• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interface modulated electron mobility enhancement in core–shell nanowires

    2022-11-21 09:34:26YanHe賀言HuaKaiXu許華慨andGangOuyang歐陽鋼
    Chinese Physics B 2022年11期
    關(guān)鍵詞:歐陽

    Yan He(賀言) Hua-Kai Xu(許華慨) and Gang Ouyang(歐陽鋼)

    1College of Science,Guangdong University of Petrochemical Technology,Maoming 525000,China

    2Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,Key Laboratory for Matter Microstructure and Function of Hunan Province,School of Physics and Electronics,Hunan Normal University,Changsha 410081,China

    The transport properties of core–shell nanowires(CSNWs)under interface modulation and confinement are investigated based on the atomic-bond-relaxation(ABR)correlation mechanism and Fermi’s golden rule.An analytical expression for the relationship between carrier mobility and interface mismatch strain is derived and the influence of size,shell thickness and alloyed layer on effective mass, band structures, and deformation potential constant are studied. It is found that interface modulation can not only reduce the lattice mismatch to optimize the band alignment, but also participate in the carrier transport for enhancing mobility. Moreover, the underlying mechanism regarding the interface shape dependence of transport properties in CSNWs is clarified. The great enhancement of electron mobility suggests that the interface modulation may become a potential pathway to improving the performance of nanoelectronic devices.

    Keywords: core–shell nanowires,interface modulated,electron mobility

    1. Introduction

    Core–shell nanowires (CSNWs) have drawn significant attraction due to their outstanding electronic and transport properties, which provide a really possibility for improving the performance of catalytic, field effect transistors, and photovoltaic devices.[1–3]To date, an abundance of reports, experimental and theoretical,have shown that the epitaxial layer of shell can not only decay the surface state and defects to reduce the impurity and phonon scattering,[4,5]but also offer a radical channel for the rapid transport and separation to carriers for enhancing carrier collection efficiency.[6,7]However, some results are anxious for the unimaginably tunable interface phonon scattering and band structures induced by the lattice mismatch between core and shell parts,which exert an important influence on the performance of nanoelectronic devices.[8,9]Therefore, understanding the influence of interface strain on the transport properties and designing an optimized interface structures to achieve the sharpness interface in CSNWs become significant challenging problems in fundamental scientific and technological applications.

    In general,the bottom-up approach is required for achieving a uniform coating of the shell materials during the particle formation and the core–shell transition can occur discontinuously (a “hard” interface) or may expect to be accompanied by interdiffusionions at the interface to smooth the confinement potential (called “interface engineering”), resulting in forming an alloyed transition region(a“soft”interface).[10,11]Nanowires (NWs) with hard or soft interfaces can have different transport and dynamical properties. Atomic-bondrelaxation (ABR) correlation mechanism[12,13]reveals that since a hard interface in CSNWs provides an additional driving induced by lattice mismatch and imperfect coordination numbers(CNs)that forces the interface atoms to deviate from intrinsic position, the mismatch strain and strain energy will take place.The magnitude of the strain energies determined by size,shell thickness and lattice parameters,and it may involve in chemical bonds to modify the Hamiltonian and band structure or even modulate the morphology to induce the charge redistribution.[14,15]Moreover,a sharpness interface modified by the interface modulation to form a soft interface will have less mismatch strain and strain energy as the lattice parameters changes gradually.[16]Contributions have shown that the alloying layer can reduce or eliminate the mixing of conductionband and valence-band to provide a more gradual change in the confinement potential for optimizing the band structure and eventually to improve the charge injection or collection at interface.[17–20]

