• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application

    2022-11-21 09:33:56YongBingHu胡永兵XiaoMinYang楊曉敏DaWeiDing丁大為andZongLiYang楊宗立
    Chinese Physics B 2022年11期

    Yong-Bing Hu(胡永兵) Xiao-Min Yang(楊曉敏) Da-Wei Ding(丁大為) and Zong-Li Yang(楊宗立)

    1School of Electronics and Information Engineering,Anhui University,Hefei 230601,China

    2National Engineering Research Center for Agro-Ecological Big Data Analysis&Application,Anhui University,Hefei 230601,China

    Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks. It is significant to investigate the synchronization of the network with multi-link. In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory, the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters. Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.

    Keywords: multi-links network, fractional order, complex-valued network, finite-time complex projective synchronization,image encryption

    1. Introduction

    Complex networks (CNs) are effective system modeling tools in the real world, every network can be described in terms of nodes and edges, where each edge represents a connection between nodes. Multi-link networks[1–3]are the networks that have more than one connection between two nodes.There are numerous multilink networks in life, such as relationship networks, transportation networks, and communication networks.[4,5]For example, in the transportation networks, the speeds of transmission among highway network,railway network, and airline network are different from each other,which can be seen as that the connections of transportation network have different delays. In Refs.[6,7],the complex multi-link network is split into sub-networks with delay so as to describe the delay characteristics of multi-links network.As a special case of multi-link network, single-link network has been investigated by many researchers. Nevertheless, little attention has been paid to multi-link networks. Therefore,complex dynamic networks with multiple links have certain research value.[8,9]

    Synchronization is an important research topic in CNs.Researchers have studied many synchronization methods,such as projective synchronization,[10]pinning synchronization,[11]and exponential synchronization.[12,13]Projective synchronization(PS)reflects the proportional relationship between synchronization states by introducing a scaling factor.In Ref.[14], Shaet al.used the control method based on uncertainty and disturbance estimation and linear feedback to accomplish PS in complex chaotic systems. As an extension of PS, complex projective synchronization (CPS) leads to synchronization complexity and diversity because its scale factor is a complex number. In Ref.[15],using the stability theorem of the fractional-order systems with multiple delays, Dinget al.achieved CPS in memristive neural network. The CPS occurs asymptotically and it has unbounded convergence time.In fact,the synchronization is often required to accomplish in a finite time. The finite-time control technology is made realize finite-time synchronization in CNs.[16,17]By using a functional scaling factor,Wanget al.investigated finite-time function projective synchronization for multi-link networks with time-varying delay.[18]In Ref. [19], Zhaoet al. realized the fixed-time synchronization and finite-time synchronization in CNs with multilink by using Lyapunov function and linear matrix inequality. In Ref. [20], Zhenget al. studied the decay synchronization of complex multi-link time-varying dynamic network.

    In the existing literature concerning multi-link networks,most of researches are based on integer-order multi-link networks. As a mathematical element that deals with integrals and derivatives in the form of non-integer order,fractional calculus not only has more degrees of freedom than integer calculus,but also possesses unique properties including heredity and infinite memory. At present, fractional calculus has been widely used in CNs which is called fractional order CNs. For example, in Ref.[21], Liet al.used hybrid impulsive control to investigate the global synchronization for two fractional order CNs with non-delayed and delayed coupling. Baoet al.achieved the synchronization of fractional order neural networks with output coupling on the basis of fractional-order Lyapunov function and linear matrix inequalities.[22]Nevertheless, as far as we know, the research results of fractional order multi-link networks are few until now. Therefore, it is significant to incorporate fractional calculus into multi-links networks.

    Comparing with real-valued networks, the applications of complex-valued networks are more extensive. For example, there are more variables and transmitted information in complex-valued networks, and the security of transmitted information is also greatly enhanced. Furthermore,complex-valued networks show complex dynamic behaviors and can describe some physical phenomena such as electromagnetic field amplitude, and rotating fluid.[23,24]Yanget al. studied the quasi-projective synchronization of fractional order complex-valued neural networks via linear control strategy.[25]In Ref.[26],Xuet al.used complex function theory and combined Lyapunov method with graph theory to address finite-time synchronization for fractional order complexvalued multi-weighted dynamical networks.

