• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage

    2022-11-21 09:28:54WenjunYan閆文君ZhishenJin金志燊ZhengyangLin林政揚(yáng)ShiyuZhou周詩(shī)瑜YonghaiDu杜永海YulongChen陳宇龍andHoupanZhou周后盤
    Chinese Physics B 2022年11期
    關(guān)鍵詞:金志

    Wenjun Yan(閆文君) Zhishen Jin(金志燊) Zhengyang Lin(林政揚(yáng)) Shiyu Zhou(周詩(shī)瑜)Yonghai Du(杜永海) Yulong Chen(陳宇龍) and Houpan Zhou(周后盤)

    1School of Automation,Hangzhou Dianzi University,Hangzhou 310018,China

    2Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology,College of Chemical and Biological Engineering,Zhejiang University,Hangzhou 310027,China

    3Institute of Microelectronics,University of Macau,Avenida da Universidade,Taipa,Macau,China

    Li dendrites and electrolyte leakage are common causes of Li-ion battery failure. H2, generated by Li dendrites,and electrolyte vapors have been regarded as gas markers of the early safety warning of Li-ion batteries. SnO2-based gas sensors, widely used for a variety of applications, are promising for the early safety detection of Li-ion batteries, which are necessary and urgently required for the development of Li-ion battery systems. However,the traditional SnO2 sensor,with a single signal,cannot demonstrate intelligent multi-gas recognition. Here,a single dual-mode(direct and alternating current modes)SnO2 sensor demonstrates clear discrimination of electrolyte vapors and H2,released in different states of Li-ion batteries,together with principal component analysis(PCA)analysis. This work provides insight into the intelligent technology of single gas sensors.

    Keywords: gas sensors,single dual-mode,multivariable sensors,Li-batteries,early safety warning

    1. Introduction

    To alleviate ever-growing energy consumption, electrochemical energy storage technology has been a topic of wide concern in recent years.[1,2]In particular,lithium(Li)-ion batteries (LIBs) have dominated both electronics and automotive applications due to their high energy density and reduced cost.[1,2]Unfortunately, LIB safety issues have emerged due to the flammable organic electrolytes and the intrinsic thermal properties during charge and discharge,which could result in explosion and casualties.[3–6]For the development of largescale LIB energy storage equipment,effective safety warnings,as early as possible,are necessary and urgently required.

    The current battery management system (BMS) is regarded as a crucial LIB protection system, which can detect the voltage, state of charge (SOC), and external surface temperature of the battery cell. However, the BMS is unable to detect LIB safety issues in the early stages.[1,4]For example,the external voltage of a leaking battery could be kept at almost the same level as that of a pristine battery for several hours.[4]As reported, special gas detection of LIBs could detect LIB safety issues at an earlier stage.[1,4]In particular, H2, generated by the reaction of Li dendrites with a polymer binder,could be captured first, and over 10 min earlier than smoke and fire,in cases of LIB failure.[1]Furthermore,LIB failure is often associated with electrolyte leakage.[6,7]The main components of the LIBs’electrolyte are volatile and redox neutral solvents, such as dimethyl carbonate(DMC), diethyl carbonate(DEC),ethyl methyl carbonate(EMC)and propylene carbonate(PC).[4,8]

    As is well known, semiconductor sensors have been widely used for various hazardous and flammable gases in the internet of things (IoT) due to their high sensitivity, simple mechanism and real-time response.[9,10]However, selectivity has always been the bottleneck of semiconductor gas sensors,and further limits the recognizability and intelligentization of individual sensors. Combining sensors into arrays is a common method used to mitigate the poor selectivity of sensors,with up to thousands of individual sensors.[11]Obviously,sensor arrays cannot fulfill the convenience of sensors well.

    Recently, new multivariable gas sensors have been reported.[12,13]These multivariable sensors involve a sensing material and a multivariable transducer,to provide diverse and independent responses to different gases and to provide multigas recognition and rejection of interferences.[14,15]The measurable response signals of chemi-electrical sensors include current, capacitance, and resistance/impedance. In contrast to the single signal of DC resistive sensors, AC impedance sensors can provide a multidimensional response over a fitted frequency range, which results from the further extraction of parameters, including the dielectric constant, charge transfer resistance, double-layer capacitance and diffusion constant,and are attracting increasing attention.[6,16–18]AC sensors are characterized not only by low cost and a simple device configuration,but also by different frequencies producing various signals.[6]

    Herein,we use DC–AC dual mode to detect organic electrolytes and H2possibly venting from the failed LIBs, taking a SnO2-based sensor as an example. Multi-sensing parameters extracted from the DC current,as well as AC impedance,and the corresponding phase angle,dissipation factor and frequency data,are comprehensively analyzed. According to the principal component analysis (PCA) of multi-sensing parameters, clear discrimination of electrolyte vapors(DEC,DMC,and PC)and H2is proved,which could improve the accuracy and reliability of the LIBs’early safety warning system.

