多多多| 一区在线观看完整版| 2018国产大陆天天弄谢| 欧美日韩国产mv在线观看视频 | 日本wwww免费看| 多毛熟女@视频| 一区二区三区乱码不卡18| 中文字幕制服av| 另类亚洲欧美激情| 欧美精品人与动牲交sv欧美| 中文精品一卡2卡3卡4更新| 91精品国产国语对白视频| 国产精品一区www在线观看| 中文字幕人妻熟人妻熟丝袜美| 内射极品少妇av片p| 日韩av不卡免费在线播放| 日本vs欧美在线观看视频 | 99热这里只有是精品在线观看| 视频中文字幕在线观看| 99热全是精品| 日韩电影二区| 国产精品一区二区性色av| 草草在线视频免费看| 青春草亚洲视频在线观看| 毛片女人毛片| 欧美成人午夜免费资源| 日韩,欧美,国产一区二区三区| 男人舔奶头视频| 亚洲av福利一区| 一区二区三区免费毛片| 久久精品国产亚洲av天美| 麻豆成人av视频| 欧美精品一区二区大全| www.色视频.com| 校园人妻丝袜中文字幕| 国产一级毛片在线| 亚洲在久久综合| 久久久亚洲精品成人影院| 狂野欧美白嫩少妇大欣赏| 又黄又爽又刺激的免费视频.| 久久鲁丝午夜福利片| 欧美亚洲 丝袜 人妻 在线| 欧美精品国产亚洲| 一本一本综合久久| 国产成人a区在线观看| 免费av不卡在线播放| 欧美日韩视频精品一区| 91久久精品国产一区二区三区| 毛片女人毛片| 美女中出高潮动态图| 在线天堂最新版资源| 亚洲欧美成人综合另类久久久| 视频中文字幕在线观看| 久久久久性生活片| 高清视频免费观看一区二区| 国产爱豆传媒在线观看| 欧美少妇被猛烈插入视频| av女优亚洲男人天堂| 国产一区有黄有色的免费视频| 亚洲经典国产精华液单| 国产伦精品一区二区三区视频9| 黄色怎么调成土黄色| 麻豆精品久久久久久蜜桃| 精品一品国产午夜福利视频| 男女啪啪激烈高潮av片| 国产亚洲最大av| a 毛片基地| 欧美一级a爱片免费观看看| 国产熟女欧美一区二区| 七月丁香在线播放| 美女cb高潮喷水在线观看| 热re99久久精品国产66热6| 亚洲精华国产精华液的使用体验| 深夜a级毛片| 日韩强制内射视频| 一级黄片播放器| 精品一品国产午夜福利视频| 亚洲精品久久久久久婷婷小说| a级毛片免费高清观看在线播放| 丝袜脚勾引网站| 成人美女网站在线观看视频| 午夜福利网站1000一区二区三区| 午夜激情久久久久久久| 国产精品99久久99久久久不卡 | 青春草国产在线视频| 午夜视频国产福利| 亚洲美女黄色视频免费看| 久久人人爽av亚洲精品天堂 | 少妇被粗大猛烈的视频| av国产久精品久网站免费入址| 欧美高清性xxxxhd video| 日韩,欧美,国产一区二区三区| 久久国产乱子免费精品| 黄色怎么调成土黄色| 国产精品伦人一区二区| 波野结衣二区三区在线| 搡女人真爽免费视频火全软件| 久久精品久久精品一区二区三区| 久久精品国产a三级三级三级| h日本视频在线播放| 视频区图区小说| 亚洲高清免费不卡视频| 亚洲国产毛片av蜜桃av| 国产有黄有色有爽视频| 一边亲一边摸免费视频| 国产亚洲一区二区精品| 国产在线视频一区二区| 日本色播在线视频| 精品久久久久久久末码| 精品亚洲成a人片在线观看 | 女的被弄到高潮叫床怎么办| 美女脱内裤让男人舔精品视频| 十分钟在线观看高清视频www | 亚洲精品第二区| 亚洲无线观看免费| 精品一区二区免费观看| 亚洲av免费高清在线观看| 欧美一级a爱片免费观看看| 在线看a的网站| 日韩av免费高清视频| 成年人午夜在线观看视频| 成人综合一区亚洲| 