• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological superconductivity in Janus monolayer transition metal dichalcogenides

    2022-11-21 09:28:30XianDongLi李現(xiàn)東ZuoDongYu余作東WeiPengChen陳偉鵬andChangDeGong龔昌德
    Chinese Physics B 2022年11期

    Xian-Dong Li(李現(xiàn)東) Zuo-Dong Yu(余作東) Wei-Peng Chen(陳偉鵬) and Chang-De Gong(龔昌德)

    1National Laboratory of Solid State Microstructure,Department of Physics,Nanjing University,Nanjing 210093,China

    2School of Information and Electronic Engineering,Zhejiang Gongshang University,Hangzhou 310018,China

    3Shenzhen Institute for Quantum Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China

    4Center for Statistical and Theoretical Condensed Matter Physics,Zhejiang Normal University,Jinhua 321004,China

    5Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    The Janus monolayer transition metal dichalcogenides(TMDs)MXY (M=Mo,W,etc.and X,Y =S,Se,etc.) have been successfully synthesized in recent years. The Rashba spin splitting in these compounds arises due to the breaking of out-of-plane mirror symmetry. Here we study the pairing symmetry of superconducting Janus monolayer TMDs within the weak-coupling framework near critical temperature Tc, of which the Fermi surface (FS) sheets centered around both Γ and K (K′) points. We find that the strong Rashba splitting produces two kinds of topological superconducting states which differ from that in its parent compounds. More specifically,at relatively high chemical potentials,we obtain a timereversal invariant s+f+p-wave mixed superconducting state,which is fully gapped and topologically nontrivial,i.e.,a Z2 topological state. On the other hand,a time-reversal symmetry breaking d+p+f-wave superconducting state appears at lower chemical potentials. This state possess a large Chern number|C|=6 at appropriate pairing strength,demonstrating its nontrivial band topology. Our results suggest the Janus monolayer TMDs to be a promising candidate for the intrinsic helical and chiral topological superconductors.

    Keywords: topological,superconductivity,Janus,transition metal dichalcogenides(TMDs)

    1. Introduction

    Topological superconductors (TSCs), which are characterized by a full-gap bulk and robust gapless surface (edge)states, have gained much attention for their novel topological properties in recent years.[1–9]Several superconductors are considered to be unconventional and even topologically nontrivial, including Sr2RuO4[10–13]and heavy fermion compounds.[14–16]There are also theoretical proposals for artificially realizing the topological superconducting states by using thes-wave superconductor together with spin–orbit coupling (SOC). For instance, through the proximity effect ans-wave superconductor on a strong topological insulator becomes a spinlessp+ip-wave superconductor[1]or by applying a strong perpendicular magnetic field to ans-wave Rashba superconductor, topological superconducting states emerge.[17,18]However, there has been no definitive experimental evidence for the existence of TSCs so far,and it is still a grand challenge to provide valuable traces of them.

    Transition metal dichalcogenides (TMDs) are a class of noncentrosymmetric layered van der Waals materials, which have been studied for decades as they usually exhibit superconductivity, charge-density wave state and other electronic phenomena.[19–24]Superconductivity in the bulk TMDs is usually conventional. However, in the ultra-thin films, a strong enhancement of the in-plane critical field indicates possible unconventional superconductivity caused by the large Ising SOC.[25–30]Several kinds of parity-mixed pairings, for instance, thes+f-wave andd+p-wave pairings, have been suggested as candidates for unconventional superconducting states in the monolayer TMDs.[31,33]

    Here we study the pairing symmetry of the newly synthesized Janus TMDsMXY.[33–40]In a Janus TMD molecular layer,Matomic plane is sandwiched by two different atomic planesXandY.The stacking structure breaks the out-of-plane mirror symmetry, leading to a Rashba-type spin splitting of bands aroundΓpoint in the Brillouin zone (BZ). Previous works on the Janus layered TMDs mainly focused on their crystal, band structures and optical property,[41–44]while the nature of possible superconductivity has rarely been discussed.The parents of Janus TMDs,which have the 2H structure,are intrinsic Ising superconductors in most thin layer cases. We focus on the Janus TMDs with FS sheets centered around bothΓandK(K′)points based on the observation that the Rashba spin splitting occurs aroundΓ[36]while the Ising-type acts mainly on theK(K′) valleys.[45]The Cooper pairs are thus subjected to these two kinds of SOC effects. This type of FS topology provides an ideal platform for us to investigate the competition and interplay between these SOC effects on superconductivity. Naturally one could expect that the Rashba–Ising superconductivity leads to various kinds of mixed superconducting states in the Janus monolayer TMDs. As far as we know, the superconducting symmetry of H–MoS2monolayer coexisting with a gating-induced Rashba SOC has been theoretically studied by Yuanet al.in Ref. [31]. But since the FS of MoS2encloses only atK(K′)points,we believe the influence of Rashba SOC on Ising superconductivity is still not completely revealed.