    2. Experimental details

    2.1. Material preparation and characterization

    The SnO2-based sensing material here was prepared by following Ref. [19]. Typically, 500 g of as-received SnO2micro-powder(2–5 μm in diameter,Jinxin Advanced Materials,China)was mixed with 1425 g deionized water under magnetic stirring, followed by addition of 75 g triethanolamine(Usolf Chemical, China)as a dispersant. Stirring and dispersion continued for 10 mins. Next,the mixture was ball-milled(WG-1L,Vgreen Nanometer Technology,China)for 2 h with balls 300 μm in diameter to produce a uniform dispersion. Finally, 1 g of tetraamminepalladium nitrate (H12N6O6Pd, Aladdin, China) was added to 12 g of the as-obtained dispersion. Consequently,the acquired stable nano-dispersion,with a solid content of 15%,was the Pd-dopped SnO2material utilized for this work.

    The morphologies of the as-prepared material were characterized using scanning electron microscopy (SEM, FEI Nanosem 430).Powder x-ray diffraction(XRD)analyses were performed on a Bruker D8 Advance diffractometer with CuKαradiation(λ ≈1.54 ?A).

    2.2. Gas sensing experiment design

    A schematic of the bare sensor device with a pair of interdigital electrodes(IDEs)integrating a microheater is shown in Fig. S1a (supporting information). The microheater was fabricated based on silicon micro-electromechanical system(MEMS) technology, reported in our previous work.[20]The fabrication details are also described in the supporting information.The typical relationship of the heating temperature vs.the applied voltage of the microheater is shown in Fig. S1b.The complete sensor device was fabricated by facile dropcoating. Afterwards, the device was heated and maintained at 300°C for 7 days to promote SnO2deposition and device aging to obtain reliable testing data.

    The gas sensing tests were performed using a homemade system with an 8-L test chamber, as reported in our previous work.[21]For the analyte sensing test,a fitting concentration of the analyte(standard H2gas of 10×10-6mol/mol,and DMC,DEC and PC vapor) was injected into the chamber. All the sensing tests were taken at ambient temperature of about 25°C and 40%relative humidity,adjusted by an air conditioner and a humidifier. The heating temperature of the microheater was precisely controlled using a bias voltage applied by a Keithley 2602B source-meter. The sensor DC and AC signals were collected by a Keithley 2602B source-meter and a Keysight 1732C LCR meter, respectively. Principal component analysis(PCA)was calculated using the inbuilt library function of Python.

    3. Results and discussion

    3.1. Material analysis

    The SEM image in Fig. 1(a) shows the homogeneity of the as-prepared SnO2powder. The XRD pattern of the asprepared SnO2is shown in Fig. 1(b). Due to the tiny Pd additive, no obvious Pd peaks are detected. All the peaks are assigned to SnO2of tetragonal rutile (JCPDS No. 41-1445).The obvious peaks at 2θ= 26.7°, 33.9°, and 38°correspond to the (110), (101), and (200) planes of SnO2, respectively.Furthermore, the SnO2grain size is~30–40 nm, calculated according to the XRD data.

    Fig.1.(a)An SEM image,and(b)the XRD pattern of the as-prepared SnO2 powder.

    3.2. Gas sensing characteristics

    We chose DEC,DMC,PC and H2as analyte gases,which are mainly produced by failed Li batteries. And the gas sensing performances were investigated via the DC current signal,AC impedance,θand D signals at different frequencies. A similar AC signal response of an IDE sensor device has been reported in our previous work.[22]Figure 2 shows the relative DC and AC signal variations of one sensor device to various analyte concentrations(200,160,120,80,40,and 20 ppm of DEC,DMC,and PC,respectively;200,150,100,50,10,and 5 ppm of H2).

    Fig.2. Continuous response characteristics to different gases. DC current relative change(I/I0)to a)DEC,(b)DMC,(c)PC and(d)H2. AC impedance relative change(Z0/Z)at the frequency of 100 Hz to(e)DEC,(f)DMC,(g)PC,and(h)H2.AC impedance relative change(Z0/Z)and θ relative change(θ0/θ) at the frequency of 1 kHz to (i) DEC, (j) DMC, and (k) PC. AC impedance relative change (Z0/Z), θ relative change (θ0/θ), and D relative change(D/D0)at the frequency of 10 kHz to l)DEC,(m)DMC,(n)PC,and(o)H2. Here, I0 (Z0, θ0 and D0)and I (Z, θ and D)are the sensor DC current(AC impedance,phase angle,and dissipation factor)in ambient air and the real-time value in analyte gas,respectively.

    Under DC mode,upon exposure to each analyte,the sensor current increases rapidly, and then decreases back to the original baseline when the analyte is off. DEC, DMC, PC and H2are all electron donors. Each of the analytes adsorbed on the n-type SnO2surface could contribute electrons to the conduction band of SnO2, leading to an increase in the concentrations of the majority of electron carriers, consequently increasing the current of the SnO2device.