欧美亚洲 丝袜 人妻 在线| 美女xxoo啪啪120秒动态图| 乱系列少妇在线播放| 久久毛片免费看一区二区三区| 亚洲激情五月婷婷啪啪| 午夜免费鲁丝| 亚洲美女搞黄在线观看| 亚洲第一区二区三区不卡| 欧美精品国产亚洲| 国产亚洲一区二区精品| av福利片在线观看| 2018国产大陆天天弄谢| 特大巨黑吊av在线直播| 精品国产露脸久久av麻豆| 各种免费的搞黄视频| 国产老妇伦熟女老妇高清| 精品视频人人做人人爽| 亚洲天堂av无毛| 久久 成人 亚洲| 涩涩av久久男人的天堂| 欧美精品一区二区大全| av免费在线看不卡| 激情 狠狠 欧美| 婷婷色综合www| 99热这里只有是精品50| 亚洲真实伦在线观看| 日本爱情动作片www.在线观看| 内地一区二区视频在线| 两个人的视频大全免费| 久久97久久精品| videos熟女内射| 日韩欧美 国产精品| 久久影院123| 在线亚洲精品国产二区图片欧美 | 国产毛片在线视频| 国产成人免费观看mmmm| 99热全是精品| 高清午夜精品一区二区三区| 亚洲精品国产色婷婷电影| 国产无遮挡羞羞视频在线观看| 看十八女毛片水多多多| 亚洲精品国产成人久久av| 久热久热在线精品观看| 大话2 男鬼变身卡| 99九九线精品视频在线观看视频| 中文字幕制服av| 肉色欧美久久久久久久蜜桃| 校园人妻丝袜中文字幕| 日韩亚洲欧美综合| 中文资源天堂在线| 国产亚洲91精品色在线| 欧美3d第一页| 欧美xxⅹ黑人| 我要看日韩黄色一级片| 成年av动漫网址| 三级国产精品欧美在线观看| 国产精品精品国产色婷婷| 狠狠精品人妻久久久久久综合| 高清午夜精品一区二区三区| 亚洲精品久久午夜乱码| 免费少妇av软件| 亚洲精品,欧美精品| 午夜福利视频精品| h视频一区二区三区| 亚洲欧美日韩无卡精品| 简卡轻食公司| .国产精品久久| 一边亲一边摸免费视频| 18禁动态无遮挡网站| 午夜福利在线观看免费完整高清在| 在线观看国产h片| 亚洲国产成人一精品久久久| 精品人妻偷拍中文字幕| 亚洲色图综合在线观看| 国产欧美日韩精品一区二区| 精品久久久久久电影网| 妹子高潮喷水视频| 人体艺术视频欧美日本| 18禁在线播放成人免费| 久久久久久久大尺度免费视频| 成年美女黄网站色视频大全免费 | 日日撸夜夜添| 妹子高潮喷水视频| 男的添女的下面高潮视频| 天美传媒精品一区二区| 秋霞伦理黄片| 亚洲av.av天堂| 少妇熟女欧美另类| 波野结衣二区三区在线| 欧美少妇被猛烈插入视频| 亚洲人成网站在线播| 亚洲av日韩在线播放| 深爱激情五月婷婷| 在线观看人妻少妇| 视频区图区小说| 精品人妻熟女av久视频| 亚洲av二区三区四区| 又粗又硬又长又爽又黄的视频| 欧美丝袜亚洲另类| 高清午夜精品一区二区三区| 女人十人毛片免费观看3o分钟| 青春草视频在线免费观看| 国产极品天堂在线| 毛片女人毛片| h日本视频在线播放| 97在线视频观看| 蜜桃久久精品国产亚洲av| 男女免费视频国产| av国产精品久久久久影院| 黄色欧美视频在线观看| 哪个播放器可以免费观看大片| 最近手机中文字幕大全| 欧美激情极品国产一区二区三区 | 亚洲精华国产精华液的使用体验| 在线观看三级黄色| 国产精品伦人一区二区| 国产精品一区二区性色av| 最近中文字幕高清免费大全6| 夜夜爽夜夜爽视频| 久久99热这里只有精品18| 最近2019中文字幕mv第一页| 肉色欧美久久久久久久蜜桃| 男男h啪啪无遮挡| 亚洲三级黄色毛片| 亚洲av.av天堂| 美女高潮的动态| 