    Additionally, some studies shave revealed that the interface morphology modulation also plays a significant role in the carrier behaviors as it may provide a large interface area.[21,22]However,although considerable efforts have been made to investigate the effects of sharpness and softness interface on optical and electronic properties, the investigation of the influence of interface modulation on transport properties is still limited by two aspects. (i) Some one attempts to clarify that the epitaxial layer can participate in the carrier transport and provide a strong response to gate biasviathe Stark effect due to the lattice mismatch at the core–shell interface,[23]but there is a lack of quantitative calculation for the transport properties improving with the thickness of epitaxial layer increasing. (ii)Even though experimental measurements and theories have confirmed that the alloyed layer can reduce the interface lattice mismatch strain to optimize the band alignment and improve the carriers’lifetime,[24]the quantitative relationship between mismatch strain and transport properties is unclear. Therefore,in order to evaluate the influence of interface mismatch modulation on the transport properties of CSNWs and establish the relationship between theirs, we propose an analytical model to clarify the effects of size, shell thickness and alloy layer on effective mass,band structure and formation potential constant based on the ABR correlation mechanism and Fermi’s golden rule. The results show that the soft interface is helpful in blocking the phonon scattering and also in increasing the electron mobility as it decays the lattice mismatch strain,which may optimize the band structures and the participation in the carrier transport.Moreover,the difference between electron mobilities in CSNWs with cylinder and elliptic interface are also compared.

    2. Principle

    Physically,the transition rate for an electron in an initial statekto a final statek′can be calculated in terms of Fermi’s golden rule[25,26]

    where ˉhωkand ˉhωk′ are the electron energy of initial state and final state,ˉhωqis the phonon energy,Mk′kis the transition matrix elements,ψk= eik·ruk(r) is the wavefunction of a specific state,andV(r)is the scattering potential.

    Generally, the above equation can be solved by the deformation potential theory and virtual-crystals approach.[27,28]By using the effectivemas approximation and the electron–phonon scattering mechanism,the relaxation time involves in an integral equation(see section S1 in the supporting information for details)and is expressed as

    The acoustic deformation potential is proportional to the stretching-induced band-edge shift. We consider ΔEC, which is the conduction-band-edgeupward shift, while ΔEVis the valence-band-edgedownward shift. According to the thermodynamic approach,[29,30]we have (see section S2 in the supporting information for details)

    wherem*eandm*hare the effective mass of electron and hole,respectively.

    Moreover, for the AxB1-xalloy at the interface of A/B core–shell nanowires, the band edge energy can be approximated as[28]

    whereEAandEBare the band edge energy of A and B,respectively,andxis the concentration of A atoms of AxB1-xalloy.Additionally,the electron effective massm*is the electron effective mass,specifically,

    whereEis the electron energy. Moreover, the interaction of long-wavelength longitudinal–vibrational modes with the longitudinal-collective excitations becomes important when the free-carrier plasmon frequencyωpapproaches to the LOphonon frequencyωiwherem*=ne2/ω2pε0ε∞,[31]nandeare the electron concentration and electronic charge,ε0andε∞present are the permittivity of free space and high frequency dielectric constant, respectively. According to the ABR correlation mechanism,the dielectric constant relates to the band gapEgof specimen,andEg/EBg=f(D),[32]f(D)is a function of size andEBgdenotes the band gap of bulk case. Therefore,the effective mass with size and shell thickness can be deduced as follows:

    whereεBandxmare the bulk dielectric constant and molar ratio,zi(zb) andEi(Eb) represent the coordination number and single bond energy ofi-th layer(bulk), ˉzandEc-sdenote the average coordination number and formation enthalpy of an interfacial bond,γiandγintare the surface-to-volume ratio(SVR)and interface-to-volume ratio,zrr(Err),zθθ(Eθθ),andzzz(Ezz)are the CNs(single bond energy)in the radial direction,the tangential direction,and the axial direction.

    Therefore, the change of deformation potential constantDawith the influence of shell and alloy layer can be expressed as

    whereεRis the lattice strain induced by the size effect (see section S2 in the supporting information for details), Δais a small change of lattice constant that results in a position shift ΔEin the energy band near the Fermi surface.