    Under AC mode at the frequency of 100 Hz, only an impedance response could be detected for each analyte. Notably, at AC frequency of 1 kHz, both impedance and phase angle (θ) responses to DEC, DMC, and PC are obvious, but no responses to H2. At AC frequency of 10 kHz, all the impedance,θ, and dissipation factor (D) responses to DEC,DMC, and PC are excellent, while only an impedance response to H2could be detected. Interestingly, the sensor impedance decreases quickly when exposed to each analyte,at different AC frequencies, and then quickly increases back to the original baseline when the analyte is off. Moreover,the phase angle has the same response and recovery trend, while theDhas the opposite response and recovery trend to each analyte. A detailed explanation will be given in the following section.

    Figure S2 shows that the gas response values increase as each analyte concentration increases. According to reported electrochemical gas sensors,the response could be empirically linearly expressed as[23]

    whereCrepresents the analyte concentration,andaandbare constants, depending on the type of gas sensor and sensing material. Figure 3 displays linear plots of logarithms of the response value as a function of the logarithms of each analyte concentration under different modes,except for the impedance response to H2at 10 kHz. A similar linear relationship is seen in a previous report.[24]The relative parameters(slope, intercept, andR2) of each fitting equation are summarized in Table 1.

    Fig.3. The relationship of response values vs. concentration in logarithmic terms for different gases. DEC:(a)DC current, (b)AC impedance at the frequency of 100 Hz,(c)AC impedance and θ at the frequency of 1 kHz,(d)AC impedance,θ and D at the frequency of 10 kHz. DMC:(e)DC current,(f) AC impedance at the frequency of 100 Hz, (g) AC impedance and θ at the frequency of 1 kHz, (h) AC impedance, θ and D at the frequency of 10 kHz. PC:(i)DC current, (j)AC impedance at the frequency of 100 Hz, (k)AC impedance and θ at the frequency of 1 kHz, (l)AC impedance, θ and D at the frequency of 10 kHz. H2: (m)DC current,(n)AC impedance at the frequency of 100 Hz,(o)AC impedance,θ and D at the frequency of 10 kHz. The symbols are response values;the lines are the fitting of response values vs. concentration.

    Table 1. Slope,intercept,and R2 values of the fitting equations of response vs. concentration for different gases under DC and AC dual modes.

    Moreover,a comparison of response values to different analytes(200 ppm DEC,DMC,PC,and H2)under different modes is shown in Fig. 4. Obviously, for different signal modes, the selectivity of the sensor to the various analytes is different. The different selectivity enables various analyte recognition using one device.

    Fig.4. A comparison of response values towards different gases under DC and AC modes(200 ppm DEC,DMC,PC and H2).

    In contrast to the operating principle of the DC current mode, the AC responses (includingZ0/Z,θ0/θ, andD/D0)are closely related to not only the conductivity of the sensing layer,but also the permittivity of the sensing material and analytes.[12]The equivalent circuit of the SnO2sensor with IDEs could be simply regarded as a typical Randles circuit,as depicted in Fig.5.Here,R1andC1represent the time-constant resistance and capacitance of the SnO2layer,respectively.The parallel circuit element(R2‖C2)corresponds to the resistance and capacitance of gas-dependent interfaces,which dominate the AC responses of the device.[12,25]The Warburg impedance,ascribed asZw,is as a result of the gas diffusion process,and only observed in the low-frequency regime(<10 kHz).[25–27]The imaginary and real parts of impedance can be described by

    whereεis the relative permittivity (dielectric constant),ε0is the vacuum permittivity,eis the electron charge,Ndis the majority carrier concentration,Eis the applied electrical potential,kis the Boltzmann constant,andTis the absolute temperature.

    The phase angle (θ) can be calculated by the following equation:

    Upon exposure to the analytes of electron donors, under AC modes, electrons will contribute to the SnO2surface due to analyte adsorption,and will result in a decrease in the gasdependent interface resistanceR2. Beyond this,changes in the dielectric properties of analyte-dependent interfaces in a fixed frequency could also contribute to the impedance responses,according to Eqs. (1)–(4). The permittivities of DEC, DMC,PC and H2are 2.805, 3.107, 64.92 and 1, respectively.[29]Based on reports, the gas-dependent interface capacitanceC2mainly relies on the dielectric constants of analytes.[25,30]Hence,C2has no significant effect on the AC responses of SnO2to DEC and DMC, due to their low permittivities. But for PC with high permittivity,C2generates an obvious AC response improvement,except for theθresponse at 10 kHz.

    Fig. 5. The AC equivalent circuit of the SnO2 sensor. R0 represents phase constant contact resistance. The parallel circuit element(R1‖C1)represents capacitance and resistance of the SnO2 sensing layer. The parallel element(R2 ‖C2) is the equivalent resistance and capacitance of the analyte-gasdependent interface. The Warburg impedance is described as the Zw.