免费观看在线日韩| 久久韩国三级中文字幕| 欧美激情国产日韩精品一区| 91久久精品国产一区二区三区| 极品少妇高潮喷水抽搐| 最黄视频免费看| 国产精品一区www在线观看| 一个人看的www免费观看视频| 有码 亚洲区| 亚洲av在线观看美女高潮| 午夜福利在线在线| 国产精品久久久久成人av| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 99热这里只有精品一区| 日本与韩国留学比较| av不卡在线播放| kizo精华| 精品久久国产蜜桃| 老女人水多毛片| 精品国产乱码久久久久久小说| 在线免费十八禁| www.av在线官网国产| 大码成人一级视频| 内地一区二区视频在线| 日本色播在线视频| 青春草国产在线视频| 欧美xxⅹ黑人| 18禁裸乳无遮挡免费网站照片| 在线精品无人区一区二区三 | 亚洲,欧美,日韩| 国产成人精品婷婷| 又爽又黄a免费视频| 欧美日韩视频精品一区| 久久99热6这里只有精品| 国产免费一级a男人的天堂| 国产成人a∨麻豆精品| 国产伦理片在线播放av一区| 久久久精品94久久精品| 大又大粗又爽又黄少妇毛片口| 国产精品av视频在线免费观看| 欧美xxxx性猛交bbbb| 高清午夜精品一区二区三区| 嫩草影院新地址| 男人添女人高潮全过程视频| 色吧在线观看| 亚洲美女搞黄在线观看| 在线观看免费日韩欧美大片 | 91久久精品国产一区二区成人| 亚洲精华国产精华液的使用体验| 黑人猛操日本美女一级片| 最近最新中文字幕大全电影3| 国产黄频视频在线观看| 午夜激情福利司机影院| 久久人妻熟女aⅴ| 国产成人a∨麻豆精品| 91精品一卡2卡3卡4卡| 爱豆传媒免费全集在线观看| av黄色大香蕉| 草草在线视频免费看| 久久精品久久久久久久性| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频| 中国美白少妇内射xxxbb| 2018国产大陆天天弄谢| 男女无遮挡免费网站观看| 中国三级夫妇交换| 亚洲国产毛片av蜜桃av| 国产精品福利在线免费观看| 亚洲国产最新在线播放| 精品亚洲乱码少妇综合久久| 人妻一区二区av| 男女啪啪激烈高潮av片| 九色成人免费人妻av| 少妇人妻精品综合一区二区| 人妻制服诱惑在线中文字幕| 亚洲精品乱久久久久久| 秋霞在线观看毛片| 女人久久www免费人成看片| 午夜激情久久久久久久| 超碰97精品在线观看| 久久女婷五月综合色啪小说| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美中文字幕日韩二区| 欧美+日韩+精品| 亚州av有码| 男人狂女人下面高潮的视频| 永久网站在线| 日本爱情动作片www.在线观看| 老女人水多毛片| 久久99蜜桃精品久久| 毛片一级片免费看久久久久| 日韩电影二区| 少妇人妻一区二区三区视频| 插阴视频在线观看视频| 色5月婷婷丁香| 一级毛片 在线播放| 一级黄片播放器| 欧美日韩综合久久久久久| 噜噜噜噜噜久久久久久91| 亚洲精品一区蜜桃| 亚洲精品自拍成人| 亚洲aⅴ乱码一区二区在线播放| 久久国产精品男人的天堂亚洲 | 2018国产大陆天天弄谢| 一级av片app| av在线蜜桃| 少妇猛男粗大的猛烈进出视频| 观看免费一级毛片| 日日啪夜夜撸| 97热精品久久久久久| 日韩成人伦理影院| 我的女老师完整版在线观看| 少妇熟女欧美另类| 免费观看在线日韩| 免费观看无遮挡的男女| 赤兔流量卡办理| 亚洲美女视频黄频| 少妇熟女欧美另类| 欧美三级亚洲精品| 亚洲欧美日韩卡通动漫| 免费人成在线观看视频色| 最近最新中文字幕免费大全7| 极品教师在线视频| 我的老师免费观看完整版| av卡一久久| 免费看日本二区| 纵有疾风起免费观看全集完整版| 日本爱情动作片www.