    Because the fluctuation of system parameters and the disturbance of external environment are always inevitable, they lead to the uncertainty of system parameters. When analyzing system dynamic characteristics, parameter uncertainties should be considered because they may have influence on the synchronization performance and system stability. Therefore,uncertain complex networks are valuable.[27–30]In Ref. [31],making use of the properties of fractional calculus, Liet al.accomplished finite-time synchronization for fractional order complex dynamical networks (FOCDNs) with unknown parameters and the parameters were identified. Duet al. investigated synchronization of all nodes in FOCDNs with uncertain parameters by adaptive control strategy.[32]Yanget al.designed two different controllers to study finite-time lag synchronization of uncertain complex networks with impulsive disturbance.[33]

    In addition, synchronization can improve the security of image transmission and has great applications in secure communication. Considering the highly nonlinear nature of complex networks and non-locality of fractional order chaotic systems, fractional order complex networks are worth applying to image encryption.[34]Wang and Yang proposed a new encryption system algorithm for encrypting/decrypting color images.[35]The DNA encoding algorithm has advantages of high parallelism, high storage capacity and low power consumption in the field of image encryption.[36,37]Moreover,image encryption based on complex network and DNA approach has a good encryption effect.

    From the above analysis,this paper is to address FTCPS of fractional order complex-valued multi-links network and applies it to the image encryption. The main difficulty is how to deal with the delay problem in fractional order multi-link networks. The synchronization is realized via adaptive controller.The criteria of FTCPS are obtained by using fractionalorder Lyapunov functional method and finite-time stability theory. Two examples are used to verify the validity of theoretical results. The main contributions are listed below. First,most of researches are based on integer-order multi-links networks,but we extend the integer-order multi-link networks to the fractional-order networks to make the results more general. Secondly,most of previous multi-link networks are realvalued,but this paper focuses on complex-valued field. Then,considering the uncertainty of network parameters, new update laws are designed and the control strategy of FTCPS is proposed. Compared with the infinite-time synchronization,this finite-time synchronization can improve convergence performance. Finally, the criteria of FTCPS are derived and the relationship between synchronization time and fractional order and control parameters is analyzed. Besides, the network is applied to image encryption and the security analysis is carried out.

    The rest of this paper is structured as follows.In Section 2 some preliminaries and network description are introduced.In Section 3, the main results are demonstrated. Numerical example and image encryption application are provided in Section 4 to verify the validity of the proposed results. In Section 5 some conclusions are drawn from the researches of this paper.

    2. Preliminaries and network description

    We introduce some definitions and lemmas in this section,which are helpful for our later research.

    Definition 1[38]Caputo derivative of orderαfor a functionf(t)∈Cn([t0,+∞)R) (the set of alln-order continuous differentiable functions on[t0,+∞))is defined as

    wheret≥t0,nis a positive integer,n-1<α <n.Γ(·)is the Gamma function. Particularly,when 0<α <1,

    In this paper,we consider the fractional order complex-valued multi-links network with uncertain parameters, which is described by

    Lemma 3[42]Forδr≥0 withr=1,2,...,k, 0≤σ≤1,then

    Remark 2 Compared with the finite-time synchronization issue of integer-order systems,Lemma 4 has a wide range of applications, and the Lemma 4 can be used to study the finite-time stability or synchronization issue for fractionalorder systems or FOCDNs.

    3. Main results

    In this section,we put forward an adaptive controller for accomplishing FTCPS in the fractional-order complex-valued uncertain multi-links network.

    Network(1)can be rewritten as follows:

    then it will follow that

    Using Lemma 3,it follows that

    4. Numerical simulation and application to image encryption

    4.1. Numerical examples

    In this section,the Lorenz system and application to image encryption are used to verify the validity of the proposed theorem.Example 1 Consider complex Lorenz system as the node dynamic system of network with five nodes as follows:

    whereα=0.95,Θ=(a,b,c)T=(10,28,8/3)T,xi1,xi2∈Cn,xi3∈Rn,i=1,2,...5. Chaotic behavior of fractional order complex Lorenz system is exhibited in Fig.1.

    Fig.1. Chaotic behavior of fractional order complex Lorenz system.

    Consider the multi-link network with two different subnetworks,each with five nodes. The weight configuration matrixesA0andA1are respectively chosen as

    whereA0has no time-delay. Figure 2 shows the topological structures of two weighted subgraphsA0andA1respectively.

    Fig.2. Topological structures of two weighted subgraphs,showing(a)topological structures of weighted subgraph A0 and (b) topological structure of weighted subgraph A1.