    Furthermore, the only detectedZresponse to each analyte at 100 Hz indicates that electronic resistance properties of gas-dependent interfaces mainly controls the sensing response. When the frequency increased to 1 kHz, an obvious capacitance effect appears, resulting in the detectedZandθresponse;when the frequency further increased to 10 kHz,an additionalDresponse could be detected with more capacitance effect(Figs.2–3).

    Interestingly, the impedance response of H2at 100 Hz was increased dramatically compared to the DC current response, although the permittivity of H2is also small. According to previous reports, it is proposed that the chemical species induced by H2adsorption enhances the AC impedance response at the low frequency of 100 Hz, via generation of a polarization potential in the H2–SnO2interface.[12,31,32]When the AC frequency increases to 1 kHz, no AC impedancerelated parameter responses to H2could be detected. A similar sharp response decrement with the frequency increasing has previously been reported.[31,32]When the AC frequency further increases to 10 kHz,quick diffusion of H2plays an important role,with more capacitor effects(Zw)due to the small molecular size, resulting in a non-linear impedance response to concentration.

    3.3. Principal component analysis

    PCA is a commonly used effective method in exploratory data analysis and classification. In the present work, differences in the various parameter responses to each analyte provide the possibility of multi-gas recognition based on one device. Utilizing Python and the PCA function in the Sklearn Library,the database was projected into a 2D plane.Visualization in a two-dimensional graph in Fig.6 reveals that the electrolyte vapors and H2are actually and clearly discriminated.The mathematic derivation in the PCA code is attached in the supporting information. The cumulative variance of the principal components of over 97%(PC1 90.48%and PC2 6.52%)indicates that the major information is maintained from the raw database.

    Fig.6. (a)PCA-assisted classification and regression of electrolyte vapors(red dots)and H2(black dots). (b)Nine characteristic values of the covariance matrix for PCA.

    4. Conclusions

    In summary, smart and clear classification of electrolyte vapors and H2has been realized using a single common SnO2sensor,by combining DC current signals and AC impedancerelated signals.Due to the dielectric properties of analytes,the SnO2sensing layer, and the analyte adsorption on the SnO2surface, diverse sensing parameters were obtained under DC and AC dual test modes, which enable the single sensor to build signature-difference patterns for tested gases via PCA analysis. The accurate distinction of electrolyte vapors and H2would contribute to the monitoring of the operating conditions of LIBs. This robust method for the classification and recognition of various chemical vapors using an individual device paves the way toward applications in intelligent identification of multi-gas with very few sensors.

    Acknowledgements

    This research was supported by the Zhejiang Science and Technology Foundation(Grant No.LQ20F040006).

    The authors acknowledge L. M. for help with the SEM and XRD characterizations. Yan W.J.acknowledges the 2011 Zhejiang Regional Collaborative Innovation Center for Smart City.