在线观看| 国产久久久一区二区三区| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 亚洲国产精品999| 久久精品国产自在天天线| 久久精品国产亚洲网站| 高清午夜精品一区二区三区| 亚洲色图综合在线观看| 亚洲人成网站在线播| 午夜日本视频在线| av在线播放精品| 国产成人aa在线观看| 三级国产精品欧美在线观看| 国产精品久久久久久av不卡| 亚洲,欧美,日韩| 久久人人爽人人爽人人片va| 国产成人a区在线观看| 亚洲av男天堂| 久久久久性生活片| 在线观看av片永久免费下载| 欧美成人a在线观看| 亚洲精华国产精华液的使用体验| 日日撸夜夜添| 亚洲精品国产av蜜桃| 国产免费一级a男人的天堂| 国产 精品1| 国产极品天堂在线| 亚洲欧美日韩另类电影网站 | 我要看日韩黄色一级片| 久久精品国产a三级三级三级| 夜夜看夜夜爽夜夜摸| 校园人妻丝袜中文字幕| 免费黄频网站在线观看国产| 深夜a级毛片| 亚洲四区av| 亚洲国产日韩一区二区| 国产亚洲91精品色在线| 丝瓜视频免费看黄片| 国产有黄有色有爽视频| 久久99热这里只频精品6学生| 国产成人精品一,二区| 在线观看一区二区三区| 日韩欧美精品免费久久| 在线播放无遮挡| 一区二区av电影网| 丝袜脚勾引网站| 女人久久www免费人成看片| www.色视频.com| 韩国高清视频一区二区三区| av免费观看日本| 亚洲欧美日韩另类电影网站 | 国产乱人视频| 国产精品久久久久成人av| 欧美精品人与动牲交sv欧美| 一本一本综合久久| 国产精品国产三级专区第一集| 美女视频免费永久观看网站| 一区在线观看完整版| 老熟女久久久| 五月玫瑰六月丁香| 欧美97在线视频| 国产视频首页在线观看| 日本欧美视频一区| 男女边吃奶边做爰视频| 久久久久久久久久成人| 亚洲精品久久午夜乱码| 熟女电影av网| 水蜜桃什么品种好| 亚洲激情五月婷婷啪啪| 在线亚洲精品国产二区图片欧美 | 伦理电影免费视频| 联通29元200g的流量卡| 国产精品精品国产色婷婷| 美女中出高潮动态图| 精品久久国产蜜桃| 国产成人freesex在线| 男男h啪啪无遮挡| 久久久久久久久久人人人人人人| 一本一本综合久久| 成人亚洲欧美一区二区av| 国产在视频线精品| 国产黄色免费在线视频| 狂野欧美激情性bbbbbb| 精品国产乱码久久久久久小说| 香蕉精品网在线| av网站免费在线观看视频| 一本久久精品| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产精品专区欧美| 美女中出高潮动态图| 免费av中文字幕在线| 免费看光身美女| 激情五月婷婷亚洲| 在线精品无人区一区二区三 | 色网站视频免费| 国产老妇伦熟女老妇高清| 国产av码专区亚洲av| 欧美xxxx性猛交bbbb| 3wmmmm亚洲av在线观看| 简卡轻食公司| 五月伊人婷婷丁香| 亚洲av成人精品一区久久| 丰满乱子伦码专区| 一级毛片aaaaaa免费看小| 观看美女的网站| 精品国产露脸久久av麻豆| 亚洲婷婷狠狠爱综合网| 日韩av不卡免费在线播放| 晚上一个人看的免费电影| 久久精品国产自在天天线| 在线观看一区二区三区激情| 国产高清国产精品国产三级 | 亚洲aⅴ乱码一区二区在线播放| 免费观看av网站的网址| 久久久色成人| 亚洲精品日韩av片在线观看| 又黄又爽又刺激的免费视频.