    Consequentially, considering the discrepancies of transport properties between core and interface of AxB1-xalloy layers, the mobility of core can be given by a weight factors=Salloy/(Salloy+Score),whereSalloyandScoreare the area of alloy and the area of core. Thus,

    3. Results and discussion

    In order to clarify the influence of epitaxial layer and geometric shape on the transport properties,Si/Ge core–shell NW with an interface Si0.5Ge0.5alloy layer is considered. Moreover,to solve the Eq.(2),we consider that the relaxation time that involves in an integral equation can be solved numerically,for the scattering of sub-bands is not important for the considered cases and the approximation works well for the lowest sub-band which is the main contributor to mobility.[33]Therefore, we expect the main difference in comparison with the different wires to come from the deformation potentials.

    Figure 1 shows the curves of size-dependent effective mass in various orientations of Si NWs. Evidently,m*increases with the decrease of diameter of Si and thickness of epitaxial layer. Those results are similar to other results that the electron effective mass of semiconductors is observed to decrease with band gap increasing.[34]Moreover, the results indicate that the existence of shell can not only reduce the quantum effect and Coulomb interaction,but also diminish the surface state and CNs defects,resulting in enhancing the cohesive energy and reducing the periodic potential and the effective mass. In our case,there are a lot of dangling bonds in the surface of bare nanostructures, which play an important role in its physical and chemical properties. However,an epitaxial layer coated on the surface of nanostructure is of great benefit to reducing the dangling bonds. As a result,the CNs’defects on the surface and surface state of the nanostructures will decrease dramatically. Our predictions are consistent with those in Refs.[35,36],whereas they deviate from some calculations due to the discrepancy between approximate methods.

    Fig.1.Size-and shell-dependent effective mass of Si NWs,with inset showings schematic illustration of Si/Ge core–shell NWs.

    The influence of interface modulation on band edge energy is studied, figure 2(a) shows the conduction-band-edge upward shift and valence-band-edge downward shift with size increasing, and the shift of bands decreases with shell thickness increasing.Our result is exceedingly well agreement with earlier result. Moreover,the shift of band edges suggests that the deformation potential constant may change with dimensionDand thickness of epitaxial layerHas shown in Fig.2(b).Clearly,the deformation potential constant decreases with core diameter and shell thickness increasing,and it approximates to 9.3 eV which is close to earlier result,9.5 eV.[37]The deformation potential constant is expected to increase since the effective mass approximation has been reported to be ΔE∝D-2,[38]while ABR correlation mechanism proposed that the lattice strain can be expressed asε=Δa/a∝D-1dependence.[39]As a result, the relationship between deformation potential constant and size should satisfyDa∝D-1.Moreover,the decrease ofDaunder a shell coated in Si NWs may be attributed to the reduction of strain. In fact,ΔE∝ΔEcoh∝ε2ζ,[30,39]whereεζis the strain of the core in the radial direction,the tangential direction,and the axial direction(see section S2 in the supporting information for details),then we haveDa∝εζ. Moreover,our results exhibit that the interface Si0.5Ge0.5alloy layer has an effect on the inhibiting of the deformation potential constant due to the reduction of mismatch strain at interfaceviastrain modulation in core–shell NWs with modulating lattice mismatch. The predictions imply that the epitaxial layer and interface alloy play a significant role in the transport properties of NWs.