    猜你喜歡
    金志
    Robust free-space optical frequency transfer in time-varying link distances conditions
    從炮兵團(tuán)戰(zhàn)士到關(guān)愛團(tuán)團(tuán)長(zhǎng)
    基于AquaCrop模型的茶葉產(chǎn)量和開采期預(yù)報(bào)*
    5次赴朝尋找,他要把父親帶回家
    婦女生活(2021年1期)2021-02-23 02:38:04
    金志文發(fā)行最新EP專輯《路遙知馬力》
    青年歌聲(2017年9期)2017-03-15 03:33:36
    韓劇迷傷別“奶奶專業(yè)戶”
    會(huì)變的云姑娘
    金志文的向日葵愛情
    閱讀(2013年3期)2013-04-23 03:31:34
    乘火車
    乘火車
    亚洲色图av天堂| 国产免费av片在线观看野外av| 色吧在线观看| 俺也久久电影网| 一级av片app| 精品久久久久久久人妻蜜臀av| 亚洲av二区三区四区| 嫩草影视91久久| 人人妻,人人澡人人爽秒播| 国产精品久久久久久久电影| 99久久九九国产精品国产免费| 亚洲av五月六月丁香网| 熟女电影av网| 精品一区二区三区视频在线观看免费| 两个人的视频大全免费| 两个人的视频大全免费| 波多野结衣高清无吗| av国产免费在线观看| 国产主播在线观看一区二区| 久久久久久久久大av| 少妇的逼好多水| 成人特级av手机在线观看| 美女xxoo啪啪120秒动态图 | 国产成人啪精品午夜网站| 精品一区二区三区av网在线观看| 亚洲 欧美 日韩 在线 免费| 国产精品一区二区三区四区久久| 麻豆成人午夜福利视频| 国产精品人妻久久久久久| 91久久精品电影网| 国产欧美日韩精品亚洲av| 国产精华一区二区三区| 久久久久久久亚洲中文字幕 | 欧美日韩福利视频一区二区| 成人一区二区视频在线观看| 嫩草影视91久久| 国产国拍精品亚洲av在线观看| 久久天躁狠狠躁夜夜2o2o| 色av中文字幕| 变态另类成人亚洲欧美熟女| 男女床上黄色一级片免费看| a在线观看视频网站| 色尼玛亚洲综合影院| 欧美激情久久久久久爽电影| 日韩欧美一区二区三区在线观看| 免费观看的影片在线观看| av黄色大香蕉| 永久网站在线| 有码 亚洲区| 日韩有码中文字幕| 国产精品99久久久久久久久| 少妇丰满av| 一夜夜www| 久久精品国产99精品国产亚洲性色| 国产午夜精品论理片| 国产三级在线视频| 久久6这里有精品| 亚洲欧美精品综合久久99| 成人永久免费在线观看视频| 男女下面进入的视频免费午夜| 岛国在线免费视频观看| av黄色大香蕉| 精品人妻偷拍中文字幕| 美女xxoo啪啪120秒动态图 | 天堂√8在线中文| 男人和女人高潮做爰伦理| 99热这里只有是精品50| 91字幕亚洲| 精品久久久久久久久av| 两人在一起打扑克的视频| 中文资源天堂在线| 久久精品国产自在天天线| 99久久无色码亚洲精品果冻| 男女那种视频在线观看| 好男人电影高清在线观看| 亚洲最大成人av| 久久久久性生活片| 在线观看舔阴道视频| 精品人妻1区二区| 乱人视频在线观看| 欧美极品一区二区三区四区| 亚洲专区国产一区二区| 亚洲av.av天堂| 午夜免费激情av| 国产在线精品亚洲第一网站| 国产三级中文精品| 欧美在线一区亚洲| 精品久久久久久久久久免费视频| 亚洲真实伦在线观看| 欧美性感艳星| 亚洲美女搞黄在线观看 | 欧美绝顶高潮抽搐喷水| 搡老岳熟女国产| 老鸭窝网址在线观看| 国产av一区在线观看免费| 在线天堂最新版资源| 97超视频在线观看视频| 非洲黑人性xxxx精品又粗又长| 欧美高清成人免费视频www| 亚洲真实伦在线观看| 亚洲av第一区精品v没综合| 老司机福利观看| 亚洲av五月六月丁香网| 十八禁网站免费在线| 禁无遮挡网站| 午夜视频国产福利| 五月伊人婷婷丁香| 久久久精品欧美日韩精品| 久久精品国产亚洲av香蕉五月| 黄色配什么色好看| 欧美黄色淫秽网站| 成熟少妇高潮喷水视频| 国内久久婷婷六月综合欲色啪| 欧美高清性xxxxhd video| 国产欧美日韩精品一区二区| 国产精品99久久久久久久久| 一进一出抽搐gif免费好疼| 国产伦精品一区二区三区视频9| 有码 亚洲区| 性色avwww在线观看| 久久99热6这里只有精品| 国产精品电影一区二区三区| 欧美日韩瑟瑟在线播放| 久久精品人妻少妇| 宅男免费午夜| 久久6这里有精品| 51国产日韩欧美| 人妻丰满熟妇av一区二区三区| 