    In this work, we calculate the most favorable pairing states of the Janus monolayer with bothΓandK(K′) centered FS at different pairing interactions and chemical potentials by solving the linearized gap equation near the critical temperatureTc. We obtain a rich phase diagram which shows that at a relatively high chemical potential,a time-reversal invariant (TRI)s+f+p-wave pairing in irreducible representation (IR)A1of point groupC3vmay dominate the nearestneighbor(NN)pairing channels. Unlike the nodals+f-wave pairing in the monolayer H–MX2,[46]thes+f+p-wave has a large additional helicalp-wave component induced by the strong Rashba SOC, making the superconductor to be fullgap and topologically nontrivial, characterized by the invariant Z2= 1. At a lower chemical potential, a time-reversal symmetry breaking (TRB)d+p+f-wave pairing belonging to the two-dimensional IREappears, which can be a large-Chern-number chiral superconducting state with Chern number|C|=6 at appropriate pairing strengths. We emphasis that in the absence of Rashba SOC,a TRBd+p-wave pairing obtained from the same type of FS geometry always lead to a topologically trivial state,i.e.,C=0.

    2. Model

    The crystal structure of the Janus monolayer TMD is shown in Fig. 1(a). It can be viewed as a monolayer H–MX2whose top-layerXatoms are replaced by anotherYatoms,which breaks the out-of-plane mirror symmetry. The normalstate tight-binding Hamiltonian is constructed as follows:

    andR4≡R1.ais the lattice constant,μis the chemical potential, andtandt1denote the NN and next NN hoppings, respectively.αkandβkare effective magnetic fields caused by Rashba and Ising SOC withαRandβsorepresenting corresponding strengths, respectively.We choose the value of parameters to be (t,t1,αR,βso) =(-0.06,-0.14,0.032,0.067)eV.The choice ofαRis referred toMXY(M= W, Mo andX,Y= S, Se, Te) in Ref. [36],whose Rashba splitting strength ranges from 77 meV·?A to 518 meV·?A,corresponding toαRvalue ranging from 0.015 eV to 0.10 eV in our lattice model by assuming the lattice constanta=3.3 ?A.[45]

    Fig. 1. (a) Crystal structure of a Janus monolayer H–MXY. (b) The constructed band structure of it. Fermi levels at μ =0 eV and -0.18 eV are denoted by the red and blue dashed lines,respectively,and their corresponding FS in the first Brillouin zone are presented in panel(c).

    We set the chemical potentialμas an tunable parameter in our model. Whenμ=0 eV, this model is in analogy to the band structure of H–TaS2given by experiments and DFT calculations.[45,47,48]On the other hand, a chemical potentialμ=-0.18 eV will give an FS topology similar to H–TaSe2,which has dog-bone-shaped electron Fermi pockets centered atM.[49–51]The low-energy spectrum and FS of H–MXYfor the two chemical potentials,μ=0 eV and-0.18 eV,are simulated in Figs.1(b)and 1(c). In the figure of BZ,the“Q”point labels the position of van Hove singularity(vHS)corresponding to the first Lifshitz transition.One can infer from the figure that the first Lifshitz transition occurs aroundμ=-0.15 eV.

    Table1. The classificationof basisgapfunctions basedonC3v symmetry. They are introducedas:C(k) = (1/)coski,C+(k)= ωi-1coski, S(k) = (1/3)sinki,S+(k)=(1/) ωi-1sinki,C-(k)=(k),S-(k()=(k)),withvectorx±=(x±iy)/2andphasefactor ω=exp-i2π/3.

    Table1. The classificationof basisgapfunctions basedonC3v symmetry. They are introducedas:C(k) = (1/)coski,C+(k)= ωi-1coski, S(k) = (1/3)sinki,S+(k)=(1/) ωi-1sinki,C-(k)=(k),S-(k()=(k)),withvectorx±=(x±iy)/2andphasefactor ω=exp-i2π/3.