    The fractional-order complex-valued uncertain multilinks network containing five nodes is expressed as achieve CPS with Eq. (18) within the limited time, and we obtain the estimationt1

    Figure 3 shows the trajectories of synchronization errorei(t)(i=1,2,...,5)We can see thatei(t)=0(i=1,2,...,5)whent ≥1.3087, which denotes that the networks (17) and(18) can accomplish CPS in a finite time. Figure 4 displays the trajectories of uncertain parameters. Moreover, we observe from Fig. 4 that?1→10 andβi2→28 within a finite time interval,which indicates that the uncertain parameters are successfully identified.

    Fig.3. Synchronization errors ei(t)(i=1,2,...,5)of networks(17)and(18),showing[(a),(c),and(e)]real part of synchronization error,and[(b),(d),and(f)]imaginary part of synchronization error.

    Fig.4. Uncertain parameters of the networks(17)and(18): (a)estimation of ?1 (b)estimation of βi2.

    In the following Figs. 5–10, we display the relations between the estimatedt1and the fractional-order parameterαand the control parametersρa(bǔ)ndλ. From Fig.5,we can observe that the estimatedt1increases with the growth of the the fractional-orderα. From Fig.6,we can observe that the estimatedt1firstly decreases as the control parameterρincreases,then it increases as theρincreases. From Fig. 7, we can see that the estimatedt1decreases with the control parameterλincreasing.

    Fig.5. Relations between estimated t1 and α.

    Fig.6. Relations between estimated t1 and ρ.

    Fig.7. Relation between estimated t1 and λ.

    Fig.8. Relations between estimated t1 and α,λ.

    Fig.9. Relations between estimated t1 and ρ,α.

    Fig.10. Relations between estimated t1 and ρ,λ.

    Example 2 Based on synchronization results derived in Example 1, we apply them to image encryption. We take the network (17) as the encryption chaotic sequences to realize the image encryption and the synchronous node (18) as the decryption chaotic sequences to realize image decryption.

    Here,we use the image encryption scheme on DNA coding. The DNA sequence consists of A(adenine),G(guanine),C (cytosine), and T (thymine), where A and T, G and C are two complementary base pairs. Owing to 0 and 1 being complementary in binary,we can encode four nucleic acids A,C,G and T with 00, 01, 10, and 11. Table 1 gives 8 kinds of encoding combinations which satisfy the Watson-Crick complement rule. Table 2 show the addition,subtraction and XOR operations of DNA sequences.

    Table 1. Rules of DNA coding.

    Table 2. Operations of DNA sequences.

    4.2. Processes of image encryption and decryption

    We use the fractional order complex-valued uncertain multi-links network to generate chaotic sequences to disturb the pixels of original image. The encryption flowchart is shown in Fig.11,which includes the generation of chaotic sequence and encryption of image by DNA coding and chaotic sequence.

    Fig.11. Flowchart of encryption.

    4.2.1. Generate chaotic sequence

    Step 1 The fractional order complex-valued uncertain multi-links network is iteratedN0+mntimes, and the lastmniterations are regarded as valid data,then the four state valuesxi(1),xi(2),xi(3),andxi(1)+xi(2),i=1,2,3,...,mnare obtained.

    Step 2 Four state values are used to generate sequencess(i,j)∈[0,255],s′(i,j)∈[0,255],j=1,2,3,4.The calculation formulas are as follows:

    4.3. Simulation results and security analyses

    We select the color image with the size of 256×256×3 as the original image, which is depicted in Fig. 12(a). Using the encryption algorithm, we obtain the encrypted image in Fig. 12(b). It has no trace of the original image. The decrypted-image is shown in Fig.12(c).

    As for encrypted image,it must be secure and can resist different security attacks. For this,we analyze the security from the histogram distributions and correlation coefficients.

    4.3.1. Histograms test

    The distribution of image pixel intensity values can be evaluated by histogram. We can see that the histograms of the encrypted image are equally distributed which can protect the original image information and resist the statistical attack. Figures 13(a)–13(f)display the histograms of the original image and encrypted image in the R,G,and B channels,respectively.

    Fig.13. Histograms of[(a)–(c)]original images and[(d)–(f)]encrypted images.

    4.3.2. Correlation coefficient analysis

    The correlation of adjacent pixels reflects the correlation degree of pixel values at the adjacent positions of images.