亚洲成人久久性| 九九热线精品视视频播放| 久久精品国产99精品国产亚洲性色| 少妇的逼水好多| 欧美日本视频| 欧美xxxx性猛交bbbb| 99热这里只有是精品在线观看 | 老熟妇乱子伦视频在线观看| 亚洲成人久久性| 丰满的人妻完整版| 美女xxoo啪啪120秒动态图 | 一进一出抽搐gif免费好疼| 丰满的人妻完整版| 俄罗斯特黄特色一大片| 最后的刺客免费高清国语| 人妻久久中文字幕网| 在线国产一区二区在线| 国产免费一级a男人的天堂| 美女高潮喷水抽搐中文字幕| 夜夜夜夜夜久久久久| 婷婷亚洲欧美| 国产精品三级大全| 亚洲男人的天堂狠狠| 日本黄色视频三级网站网址| 九九热线精品视视频播放| 极品教师在线视频| 久久久久久九九精品二区国产| 欧美性感艳星| 淫妇啪啪啪对白视频| 亚洲精品亚洲一区二区| 在线观看午夜福利视频| 欧美日韩国产亚洲二区| 久久这里只有精品中国| 美女 人体艺术 gogo| 亚洲欧美日韩东京热| 在线免费观看的www视频| 可以在线观看的亚洲视频| 日本熟妇午夜| 欧美日韩中文字幕国产精品一区二区三区| 亚洲不卡免费看| 两个人的视频大全免费| 69av精品久久久久久| 又黄又爽又刺激的免费视频.| 91午夜精品亚洲一区二区三区 | 精品99又大又爽又粗少妇毛片 | 天堂√8在线中文| 成人鲁丝片一二三区免费| 欧美最新免费一区二区三区 | 直男gayav资源| 1000部很黄的大片| 99国产精品一区二区蜜桃av| 国产激情偷乱视频一区二区| 久久婷婷人人爽人人干人人爱| 国产精品美女特级片免费视频播放器| 婷婷亚洲欧美| 国产一区二区在线av高清观看| 国产单亲对白刺激| 亚洲国产高清在线一区二区三| 综合色av麻豆| 天堂影院成人在线观看| 国产三级在线视频| 午夜精品久久久久久毛片777| 老司机深夜福利视频在线观看| 国产91精品成人一区二区三区| 51国产日韩欧美| 国产黄片美女视频| av在线天堂中文字幕| 直男gayav资源| 亚洲精品亚洲一区二区| 日本 欧美在线| 欧美潮喷喷水| 精品国产三级普通话版| 色视频www国产| 午夜两性在线视频| 两个人视频免费观看高清| 免费观看精品视频网站| 一进一出好大好爽视频| xxxwww97欧美| 日本黄色视频三级网站网址| 女人十人毛片免费观看3o分钟| 精品国内亚洲2022精品成人| 精华霜和精华液先用哪个| 1024手机看黄色片| 在线观看66精品国产| 久久久精品欧美日韩精品| 日韩欧美国产在线观看| www日本黄色视频网| 最近在线观看免费完整版| 黄色配什么色好看| 俄罗斯特黄特色一大片| 十八禁国产超污无遮挡网站| 亚洲美女视频黄频| bbb黄色大片| 国产黄片美女视频| 性色av乱码一区二区三区2| 日韩大尺度精品在线看网址| 黄色女人牲交| 蜜桃亚洲精品一区二区三区| 亚洲精品亚洲一区二区| 亚洲成av人片免费观看| 欧美日韩综合久久久久久 | 亚洲精华国产精华精| a级一级毛片免费在线观看| 久久精品夜夜夜夜夜久久蜜豆| 精品人妻熟女av久视频| 欧美三级亚洲精品| 免费搜索国产男女视频| 亚洲,欧美,日韩| 深夜精品福利| 日韩欧美国产在线观看| 精品国产三级普通话版| 极品教师在线视频| 色在线成人网| 午夜精品久久久久久毛片777| 伦理电影大哥的女人| 综合色av麻豆| 日日摸夜夜添夜夜添小说| 亚洲美女视频黄频| 91麻豆av在线| 人人妻人人澡欧美一区二区| 欧美日韩福利视频一区二区| 变态另类成人亚洲欧美熟女| 日韩av在线大香蕉| 内射极品少妇av片p| 天堂√8在线中文| 日本在线视频免费播放| www日本黄色视频网| 午夜激情欧美在线| 人妻夜夜爽99麻豆av| 亚洲国产精品成人综合色| 亚洲欧美日韩无卡精品| 一级黄片播放器| 午夜两性在线视频| 欧美成人一区二区免费高清观看| 成人国产综合亚洲| а√天堂www在线а√下载| 午夜视频国产福利| 有码 亚洲区| 国产在视频线在精品| 久久人人精品亚洲av| 好男人在线观看高清免费视频| 成年版毛片免费区| 狠狠狠狠99中文字幕| 18+在线观看网站| 欧美黑人欧美精品刺激| 日本在线视频免费播放| 国产高清激情床上av| 欧美黄色淫秽网站| 国产野战对白在线观看| 成人性生交大片免费视频hd| 午夜两性在线视频| www.www免费av| 日韩精品中文字幕看吧| 欧美成人性av电影在线观看| 国产伦一二天堂av在线观看| a级毛片a级免费在线| 午夜精品一区二区三区免费看| 中文字幕人成人乱码亚洲影| 亚洲av免费高清在线观看| 人人妻人人看人人澡| 色在线成人网| 一夜夜www| 91麻豆av在线| 午夜两性在线视频| 