    3. Symmetry analysis and method

    The point-group symmetry of monolayer H–MXYis C3vand its basis gap functions are given in Table 1. Here we only consider the on-site and NN pairing channels.Depending on the spin angular momentum of the cooper pair,i.e., spinsinglet (S=0) or spin-triplet (S=1), gap functions take the matrix form as:

    whereΔis the gap size value andcΓ,αdenotes the relative amplitude ofΔΓ,α(k), with the normalization condition∑Γ,α|cΓ,α|2=1. From Table 1 we have four classes ofkdependent basic gap structure:C(k) for the extendeds-wave pairing,S(k) for thef-wave type,C±(k) andS±(k) denote the chirald±idandp ?ip-wave types, respectively. Distributions of these gap structures in the momentum space are shown in Fig. 2. From Figs. 2(a) and 2(b) one can see that there is a nodal loop aroundΓpoint for the extendeds-wave pairing and nodal lines alongΓ–Mdirections for thef-wave.A pures-orf-wave superconductor then could be a nodal superconductor. On the contrary, thed+id- andp-ip-wave pairing gaps have finite nodes in the BZ and each node has its own chirality,as shown in Figs.2(c)and 2(d). Here we define the chirality by computing the phase winding of the gap function along a counterclockwise loop around the node. It can be easily obtained from the plots that the winding numbers of these nodal points are (wΓ,wK(K′))=(-2,1) ford+idand(wΓ,wK(K′),wM)=(1,1,-1)forp-ip. Obviously sum over the winding number of each node in the BZ gives zero. Superconductors of these two pairing forms are fully gapped and the winding number of superconducting gap on the FS is totally determined by the gap-function nodes enclosed by the FS sheets,which is also equivalent to the(first)Chern number.[46]

    The intrinsic SOCs in our model destroy the inversion symmetry and give rise to admixture between singlet and triplet pairings. Lots of parity-mixed pairing states in the noncentrosymmetric superconductors have already been discussed in previous works.[52–57]Given that thedvector always tend to be paralleled to the SOC fields,e.g.,gk=αk+βkin our model, significant admixtures betweenψ,dxyanddzare expected in a Janus monolayer with both strong in-plane Rashba(αk)and out-of-plane Ising(βk)“magnetic fields”.

    Fig. 2. Distribution of the gap structure (a) C(k) [extended s-wave], (b)S(k) [f-wave], (c)C+(k) [d+id-wave] and (d) S+(k) [p-ip-wave] in the momentum space. The hexagonal BZ is indicated by the gray box. The bright and dark areas in panels (a), (b) represent positive and negative values. The length and angle of arrows in panels(c),(d)respectively give the amplitude and phase of the complex C+(k), S+(k). Winding numbers of each gap node are given in the brackets.

    wherev0,v1represent the on-site and NN pairing strengths respectively and the positive (negative) values of them denote attractive(repulsive)interactions.

    4. Result and discussion

    Our calculation allow us to construct an NN interactionchemical potential superconducting phase diagram as shown in Fig.3. The conventional on-sites-wave is more stable than NN one only if when on-site interaction is stronger than the NN one(v1/v0<1),illustrated as bright blue regions in phase diagram. For the NN superconducting states in the rest of the phase diagram,the TRIs+f+p-wave pairing state(dark blue regions of the phase diagram), which corresponding to gap functions“ΨA1,nn+dA1,z+dA1,xy”,dominates the parameter space whereμ >-0.08 eV. By comparing to the monolayerMX2,whereA1phase is a nodals+f-wave pairing state,we conclude that it is the large Rashba SOC of Janus structure that induces helicalp-wave componentdA1,xyinMXY.Typical relative amplitudes of the three pairing components are (cA1,nn,cA1,z,cA1,xy)=(-0.24,0.91,-0.34). The helicalp-wave order parameter is stronger than the extendeds-wave on theΓ-centered FS, leading to a full-gaps+f+p-wave state with a nontrivial topological invariant Z2=1. The Z2number is calculated by using

    moded by 2 where Pf[A] is the Pfaffian ofA.Θis the timereversal operator and|n,k〉is the eigenstate with an energyEn,kof the superconducting Hamiltonian.Cin Eq. (9) is the path enclosing half of the BZ,as shown in Ref.[58]. For topologically trivial(nontrivial)case,Z2=0(1). Figure 4(a)displays the enlarged-energy spectrum of the Z2=1 topological phase, whose topologically protected Majorana helical edge states are highlighted by the red color.

    Fig.3. Superconducting phase diagram of Janus monolayer MXY in the v1–μ plane,with v0=0.1 eV.The blue and purple denote the A1 and E phases,respectively,and the dashed lines indicate the borders of topological phases.The critical temperature Tc exponentially increases from bright to dark,corresponding to a temperature range from 0 K to about 400 K. Topological invariant C(i=1)or Z2 of each phase is also illustrated.