    Generally,we calculate the correlations of adjacent pixels in horizontal, vertical, and diagonal directions from the following formula:

    wherexandyare the pixel values of two adjacent pixels,NdenotesNpairs of adjacent pixels selected,and

    From Fig. 14 and Table 3, we can observe that correlations of adjacent pixels in the original image are high, but in the encrypted image, the correlations are efficiently reduced,which indicates that the encrypted image can effectively hide the information about original image.

    Fig.14. Correlation of adjacent pixels in horizontal directions,showing[(a)–(c)]original images and[(d)–(f)]encrypted images.

    Table 3. Correlation coefficients of adjacent pixels in original images and encrypted images.

    5. Conclusions

    This paper addresses FTCPS problem of fractional order complex-valued uncertain multi-link networks. Considering the uncertain parameters, the adaptive controller and parameter update laws are designed. On the basis of fractionalorder Lyapunov functional method and finite-time stability theory, the criteria of FTCPS in fractional-order complexvalued multi-link network are derived. In addition, the relationship between synchronization time and fractional order and control parameters are analyzed. Finally, simulation example and image encryption application are provided to verify the correctness of the obtained results. In the future, we will study the finite-time function projective synchronization in fractional order complex multi-links networks with timevarying delay.

    性色av一级| 最近中文字幕高清免费大全6| 一边亲一边摸免费视频| 99热网站在线观看| 9色porny在线观看| 国产乱来视频区| 国产高清三级在线| 国产精品久久久久久久电影| 成人国产av品久久久| 人人妻人人澡人人爽人人夜夜| 看十八女毛片水多多多| 精品国产一区二区久久| 少妇人妻 视频| 精品国产一区二区久久| 久久精品国产综合久久久 | 一区二区av电影网| 99久久中文字幕三级久久日本| 99热国产这里只有精品6| 国产无遮挡羞羞视频在线观看| 99久久人妻综合| 久久久国产欧美日韩av| 亚洲,欧美,日韩| 国产不卡av网站在线观看| 