九色成人免费人妻av| 在现免费观看毛片| 欧美潮喷喷水| 国产三级在线视频| 色精品久久人妻99蜜桃| 精品久久久久久久久久久久久| 婷婷精品国产亚洲av| 深夜精品福利| 精品熟女少妇八av免费久了| 国产熟女xx| 少妇被粗大猛烈的视频| 久久久久九九精品影院| 国产欧美日韩精品一区二区| 亚洲美女黄片视频| 免费人成视频x8x8入口观看| 日韩欧美国产在线观看| 男人舔奶头视频| 欧美成人a在线观看| 久久久久久久亚洲中文字幕 | 99热6这里只有精品| 一个人看的www免费观看视频| 亚洲狠狠婷婷综合久久图片| 99久久99久久久精品蜜桃| 麻豆国产97在线/欧美| 亚洲在线观看片| 日韩欧美一区二区三区在线观看| 黄色丝袜av网址大全| 3wmmmm亚洲av在线观看| 女人被狂操c到高潮| 日本五十路高清| 国产成人av教育| 国产精品一区二区性色av| 嫁个100分男人电影在线观看| 国产精品1区2区在线观看.| 成人午夜高清在线视频| 少妇熟女aⅴ在线视频| 黄色视频,在线免费观看| 中文字幕高清在线视频| 我要看日韩黄色一级片| 国产亚洲精品av在线| 亚洲无线在线观看| 看黄色毛片网站| 成年女人永久免费观看视频| 脱女人内裤的视频| 琪琪午夜伦伦电影理论片6080| 脱女人内裤的视频| 亚洲国产欧美人成| 人人妻人人看人人澡| 国产亚洲欧美在线一区二区| 午夜日韩欧美国产| 亚洲狠狠婷婷综合久久图片| 好看av亚洲va欧美ⅴa在| 欧美性猛交黑人性爽| 啦啦啦韩国在线观看视频| 亚洲熟妇中文字幕五十中出| 美女被艹到高潮喷水动态| АⅤ资源中文在线天堂| 成人一区二区视频在线观看| 久久久久久久午夜电影| 看黄色毛片网站| 成人特级av手机在线观看| 免费一级毛片在线播放高清视频| a级毛片a级免费在线| 亚洲中文日韩欧美视频| 亚洲最大成人av| 人人妻人人看人人澡| 九九热线精品视视频播放| 亚洲中文日韩欧美视频| 深爱激情五月婷婷| 搞女人的毛片| 亚洲国产精品成人综合色| 激情在线观看视频在线高清| 18美女黄网站色大片免费观看| av福利片在线观看| 久久性视频一级片| 麻豆久久精品国产亚洲av| 久久九九热精品免费| 999久久久精品免费观看国产| 嫁个100分男人电影在线观看| 全区人妻精品视频| 欧美成狂野欧美在线观看| 日韩中文字幕欧美一区二区| 最近在线观看免费完整版| 我的老师免费观看完整版| 午夜精品在线福利| 日韩欧美 国产精品| 国产欧美日韩一区二区精品| 国产爱豆传媒在线观看| 国产视频内射| 亚洲国产精品sss在线观看| 久久久久性生活片| 丁香欧美五月| 免费黄网站久久成人精品 | 国产欧美日韩精品一区二区| 90打野战视频偷拍视频| 国产免费男女视频| 毛片一级片免费看久久久久 | 91字幕亚洲| 中文字幕精品亚洲无线码一区| 91午夜精品亚洲一区二区三区 | 国产成+人综合+亚洲专区| 淫秽高清视频在线观看| 91狼人影院| 我要搜黄色片| 亚洲色图av天堂| 欧美成人一区二区免费高清观看| 国产一区二区三区视频了| 一级作爱视频免费观看| 精品人妻1区二区| 欧美3d第一页| 搡女人真爽免费视频火全软件 | 亚洲欧美清纯卡通| 人妻夜夜爽99麻豆av| 久99久视频精品免费| 欧美又色又爽又黄视频| 女人被狂操c到高潮| www日本黄色视频网| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av免费在线观看| 免费人成在线观看视频色| 国产精品三级大全| 国产精品亚洲美女久久久| 欧美成人性av电影在线观看| 在线观看免费视频日本深夜| 成年人黄色毛片网站| ponron亚洲| 少妇人妻精品综合一区二区 | 久99久视频精品免费| 神马国产精品三级电影在线观看| 欧美3d第一页| 99久久精品热视频| 亚洲三级黄色毛片| 欧美性感艳星| 亚洲经典国产精华液单 | 国产男靠女视频免费网站| 欧美丝袜亚洲另类 | 亚洲七黄色美女视频| 国产黄片美女视频| 久久久色成人| 免费看a级黄色片| 色综合欧美亚洲国产小说| 99久久精品热视频| 99热精品在线国产| 在线观看美女被高潮喷水网站 | 听说在线观看完整版免费高清| 欧美绝顶高潮抽搐喷水| 久99久视频精品免费| 免费看a级黄色片| 特大巨黑吊av在线直播| 宅男免费午夜| 精品久久久久久久人妻蜜臀av| 国内毛片毛片毛片毛片毛片| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费激情av| ponron亚洲| 国产69精品久久久久777片| 少妇丰满av| 国产aⅴ精品一区二区三区波| 男女床上黄色一级片免费看| 