    Fig.4.Energy spectra of the topological(a)TRI s+f+p-wave(A1,Z2=1)state, (b) TRB d+p+ f-wave (E,C=-6) state of the Janus monolayer,with open-boundary conditions along y direction. Gap sizes are enlarged for sight and the gapless edge states are highlighted by the red.

    5. Conclusions

    In this paper,the possible forms of pairing in Janus monolayer TMDs with FS centered around bothΓandK(K′)points have been investigated. Through analysis on the pairing symmetry and calculations based on the linearized gap equations,we have identified a Z2topologicals+f+p-wave superconducting state at the relatively high chemical potentials, and a chirald+p+f-wave state with a large Chern number|C|=6 when the chemical potential is lower. Unlike its parentMX2monolayers which are nodal or topologically trivial superconductors, our results show that Janus monolayer TMDs could be a promising candidate for the intrinsic helical and chiral TSCs.

    Although we only focus on a specific model,the conclusions can be applied to all the superconducting Janus monolayer TMDs with strong-Rashba-splitting FS centered aroundΓ,e.g.,the group-V Janus H–MXY(M=Ta,Nb,etc.;X,Y=S, Se,etc.). There are superconducting conductance experiments observing zero bias conductance peak of the thin flakes of 2H–TaS2and 2H–TaSe2belowTc,[61,62]which indicates novel superconductivity in the atomic limit. Theoretical results suggest that these novel pairings could bes+f-wave andd+p-wave,[31,32,46]which both require a larger NN pairing attraction over on-site one in our framework. Consequently,it is most likely to realize thes+f+p-wave andd+p+f-wave topological states in Janus monolayer of group-V TMDs if the same assumption is taken for this family of materials.

    Acknowledgements

    We acknowledge Wei-Jian Li for useful discussions.Xian-Dong Li also thanks Ai-Lei He for helpful suggestions.Project supported by the National Natural Science Foundation of China(Grant No.11904155).