国产亚洲av片在线观看秒播厂| av在线app专区| 天天躁夜夜躁狠狠躁躁| 三上悠亚av全集在线观看| 亚洲图色成人| 精品视频人人做人人爽| 欧美97在线视频| 午夜影院在线不卡| 80岁老熟妇乱子伦牲交| 久久久久久人妻| 亚洲国产欧美日韩在线播放| 男人舔女人的私密视频| 国产xxxxx性猛交| 亚洲欧美成人精品一区二区| 精品视频人人做人人爽| 久久久欧美国产精品| 日韩欧美一区视频在线观看| 美女大奶头黄色视频| 国产一区亚洲一区在线观看| 高清欧美精品videossex| 高清在线视频一区二区三区| 久久人妻熟女aⅴ| 成人国产av品久久久| 大话2 男鬼变身卡| 大片电影免费在线观看免费| 国产黄色视频一区二区在线观看| 尾随美女入室| 国产欧美日韩综合在线一区二区| 性色avwww在线观看| 亚洲伊人色综图| videosex国产| 成人国语在线视频| 亚洲精品日本国产第一区| 国产日韩欧美在线精品| 天天躁夜夜躁狠狠久久av| 中文精品一卡2卡3卡4更新| 一本大道久久a久久精品| 在线观看人妻少妇| 纵有疾风起免费观看全集完整版| 国产亚洲最大av| 51国产日韩欧美| 成人午夜精彩视频在线观看| 免费人妻精品一区二区三区视频| 国产1区2区3区精品| 久久久久久人人人人人| 色网站视频免费| 日韩制服骚丝袜av| 高清欧美精品videossex| 乱人伦中国视频| 国产精品一区二区在线观看99| 精品少妇黑人巨大在线播放| 久久99蜜桃精品久久| 高清av免费在线| 国产老妇伦熟女老妇高清| 巨乳人妻的诱惑在线观看| 久久人妻熟女aⅴ| 最近最新中文字幕免费大全7| av电影中文网址| videos熟女内射| 免费观看av网站的网址| 男女国产视频网站| 18禁动态无遮挡网站| 久久久久国产网址| 一区二区三区精品91| 亚洲av电影在线观看一区二区三区| 麻豆精品久久久久久蜜桃| 国产伦理片在线播放av一区| 香蕉国产在线看| 久久久久久久精品精品| 丝瓜视频免费看黄片| 欧美最新免费一区二区三区| 国产一区亚洲一区在线观看| 最近2019中文字幕mv第一页| 午夜福利乱码中文字幕| 最新的欧美精品一区二区| 两个人看的免费小视频| 婷婷成人精品国产| 人妻一区二区av| 国产精品偷伦视频观看了| 成人国产av品久久久| 久久人妻熟女aⅴ| 大香蕉久久成人网| 又黄又爽又刺激的免费视频.| 伦理电影大哥的女人| 草草在线视频免费看| 国产精品免费大片| 最近2019中文字幕mv第一页| 97超碰精品成人国产| 一级,二级,三级黄色视频| 亚洲精品国产色婷婷电影| 国产精品久久久久久精品电影小说| 日韩电影二区| 亚洲精品乱码久久久久久按摩| 日本猛色少妇xxxxx猛交久久| 黄色视频在线播放观看不卡| 日本黄色日本黄色录像| 日韩大片免费观看网站| 久久99热6这里只有精品| 99re6热这里在线精品视频| 看非洲黑人一级黄片| 18禁在线无遮挡免费观看视频| av黄色大香蕉| 亚洲精品日韩在线中文字幕| 啦啦啦视频在线资源免费观看| 亚洲伊人色综图| 天堂中文最新版在线下载| 有码 亚洲区| 在线免费观看不下载黄p国产| 中国美白少妇内射xxxbb| av免费观看日本| 91精品伊人久久大香线蕉| 老熟女久久久| 久久久亚洲精品成人影院| 两个人看的免费小视频| 一个人免费看片子| 91国产中文字幕| 中文字幕av电影在线播放| 高清在线视频一区二区三区| 精品福利永久在线观看| 免费观看性生交大片5| 亚洲图色成人| 蜜臀久久99精品久久宅男| 人人澡人人妻人| 九九爱精品视频在线观看| 美女脱内裤让男人舔精品视频| 亚洲综合色网址| 人妻系列 视频| 99国产精品免费福利视频| 日韩不卡一区二区三区视频在线| 黄色视频在线播放观看不卡| 成人亚洲精品一区在线观看| √禁漫天堂资源中文www| 韩国高清视频一区二区三区| 美女脱内裤让男人舔精品视频| 日本猛色少妇xxxxx猛交久久| 妹子高潮喷水视频| 欧美xxⅹ黑人| 亚洲 欧美一区二区三区| 国产乱人偷精品视频| 天堂中文最新版在线下载| 2018国产大陆天天弄谢| 久久久久久久大尺度免费视频| 国产精品一区二区在线观看99| 777米奇影视久久| 欧美成人午夜精品| 国产精品.