在线播放无遮挡| а√天堂www在线а√下载| 亚洲专区国产一区二区| 午夜精品久久久久久毛片777| 精品人妻1区二区| 亚洲avbb在线观看| 亚洲av成人av| 久久久久久久久久成人| 嫩草影院入口| 三级国产精品欧美在线观看| 老司机午夜十八禁免费视频| 日本 av在线| 夜夜躁狠狠躁天天躁| 亚洲无线在线观看| 99久久九九国产精品国产免费| 桃红色精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 极品教师在线视频| 国产精品一及| 亚洲av中文字字幕乱码综合| 成人午夜高清在线视频| 不卡一级毛片| 久久久国产成人精品二区| 精品国产三级普通话版| 99久久成人亚洲精品观看| 午夜a级毛片| 亚洲人成网站在线播| 亚洲精品一区av在线观看| 亚洲最大成人手机在线| 国产中年淑女户外野战色| 九九在线视频观看精品| 久久午夜福利片| .国产精品久久| 免费人成视频x8x8入口观看| 亚洲欧美日韩东京热| 日本a在线网址| 欧美激情久久久久久爽电影| 日日干狠狠操夜夜爽| 成人高潮视频无遮挡免费网站| 成人午夜高清在线视频| 在线十欧美十亚洲十日本专区| 69av精品久久久久久| 国产极品精品免费视频能看的| 欧美色欧美亚洲另类二区| 草草在线视频免费看| 怎么达到女性高潮| 日本a在线网址| 日本黄色视频三级网站网址| 夜夜夜夜夜久久久久| 免费av毛片视频| 看黄色毛片网站| 欧美黑人巨大hd| 国产爱豆传媒在线观看| 成年女人毛片免费观看观看9| 日韩中字成人| 免费黄网站久久成人精品 | 小蜜桃在线观看免费完整版高清| 深夜精品福利| 久久久久精品国产欧美久久久| 亚洲成人精品中文字幕电影| 国产亚洲欧美98| 美女大奶头视频| 两人在一起打扑克的视频| 国产精品影院久久| 欧美色视频一区免费| 麻豆久久精品国产亚洲av| 久久久色成人| 悠悠久久av| 简卡轻食公司| ponron亚洲| 一级黄片播放器| 亚洲美女黄片视频| 如何舔出高潮| 国产主播在线观看一区二区| 色尼玛亚洲综合影院| 国产欧美日韩一区二区三| 尤物成人国产欧美一区二区三区| 国产精品一及| 夜夜躁狠狠躁天天躁| 哪里可以看免费的av片| 国产精品电影一区二区三区| 成年女人永久免费观看视频| 少妇的逼水好多| 黄色视频,在线免费观看| 欧美+日韩+精品| 性色av乱码一区二区三区2| 又黄又爽又免费观看的视频| 中亚洲国语对白在线视频| 午夜两性在线视频| 国产淫片久久久久久久久 | 我要看日韩黄色一级片| 欧美区成人在线视频| 老司机午夜十八禁免费视频| 黄片小视频在线播放| 国产熟女xx| 禁无遮挡网站| 亚洲精品成人久久久久久| 看免费av毛片| 一个人观看的视频www高清免费观看| 国产高潮美女av| 内地一区二区视频在线| 亚洲av电影在线进入| 熟女电影av网| 免费看日本二区| 天堂动漫精品| 国产毛片a区久久久久| 国产美女午夜福利| 亚洲综合色惰| 特级一级黄色大片| 国产真实乱freesex| 久久这里只有精品中国| 在线播放无遮挡| 午夜福利视频1000在线观看| 亚洲精品成人久久久久久| av专区在线播放| 毛片一级片免费看久久久久 | 黄色女人牲交| 亚洲一区二区三区不卡视频| 精品欧美国产一区二区三| 一a级毛片在线观看| 午夜免费男女啪啪视频观看 | av视频在线观看入口| 大型黄色视频在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 我要搜黄色片| 国产精品综合久久久久久久免费| 丰满人妻熟妇乱又伦精品不卡| 噜噜噜噜噜久久久久久91| 日本黄色视频三级网站网址| 色av中文字幕| 国产精品爽爽va在线观看网站| 夜夜看夜夜爽夜夜摸| 欧美成人免费av一区二区三区| 久久精品综合一区二区三区| 99视频精品全部免费 在线| 男人狂女人下面高潮的视频| 色哟哟·www| 小说图片视频综合网站| 成年女人毛片免费观看观看9| 国产精品三级大全| 亚洲人成网站在线播放欧美日韩| 久久草成人影院| 国产精品日韩av在线免费观看| 在线观看66精品国产| 性欧美人与动物交配| 99在线人妻在线中文字幕| 三级男女做爰猛烈吃奶摸视频| 亚洲成a人片在线一区二区| 亚洲自偷自拍三级| 国产黄片美女视频| 欧美黄色淫秽网站| 国产精品三级大全| 亚洲成人免费电影在线观看| 成熟少妇高潮喷水视频| 中文字幕熟女人妻在线| 国产精品一区二区性色av| 别揉我奶头 嗯啊视频| 少妇裸体淫交视频免费看高清| 人妻夜夜爽99麻豆av| 在线播放国产精品三级| 亚洲av一区综合| 91字幕亚洲| 久久久精品大字幕| 男女视频在线观看网站免费|