    免费人妻精品一区二区三区视频| www日本在线高清视频| 亚洲精品在线美女| 日韩一区二区视频免费看| 国产一区二区激情短视频 | 中国国产av一级| 嫩草影院入口| 久久精品国产a三级三级三级| 国产一区二区三区综合在线观看| 午夜日本视频在线| 精品第一国产精品| 久久人人爽人人片av| 日本欧美视频一区| 黄频高清免费视频| 午夜激情久久久久久久| 热99国产精品久久久久久7| 久久久久久人人人人人| 黄色配什么色好看| 26uuu在线亚洲综合色| 夫妻午夜视频| 国产老妇伦熟女老妇高清| 国产在线一区二区三区精| 欧美人与善性xxx| 亚洲欧美一区二区三区黑人 | 一个人免费看片子| 午夜福利在线观看免费完整高清在| 国产国语露脸激情在线看| 国产精品女同一区二区软件| 激情视频va一区二区三区| tube8黄色片| 久久久欧美国产精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产日韩欧美亚洲二区| 精品国产露脸久久av麻豆| 国产欧美日韩综合在线一区二区| 男男h啪啪无遮挡| 免费看av在线观看网站| 亚洲成av片中文字幕在线观看 | 超碰成人久久| 美女午夜性视频免费| 叶爱在线成人免费视频播放| 成人国产av品久久久| 国产精品久久久久久精品电影小说| 亚洲精品一区蜜桃| 人体艺术视频欧美日本| 少妇的丰满在线观看| 色播在线永久视频| 久久久久久久国产电影| 久久精品国产亚洲av涩爱| 久久99精品国语久久久| 色视频在线一区二区三区| 国产黄色视频一区二区在线观看| 宅男免费午夜| 超色免费av| av一本久久久久| 欧美日韩精品网址| 欧美激情 高清一区二区三区| 亚洲av中文av极速乱| 色哟哟·www| 中文乱码字字幕精品一区二区三区| 国产一区有黄有色的免费视频| 日本免费在线观看一区| www.精华液| 婷婷色综合www| 亚洲少妇的诱惑av| 国产熟女欧美一区二区| 亚洲综合色网址| 高清欧美精品videossex| 新久久久久国产一级毛片| 午夜福利在线免费观看网站| 日日撸夜夜添| 男人爽女人下面视频在线观看| 久久久久久久亚洲中文字幕| 母亲3免费完整高清在线观看 | 国产乱人偷精品视频| 亚洲人成77777在线视频| 国产欧美日韩综合在线一区二区| 一本大道久久a久久精品| 免费黄频网站在线观看国产| 亚洲一码二码三码区别大吗| 精品一区在线观看国产| 亚洲av综合色区一区| 久久久久久久大尺度免费视频| 少妇的逼水好多| 交换朋友夫妻互换小说| 中文字幕最新亚洲高清| 飞空精品影院首页| 国产在线视频一区二区| 国产麻豆69| av卡一久久| 免费黄网站久久成人精品| 亚洲中文av在线| 国产欧美日韩综合在线一区二区| 久久精品国产综合久久久| 国产野战对白在线观看| 成人毛片60女人毛片免费| 大片电影免费在线观看免费| 少妇人妻精品综合一区二区| 久久亚洲国产成人精品v| 亚洲精品,欧美精品| 国产综合精华液| 啦啦啦啦在线视频资源| videosex国产| 日韩三级伦理在线观看| 最近2019中文字幕mv第一页| 国产精品二区激情视频| 精品一区二区三区四区五区乱码 | 性少妇av在线| 一本大道久久a久久精品| 亚洲欧美色中文字幕在线| 天堂中文最新版在线下载| 国产成人精品婷婷| 日韩一区二区三区影片| 国产一区二区激情短视频 | 少妇的逼水好多| 只有这里有精品99| 免费观看无遮挡的男女| 一级爰片在线观看| 国产极品天堂在线| 日本av手机在线免费观看| 国产精品蜜桃在线观看| 丝袜美腿诱惑在线| 久久久精品94久久精品| 麻豆精品久久久久久蜜桃| 尾随美女入室| 人人妻人人澡人人看| 嫩草影院入口| 国产色婷婷99| 国产一区二区三区av在线| xxxhd国产人妻xxx| 久久久a久久爽久久v久久| 亚洲第一区二区三区不卡| 久久久国产一区二区| a 毛片基地| 国产不卡av网站在线观看| 亚洲美女黄色视频免费看| 高清不卡的av网站| 久久久久久久亚洲中文字幕| 街头女战士在线观看网站| 免费观看性生交大片5| 久久久久久人妻| 叶爱在线成人免费视频播放| 欧美少妇被猛烈插入视频| 天堂俺去俺来也www色官网| 久久鲁丝午夜福利片| 国产麻豆69| 色婷婷久久久亚洲欧美| 欧美人与善性xxx| 成人国产麻豆网| 丝袜美足系列| 国产精品久久久久久精品电影小说| 国产乱来视频区| 建设人人有责人人尽责人人享有的| 乱人伦中国视频| 国产有黄有色有爽视频| 国产精品一区二区在线不卡| 