久久久| 免费不卡的大黄色大毛片视频在线观看| 国产成人aa在线观看| 久久久欧美国产精品| 日韩伦理黄色片| 2021少妇久久久久久久久久久| 成人午夜精彩视频在线观看| 亚洲av男天堂| 性色av一级| 久久久久久久久久人人人人人人| 伦理电影免费视频| 国产乱人偷精品视频| a级毛片在线看网站| av在线播放精品| 91成人精品电影| 一级片免费观看大全| 青青草视频在线视频观看| 久久精品国产a三级三级三级| 亚洲精品aⅴ在线观看| 免费大片18禁| 国产淫语在线视频| 波多野结衣一区麻豆| 一本久久精品| 亚洲久久久国产精品| 美女国产视频在线观看| 欧美亚洲日本最大视频资源| 亚洲一码二码三码区别大吗| 免费观看无遮挡的男女| 热99久久久久精品小说推荐| 少妇的丰满在线观看| 国产乱来视频区| 色网站视频免费| 亚洲欧洲精品一区二区精品久久久 | 香蕉丝袜av| 波多野结衣一区麻豆| 夜夜骑夜夜射夜夜干| 国产深夜福利视频在线观看| 国产av码专区亚洲av| 男女高潮啪啪啪动态图| 一个人免费看片子| 香蕉国产在线看| 亚洲精品国产色婷婷电影| 成人18禁高潮啪啪吃奶动态图| 丝袜人妻中文字幕| 亚洲国产av新网站| 久久热在线av| 亚洲国产最新在线播放| 久久久精品区二区三区| 丝袜喷水一区| 国产精品不卡视频一区二区| 一级,二级,三级黄色视频| 啦啦啦视频在线资源免费观看| 在线观看人妻少妇| 日韩精品有码人妻一区| 国产日韩欧美视频二区| 国产成人精品久久久久久| 观看美女的网站| 在线观看一区二区三区激情| 久久久久精品久久久久真实原创| 麻豆精品久久久久久蜜桃| 色94色欧美一区二区| 有码 亚洲区| 韩国高清视频一区二区三区| 精品国产露脸久久av麻豆| av天堂久久9| 国产深夜福利视频在线观看| 如日韩欧美国产精品一区二区三区| 欧美日韩国产mv在线观看视频| 欧美老熟妇乱子伦牲交| 少妇的逼好多水| 中文字幕亚洲精品专区| 18在线观看网站| 国产免费一区二区三区四区乱码| 国产一区二区三区综合在线观看 | 国产日韩欧美亚洲二区| 哪个播放器可以免费观看大片| 2021少妇久久久久久久久久久| 久久久久精品人妻al黑| 久久久精品94久久精品| 国产日韩欧美在线精品| 亚洲av成人精品一二三区| 欧美xxxx性猛交bbbb| 黑丝袜美女国产一区| 国产综合精华液| 亚洲三级黄色毛片| 中国三级夫妇交换| 亚洲av在线观看美女高潮| 国产精品偷伦视频观看了| 欧美 亚洲 国产 日韩一| 99re6热这里在线精品视频| 国产亚洲欧美精品永久| 老女人水多毛片| 两性夫妻黄色片 | 看十八女毛片水多多多| 在线观看美女被高潮喷水网站| 亚洲国产看品久久| 亚洲一级一片aⅴ在线观看| 如何舔出高潮| 国产一区二区三区av在线| 亚洲国产色片| 99精国产麻豆久久婷婷| 男男h啪啪无遮挡| 热99久久久久精品小说推荐| 最近最新中文字幕免费大全7| 在线 av 中文字幕| 97在线人人人人妻| 美女视频免费永久观看网站| 人人妻人人爽人人添夜夜欢视频| 国产 一区精品| 91精品国产国语对白视频| 亚洲国产毛片av蜜桃av| 成人亚洲欧美一区二区av| 十分钟在线观看高清视频www| av女优亚洲男人天堂| 国产精品不卡视频一区二区| 日韩制服骚丝袜av| 国内精品宾馆在线| 在线天堂中文资源库| 亚洲精品色激情综合| 黄色毛片三级朝国网站| 新久久久久国产一级毛片| 高清黄色对白视频在线免费看| 国产欧美另类精品又又久久亚洲欧美| 亚洲高清免费不卡视频| 韩国精品一区二区三区 | 五月天丁香电影| 国产高清不卡午夜福利| 国产免费视频播放在线视频| 尾随美女入室| 丰满迷人的少妇在线观看| 日韩精品免费视频一区二区三区 | 国产精品一二三区在线看| 欧美精品一区二区大全| 精品一区二区三区视频在线| 肉色欧美久久久久久久蜜桃| 9191精品国产免费久久| 免费av不卡在线播放| av国产精品久久久久影院| 国产不卡av网站在线观看| 亚洲综合色网址| 国产日韩欧美亚洲二区| 美女国产视频在线观看| 下体分泌物呈黄色| 最近最新中文字幕大全免费视频 | 寂寞人妻少妇视频99o| 男男h啪啪无遮挡| 亚洲精品美女久久久久99蜜臀 | 少妇被粗大的猛进出69影院 | 久热久热在线精品观看| 日本色播在线视频| 久热久热在线精品观看| av免费观看日本| 少妇熟女欧美另类| 亚洲激情五月婷婷啪啪| 少妇 在线观看| 男女免费视频国产| 五月天丁香电影| 国产熟女欧美一区二区| 亚洲精品国产av成人精品| 国产精品一区二区在线观看99| av在线播放精品| 欧美+日韩+精品| 国产亚洲最大av| 久久精品熟女亚洲av麻豆精品| 一区二区av电影网| 久久精品国产鲁丝片午夜精品| 哪个播放器可以免费观看大片| 99热这里只有是精品在线观看| 纵有疾风起免费观看全集完整版| www日本在线高清视频| 国产av精品麻豆| 久久 成人 亚洲| 深夜精品福利| 日本爱情动作片www.