| av又黄又爽大尺度在线免费看| 欧美高清成人免费视频www| 美女福利国产在线 | 国国产精品蜜臀av免费| 另类亚洲欧美激情| 大片免费播放器 马上看| 成人毛片60女人毛片免费| a 毛片基地| 3wmmmm亚洲av在线观看| 男人添女人高潮全过程视频| 国产亚洲午夜精品一区二区久久| 黄色配什么色好看| 一本一本综合久久| 两个人的视频大全免费| 欧美日韩亚洲高清精品| 啦啦啦在线观看免费高清www| 亚洲第一av免费看| 国产精品女同一区二区软件| 色网站视频免费| 99久国产av精品国产电影| 91aial.com中文字幕在线观看| 老女人水多毛片| xxx大片免费视频| 99国产精品免费福利视频| 高清欧美精品videossex| 看十八女毛片水多多多| av不卡在线播放| 少妇人妻一区二区三区视频| 熟妇人妻不卡中文字幕| 国产精品免费大片| 三级经典国产精品| 一级毛片我不卡| 免费人妻精品一区二区三区视频| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产av新网站| 久久久精品免费免费高清| 美女福利国产在线 | 超碰av人人做人人爽久久| av天堂中文字幕网| 午夜福利影视在线免费观看| 国产午夜精品久久久久久一区二区三区| 免费黄频网站在线观看国产| 国产亚洲午夜精品一区二区久久| 一个人看的www免费观看视频| 狂野欧美白嫩少妇大欣赏| 亚洲美女黄色视频免费看| tube8黄色片| 在线观看美女被高潮喷水网站| 三级经典国产精品| 在线免费观看不下载黄p国产| 亚洲伊人久久精品综合| 美女中出高潮动态图| 啦啦啦视频在线资源免费观看| 大话2 男鬼变身卡| 国产人妻一区二区三区在| 在线观看一区二区三区| 欧美变态另类bdsm刘玥| 午夜激情久久久久久久| 人妻制服诱惑在线中文字幕| 国产美女午夜福利| 男女啪啪激烈高潮av片| 丝瓜视频免费看黄片| 成人影院久久| 大又大粗又爽又黄少妇毛片口| 久久ye,这里只有精品| 色网站视频免费| 亚洲国产色片| 日本wwww免费看| 日日摸夜夜添夜夜添av毛片| 精品午夜福利在线看| av专区在线播放| 六月丁香七月| 男人舔奶头视频| 少妇熟女欧美另类| 免费不卡的大黄色大毛片视频在线观看| 精品少妇黑人巨大在线播放| 舔av片在线| 国产成人精品久久久久久| 久久久久久久国产电影| 日本与韩国留学比较| 特大巨黑吊av在线直播| 久久久精品94久久精品| 国产大屁股一区二区在线视频| 精品一区在线观看国产| 少妇高潮的动态图| 精品人妻熟女av久视频| 在线观看一区二区三区| 亚洲精品一二三| 久久国内精品自在自线图片| 永久网站在线| 欧美高清性xxxxhd video| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产色片| 视频区图区小说| 亚洲国产精品999| 六月丁香七月| 国产精品无大码| 国产伦精品一区二区三区四那| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区黑人 | 自拍欧美九色日韩亚洲蝌蚪91 | 欧美日韩在线观看h| 男女无遮挡免费网站观看| 18禁在线无遮挡免费观看视频| 久久99蜜桃精品久久| 久久精品熟女亚洲av麻豆精品|