国产在线一区二区三区精| 满18在线观看网站| 91在线精品国自产拍蜜月| 女人高潮潮喷娇喘18禁视频| 婷婷色麻豆天堂久久| 久久精品久久精品一区二区三区| 国产成人精品一,二区| 男女边摸边吃奶| 天美传媒精品一区二区| 精品国产一区二区三区四区第35| av免费观看日本| 精品久久久精品久久久| 免费看不卡的av| 国产熟女午夜一区二区三区| av电影中文网址| 久久婷婷青草| 国产国语露脸激情在线看| 免费在线观看视频国产中文字幕亚洲 | 99re6热这里在线精品视频| 99热国产这里只有精品6| 中文字幕精品免费在线观看视频| 国产成人午夜福利电影在线观看| 国产麻豆69| 国产老妇伦熟女老妇高清| 亚洲,欧美精品.| 亚洲美女视频黄频| 侵犯人妻中文字幕一二三四区| 国产探花极品一区二区| 国产精品免费大片| 熟妇人妻不卡中文字幕| 天天躁夜夜躁狠狠久久av| 精品少妇久久久久久888优播| 久久精品国产a三级三级三级| 男的添女的下面高潮视频| 欧美国产精品一级二级三级| 乱人伦中国视频| 成人毛片a级毛片在线播放| 丰满迷人的少妇在线观看| 久久久久久久国产电影| 视频在线观看一区二区三区| 午夜91福利影院| 两个人免费观看高清视频| 午夜av观看不卡| 亚洲欧美一区二区三区久久| 亚洲,欧美,日韩| 99热网站在线观看| 老汉色∧v一级毛片| 丝袜美腿诱惑在线| 久久99热这里只频精品6学生| 女人高潮潮喷娇喘18禁视频| 街头女战士在线观看网站| 9191精品国产免费久久| 另类亚洲欧美激情| 国产欧美日韩综合在线一区二区| 久久人人爽人人片av| 国产免费现黄频在线看| 丰满迷人的少妇在线观看| 老汉色av国产亚洲站长工具| 日本vs欧美在线观看视频| 久久精品夜色国产| 宅男免费午夜| 桃花免费在线播放| 久久精品久久久久久久性| 香蕉丝袜av| 亚洲国产精品一区三区| 日韩精品免费视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 水蜜桃什么品种好| 大香蕉久久网| 国产亚洲最大av| 亚洲美女搞黄在线观看| 亚洲激情五月婷婷啪啪| 一级毛片我不卡| 亚洲欧美成人精品一区二区| 18禁裸乳无遮挡动漫免费视频| 国产精品国产三级国产专区5o| 国产av精品麻豆| 成人影院久久| 丁香六月天网| 最黄视频免费看| av女优亚洲男人天堂| 国产在线免费精品| 亚洲欧洲日产国产| 老女人水多毛片| 一区二区三区精品91| 久久午夜福利片| 久久毛片免费看一区二区三区| 久久久精品国产亚洲av高清涩受| 建设人人有责人人尽责人人享有的| 欧美日韩一区二区视频在线观看视频在线| 久久97久久精品| 一区福利在线观看| 精品一区二区免费观看| 香蕉精品网在线| 久久精品国产亚洲av高清一级| 日韩成人av中文字幕在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 日本色播在线视频| 一边摸一边做爽爽视频免费| 久久精品国产亚洲av高清一级| 看免费av毛片| 久久毛片免费看一区二区三区| 国产成人免费观看mmmm| 999久久久国产精品视频| 交换朋友夫妻互换小说| 性色avwww在线观看| 亚洲国产精品999| 色吧在线观看| 丝瓜视频免费看黄片| 亚洲人成电影观看| 国产精品久久久久久精品电影小说| 岛国毛片在线播放| 9色porny在线观看| 午夜福利一区二区在线看| 国产麻豆69| 激情视频va一区二区三区| 天堂中文最新版在线下载| 国产av国产精品国产| 少妇被粗大的猛进出69影院| 久久久国产一区二区| 久久精品国产a三级三级三级| 久久99蜜桃精品久久| 免费日韩欧美在线观看| 性高湖久久久久久久久免费观看| 久久综合国产亚洲精品| 热99久久久久精品小说推荐| 午夜激情久久久久久久| av在线老鸭窝| 99热网站在线观看| 女的被弄到高潮叫床怎么办| 欧美+日韩+精品| 国产精品国产三级专区第一集| 国产日韩一区二区三区精品不卡| 男女无遮挡免费网站观看| 国产一区二区在线观看av| 国产无遮挡羞羞视频在线观看| 亚洲第一区二区三区不卡| 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区 | 如何舔出高潮| 2022亚洲国产成人精品| 久久久久国产精品人妻一区二区| 亚洲一码二码三码区别大吗| 亚洲av免费高清在线观看| 波野结衣二区三区在线| 免费观看性生交大片5| 久久久欧美国产精品| 日韩三级伦理在线观看| 