在线观看| 中国美白少妇内射xxxbb| 亚洲综合色网址| 日日啪夜夜爽| 国产极品粉嫩免费观看在线| 飞空精品影院首页| 国产精品成人在线| 欧美日韩av久久| 国产白丝娇喘喷水9色精品| 久久99热这里只频精品6学生| 国产又色又爽无遮挡免| 97在线视频观看| 亚洲三级黄色毛片| 午夜久久久在线观看| 日本91视频免费播放| 亚洲国产av影院在线观看| 国产精品久久久久久精品古装| 男的添女的下面高潮视频| a级毛片黄视频| 天堂中文最新版在线下载| 中文字幕精品免费在线观看视频 | 老司机亚洲免费影院| 九九在线视频观看精品| 午夜福利影视在线免费观看| 制服丝袜香蕉在线| 9热在线视频观看99| 亚洲国产色片| 成年美女黄网站色视频大全免费| 国内精品宾馆在线| 精品福利永久在线观看| 97精品久久久久久久久久精品| 男的添女的下面高潮视频| 国产精品久久久久久精品电影小说| 在线看a的网站| 亚洲精品国产av成人精品| 一级毛片黄色毛片免费观看视频| 免费日韩欧美在线观看| 国产白丝娇喘喷水9色精品| 久久 成人 亚洲| 伦理电影大哥的女人| 只有这里有精品99| av女优亚洲男人天堂| 人成视频在线观看免费观看| 51国产日韩欧美| 日韩av不卡免费在线播放| 一二三四在线观看免费中文在 | 欧美人与性动交α欧美软件 | 国产麻豆69| 天天躁夜夜躁狠狠躁躁| 精品一区二区免费观看| 亚洲欧美色中文字幕在线| 777米奇影视久久| 青春草视频在线免费观看| 国产精品免费大片| av电影中文网址| 国产高清不卡午夜福利| 最近手机中文字幕大全| 国产免费福利视频在线观看| 狂野欧美激情性bbbbbb| 国产精品偷伦视频观看了| 国产精品国产三级国产专区5o| 午夜日本视频在线| 韩国高清视频一区二区三区| 男人操女人黄网站| 久久久久久久国产电影| 菩萨蛮人人尽说江南好唐韦庄| 成年av动漫网址| 哪个播放器可以免费观看大片| 国产乱来视频区| 欧美精品一区二区免费开放| 欧美 日韩 精品 国产| 99香蕉大伊视频| 成年av动漫网址| 少妇人妻久久综合中文| 涩涩av久久男人的天堂| 又粗又硬又长又爽又黄的视频| 免费少妇av软件| 久久人人爽人人爽人人片va| 97超碰精品成人国产| 欧美日韩视频高清一区二区三区二| 国产一区二区三区综合在线观看 | 最近最新中文字幕大全免费视频 | 制服诱惑二区| 日韩制服丝袜自拍偷拍| 免费不卡的大黄色大毛片视频在线观看| 国产精品久久久av美女十八| 丰满乱子伦码专区| 国产探花极品一区二区| 男男h啪啪无遮挡| 国产熟女欧美一区二区| 97人妻天天添夜夜摸| 这个男人来自地球电影免费观看 | 亚洲精品日本国产第一区| 国产精品 国内视频| 国产精品一二三区在线看| 亚洲熟女精品中文字幕| 伊人久久国产一区二区| 少妇的逼好多水| 国产不卡av网站在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲av电影在线进入| 99久久精品国产国产毛片| 边亲边吃奶的免费视频| 欧美丝袜亚洲另类| 日本wwww免费看| 国产亚洲精品第一综合不卡 | 人人妻人人爽人人添夜夜欢视频| 久久韩国三级中文字幕| 欧美xxⅹ黑人| 一边摸一边做爽爽视频免费| 亚洲欧美日韩另类电影网站| 亚洲精品日韩在线中文字幕| 女人被躁到高潮嗷嗷叫费观| 成人国语在线视频| 少妇被粗大的猛进出69影院 | 久久这里有精品视频免费| 欧美性感艳星| 亚洲av电影在线进入| 日本欧美国产在线视频| 22中文网久久字幕| 黄网站色视频无遮挡免费观看| 亚洲天堂av无毛| 伊人久久国产一区二区| 国产激情久久老熟女| 亚洲精品一二三| av国产精品久久久久影院| 国产av精品麻豆| 男人爽女人下面视频在线观看| 日韩av在线免费看完整版不卡| 亚洲精品456在线播放app| 极品人妻少妇av视频| 精品国产一区二区三区四区第35| 亚洲av电影在线观看一区二区三区| 欧美激情极品国产一区二区三区 | 这个男人来自地球电影免费观看 | 国产黄色视频一区二区在线观看| 日本色播在线视频| av在线老鸭窝| 久久久久人妻精品一区果冻| 国产精品.