丁香六月天网| 亚洲综合色惰| 亚洲av在线观看美女高潮| 一区二区三区精品91| 美女国产高潮福利片在线看| 午夜免费观看性视频| 欧美xxⅹ黑人| 99热网站在线观看| 午夜老司机福利剧场| 久久国产精品男人的天堂亚洲| 26uuu在线亚洲综合色| 日韩一区二区三区影片| 麻豆av在线久日| 亚洲av免费高清在线观看| 亚洲经典国产精华液单| 久久精品久久精品一区二区三区| 亚洲在久久综合| 久久久精品94久久精品| 秋霞伦理黄片| 亚洲av.av天堂| 18禁动态无遮挡网站| 大香蕉久久成人网| 亚洲三区欧美一区| 日韩av在线免费看完整版不卡| 超碰成人久久| 夫妻性生交免费视频一级片| 高清不卡的av网站| 久久久久国产网址| 我的亚洲天堂| 久久av网站| 黑人猛操日本美女一级片| 亚洲第一av免费看| 少妇的丰满在线观看| 老熟女久久久| 一区二区av电影网| 国产欧美日韩一区二区三区在线| 欧美日韩视频精品一区| 久久久精品区二区三区| 免费人妻精品一区二区三区视频| 人妻系列 视频| 1024视频免费在线观看| 欧美日韩精品网址| 久久久亚洲精品成人影院| 男人爽女人下面视频在线观看| 日本免费在线观看一区| 又黄又粗又硬又大视频| 99国产综合亚洲精品| 久久韩国三级中文字幕| 国产白丝娇喘喷水9色精品| 日本av手机在线免费观看| 黄片小视频在线播放| 国产精品 欧美亚洲| 日韩电影二区| 国产精品三级大全| 国产av一区二区精品久久| 国产精品免费大片| 美女中出高潮动态图| 日韩大片免费观看网站| tube8黄色片| 七月丁香在线播放| 91成人精品电影| 性少妇av在线| 精品亚洲成国产av| 女人精品久久久久毛片| 老女人水多毛片| 日韩一卡2卡3卡4卡2021年| 久久精品国产a三级三级三级| 国产国语露脸激情在线看| 欧美 日韩 精品 国产| 久久精品亚洲av国产电影网| 另类精品久久| 五月伊人婷婷丁香| 男人舔女人的私密视频| 国产国语露脸激情在线看| 国产精品蜜桃在线观看| 日韩精品有码人妻一区| 伊人久久国产一区二区| 久久久精品国产亚洲av高清涩受| 亚洲精品一区蜜桃| 日韩大片免费观看网站| 久久久国产欧美日韩av| 777米奇影视久久| 在线观看一区二区三区激情| 色婷婷av一区二区三区视频| 新久久久久国产一级毛片| 亚洲综合色惰| 国产精品久久久av美女十八| 欧美精品国产亚洲| 久久国产精品大桥未久av| 日日爽夜夜爽网站| 五月开心婷婷网| av卡一久久| 亚洲成色77777| xxxhd国产人妻xxx| 日韩熟女老妇一区二区性免费视频| 男男h啪啪无遮挡| 国产成人精品在线电影| 久久精品国产综合久久久| 亚洲成人av在线免费| 久久午夜福利片| 亚洲成人av在线免费| 日韩欧美精品免费久久| 午夜福利在线观看免费完整高清在| av不卡在线播放| 美女脱内裤让男人舔精品视频| 咕卡用的链子| 国产成人精品无人区| 777久久人妻少妇嫩草av网站| 母亲3免费完整高清在线观看 | 狠狠婷婷综合久久久久久88av| 美国免费a级毛片| 永久网站在线| 一级a爱视频在线免费观看| 欧美精品人与动牲交sv欧美| 亚洲欧美精品综合一区二区三区 | 成年人午夜在线观看视频| 交换朋友夫妻互换小说| 青春草国产在线视频| 2022亚洲国产成人精品| 欧美亚洲日本最大视频资源| 看非洲黑人一级黄片| 在线亚洲精品国产二区图片欧美| 亚洲伊人久久精品综合| 在线观看一区二区三区激情| 欧美国产精品一级二级三级| 国产毛片在线视频| 在线观看免费高清a一片| 久久久国产精品麻豆| 9191精品国产免费久久| 男女免费视频国产| 最近2019中文字幕mv第一页| 国产精品成人在线| 久久久久久人人人人人| 亚洲av.av天堂| 在线观看一区二区三区激情| 一级毛片电影观看| 中文字幕人妻丝袜一区二区 | 免费黄网站久久成人精品| 精品一区二区三区四区五区乱码 | 亚洲精品日本国产第一区| 日韩一本色道免费dvd| 亚洲精品成人av观看孕妇| 亚洲美女黄色视频免费看| 亚洲国产成人一精品久久久| 精品一区二区三区四区五区乱码 | 国产精品熟女久久久久浪| 一级片免费观看大全| 少妇熟女欧美另类| 欧美日韩精品成人综合77777| 亚洲美女搞黄在线观看| 午夜日韩欧美国产| 久久精品人人爽人人爽视色| 国产在视频线精品| 伊人亚洲综合成人网| 久久精品夜色国产| 日本色播在线视频| videos熟女内射| 亚洲精品国产一区二区精华液| 久久毛片免费看一区二区三区| 久久人人爽av亚洲精品天堂| 看十八女毛片水多多多| 午夜福利影视在线免费观看| 日韩av不卡免费在线播放| 黄网站色视频无遮挡免费观看| 亚洲色图 男人天堂 中文字幕| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久小说| 97在线人人人人妻| √禁漫天堂资源中文www| 久久亚洲国产成人精品v| 亚洲色图综合在线观看| 欧美激情高清一区二区三区 | 久热这里只有精品99| 欧美日韩视频高清一区二区三区二| 欧美激情极品国产一区二区三区| 夜夜骑夜夜射夜夜干| 美女大奶头黄色视频| 麻豆精品久久久久久蜜桃| 国产国语露脸激情在线看| 在线观看人妻少妇| av一本久久久久| 国产在线视频一区二区| 亚洲综合精品二区| 久久免费观看电影| 国产一级毛片在线| 女人精品久久久久毛片| 考比视频在线观看| 高清不卡的av网站| 国产免费福利视频在线观看| 亚洲三区欧美一区| 久久久精品国产亚洲av高清涩受| 成年女人在线观看亚洲视频| 美女xxoo啪啪120秒动态图| 日韩熟女老妇一区二区性免费视频| 婷婷色综合www| 亚洲精品视频女| 久久久久久人人人人人| 国产一区亚洲一区在线观看| 久久毛片免费看一区二区三区| 久久青草综合色| 久久久国产精品麻豆| 亚洲av免费高清在线观看| 日产精品乱码卡一卡2卡三| 18禁观看日本| 国产一区亚洲一区在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 秋霞伦理黄片| 啦啦啦在线免费观看视频4| 99精国产麻豆久久婷婷| 久久精品夜色国产| 最新中文字幕久久久久| 精品一区二区三卡| 亚洲情色 制服丝袜| 午夜福利在线免费观看网站| 欧美日韩精品网址| 精品国产乱码久久久久久小说| 天天影视国产精品| 国产综合精华液| 人体艺术视频欧美日本| 精品少妇一区二区三区视频日本电影 | 男女免费视频国产| 亚洲五月色婷婷综合| 少妇被粗大猛烈的视频| 日韩精品免费视频一区二区三区| 高清不卡的av网站| 美女大奶头黄色视频| 男人舔女人的私密视频| 免费av中文字幕在线| 美女高潮到喷水免费观看| 丝袜脚勾引网站| 日韩精品有码人妻一区| 午夜福利一区二区在线看| 国产精品久久久久久av不卡| 亚洲一码二码三码区别大吗| 午夜精品国产一区二区电影| 熟女少妇亚洲综合色aaa.| 岛国毛片在线播放| 亚洲欧美精品综合一区二区三区 | 亚洲成人一二三区av| 久久久精品国产亚洲av高清涩受| 国产午夜精品一二区理论片| 欧美日韩国产mv在线观看视频| 国产黄色免费在线视频| 高清在线视频一区二区三区| 搡老乐熟女国产| 久久国产精品大桥未久av| 韩国av在线不卡| 国产97色在线日韩免费| 国产成人一区二区在线| 免费日韩欧美在线观看| 26uuu在线亚洲综合色| 人妻 亚洲 视频| 毛片一级片免费看久久久久| 婷婷色麻豆天堂久久| 国产亚洲精品第一综合不卡| 综合色丁香网| 国产女主播在线喷水免费视频网站| 午夜精品国产一区二区电影| 一级毛片电影观看| 国产av码专区亚洲av| 成人二区视频| 亚洲精品国产一区二区精华液| 国产白丝娇喘喷水9色精品| 少妇人妻精品综合一区二区| 桃花免费在线播放| 久久精品国产亚洲av涩爱| 曰老女人黄片| 日韩制服骚丝袜av| 欧美黄色片欧美黄色片| 久久久久网色| 人人妻人人澡人人看| 国产不卡av网站在线观看| 亚洲欧美清纯卡通| 五月伊人婷婷丁香| 另类亚洲欧美激情| 亚洲欧美清纯卡通| 欧美日韩精品成人综合77777| 久热这里只有精品99| 日韩欧美精品免费久久| 成人黄色视频免费在线看| h视频一区二区三区| videossex国产| 欧美精品一区二区免费开放| 精品亚洲成国产av| av在线播放精品| 欧美xxⅹ黑人| 建设人人有责人人尽责人人享有的| 亚洲美女视频黄频| 老女人水多毛片| 大码成人一级视频| 18禁动态无遮挡网站| 亚洲精品乱久久久久久| 国产伦理片在线播放av一区| 热re99久久国产66热| 青草久久国产| 欧美97在线视频| 在线观看美女被高潮喷水网站| 边亲边吃奶的免费视频| 亚洲,欧美,日韩| 人妻人人澡人人爽人人| 国产精品偷伦视频观看了| 男女无遮挡免费网站观看| 国产视频首页在线观看| 女性生殖器流出的白浆| 国产亚洲一区二区精品| 最近最新中文字幕大全免费视频 | 亚洲国产最新在线播放| 老鸭窝网址在线观看| 午夜福利视频在线观看免费| 日日爽夜夜爽网站| 国产成人精品久久二区二区91 |