久久久| 国内精品宾馆在线| 一区二区三区精品91| 日韩制服丝袜自拍偷拍| 九色成人免费人妻av| 久久毛片免费看一区二区三区| 观看美女的网站| 人体艺术视频欧美日本| 日韩 亚洲 欧美在线| 一区在线观看完整版| 乱码一卡2卡4卡精品| 欧美另类一区| av有码第一页| 国产老妇伦熟女老妇高清| 日本与韩国留学比较| 亚洲精品一区蜜桃| 国产精品欧美亚洲77777| 日本黄色日本黄色录像| 热99国产精品久久久久久7| 午夜日本视频在线| 亚洲图色成人| 欧美另类一区| 国产白丝娇喘喷水9色精品| 国产老妇伦熟女老妇高清| 街头女战士在线观看网站| 十八禁高潮呻吟视频| 免费av中文字幕在线| 日本黄色日本黄色录像| 热99国产精品久久久久久7| 91国产中文字幕| av黄色大香蕉| 伦理电影免费视频| 夫妻性生交免费视频一级片| 九色亚洲精品在线播放| 人人妻人人澡人人看| 日韩电影二区| 高清不卡的av网站| 久久久久久久久久久免费av| av卡一久久| 国产欧美亚洲国产| 午夜福利在线观看免费完整高清在| 看免费av毛片| 国产在线视频一区二区| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| 亚洲第一区二区三区不卡| www日本在线高清视频| 成人毛片60女人毛片免费| 亚洲欧美中文字幕日韩二区| 亚洲成色77777| 9191精品国产免费久久| 大话2 男鬼变身卡| 9热在线视频观看99| 免费在线观看完整版高清| 中文字幕最新亚洲高清| 尾随美女入室| 男女国产视频网站| 亚洲,欧美,日韩| 亚洲 欧美一区二区三区| 亚洲成色77777| 久久午夜福利片| 狠狠婷婷综合久久久久久88av| 丰满少妇做爰视频| 久久人妻熟女aⅴ| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 午夜91福利影院| 国产免费福利视频在线观看| 在线 av 中文字幕| 亚洲av中文av极速乱| 国产精品一二三区在线看| 欧美日韩成人在线一区二区| 韩国av在线不卡| 婷婷色综合大香蕉| 久久狼人影院| 久久韩国三级中文字幕| 视频在线观看一区二区三区| 晚上一个人看的免费电影| 美女国产视频在线观看| 亚洲国产精品999| 一区二区av电影网| 亚洲伊人色综图| 成人国语在线视频| 久久精品国产亚洲av涩爱| 欧美性感艳星| 成年人免费黄色播放视频| 国产精品嫩草影院av在线观看| 日本午夜av视频| 精品一区二区三卡| 中文字幕av电影在线播放| 久久久久久久久久久久大奶| 狠狠精品人妻久久久久久综合| 夫妻午夜视频| 最近中文字幕2019免费版| 欧美成人午夜精品| 日韩三级伦理在线观看| 成年人免费黄色播放视频| 午夜激情av网站| 精品一区二区免费观看| 蜜桃在线观看..| 一级毛片我不卡| 国产精品成人在线| 日韩视频在线欧美| 国产成人a∨麻豆精品| 这个男人来自地球电影免费观看 | 欧美日韩视频高清一区二区三区二| 欧美xxⅹ黑人| 精品99又大又爽又粗少妇毛片| av一本久久久久| 全区人妻精品视频| 香蕉精品网在线| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区在线观看99| 麻豆精品久久久久久蜜桃| av又黄又爽大尺度在线免费看| 黄色配什么色好看| 侵犯人妻中文字幕一二三四区| 成人国产av品久久久| a级毛色黄片| 精品久久蜜臀av无| 黄色一级大片看看| 最近2019中文字幕mv第一页| 女人精品久久久久毛片| 日本黄色日本黄色录像| 最近2019中文字幕mv第一页| 我的女老师完整版在线观看| 国产在线视频一区二区| 狂野欧美激情性bbbbbb| 日韩大片免费观看网站| 捣出白浆h1v1| 97精品久久久久久久久久精品| 国产精品国产三级国产av玫瑰| 久久鲁丝午夜福利片| 亚洲五月色婷婷综合| xxx大片免费视频|