    Figure 3 shows the curves of mobility of Si NWs as a function of NWs diameter, shell thickness, and alloy layers under various directions. As indicated in Fig. 3(a), mobility decreases with diameter declining. The results demonstrate that the scattering rate determined by electronic structure and mechanical structure,resulting in the different transport properties in the orientations of various crystals due to the discrepancy of effective mass,process of electron transition between energy levels,velocities,etc. Those trends are expected to be due to the wave form factor overlap increasing with diameter decreasing, which may enhance the phonon scattering in NWs. In particular,our results show that the influence of epitaxial layers exert a significant effect on the transport properties of NWs in small size. This trend is similar to the earlier results,but slightly larger.[27,37,40]In order to clarify the transport properties of NWs modulated by interface modulation,figure 3(b) shows the electron mobility as a function of alloy Si0.5Ge0.5thicknesst,with diameterDand thicknessHfixed.We find that the increase ofμcan be attributed to the decrease of mismatch strain and scattering rate. In our case, although epitaxial layer is of great benefit to the decreasing of the surface coordination bonds and surface states,the interface effect and lattice strain will occur as the discrepancy between the lattice constants in core Si and shell Ge.[41,42]The alloying layers may decay or even eliminate the interface effect and lattice mismatch between Si and Ge,resulting in optimization of the band structure of core. Additionally,since the SiGe alloy has a different electronic structure from Si,it can offer a real possibility for optimizing band structures and reducing scattering rate. Note that we may overestimate the carrier mobility due to the fact that the calculations did not take into account the intervalley scattering or alloy scattering.[43]

    To further understand the influence of interface modulation on transport properties, CSNWs with elliptic interfaces are deliberately considered as shown in the inset of Fig.4.The transport properties of Si NWs with cylinder and elliptic interface are compared in Fig.4,and we find the NW with elliptic interface exhibits more excellent electron mobility. The reason may be due to the difference between mechanical structure and electronic structure induced by the SVR. In fact, on the one hand, Si NW with elliptic interface has lower SVR than that of cylinder interface, which suppresses the size effect and quantum effect to disturb the Hamiltonian. On the other hand,since the elliptical interface in core/shell NW has a wider range of interface extension than that of cylinder interface, more donors will provide Si core with alloy layer for taking part in the carrier transport.

    Fig.4. Curves of change of electron mobility with thickness of alloy layer in Si/SiGe/Ge core–shell NWs with elliptic interface,with inset showing the schematic illustration of Si/SiGe/Ge core–shell NWs with elliptic interfaces and electron mobility of Si NWs versus Ra/Rb.

    Additionally,as indicated in the inset of Fig.4,the electron mobility of Si NWs with elliptical interface demonstrates a first rapid increase with size increasing and then it become a constant whenRa/Rb>4. This result may be due to the fact that the electron mobility of elliptic interface withRa/Rb>4 can be treated as a two-dimensional phonon scattering rather than one-dimensional scattering as the transformation effect from one-dimensional to two-dimensional structures.

    4. Conclusions

    In this work, we proposed an analytical model to clarify the influence of interface modulation on the transport properties of core–shell NWs based on Fermi’s golden rule and ABR correlation mechanism. Our results indicate that the size and shell thickness exert a significant effect on phonon scattering and transport properties as the deformation potential constant and band structure change. We find the thick size and epitaxial layer reduce the surface state and wave overlap, resulting in the increase of electron mobility. In particular, the core/alloying/shell NWs,leading to the“smoothing”confinement potential, can dramatically enhance the transport properties of NWs as the alloy layer can decay or even eliminate the interface effect and lattice mismatch to optimize the band structures and participate in the carrier transport. Moreover,benefited from the low SVR and wider range of interface extension in elliptic interface, NWs with elliptic interface exhibits more excellent electron mobility than that of cylinder interface.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 91833302 and U2001215),the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2022A1515010989), and the Special Project in Key Fields of Guandong Universities,China(Grant No.2022ZDZX3015).

    猜你喜歡
    歐陽
    動(dòng)物怎樣聽和看?
    Positive unlabeled named entity recognition with multi-granularity linguistic information①
    雅皮狗(7)
    雅皮狗(6)
    雅皮狗(5)
    雅皮狗(4)
    雅皮狗(1)
    我家的健忘老媽
    歐陽彥等
    依依送別歐陽鶴先生
    中華詩詞(2019年9期)2019-05-21 03:05:18
    国产xxxxx性猛交| 久久精品熟女亚洲av麻豆精品| av卡一久久| 啦啦啦视频在线资源免费观看| 9191精品国产免费久久| 亚洲av免费高清在线观看| 国产成人aa在线观看| 久久久久久久国产电影| 自线自在国产av| 亚洲成人一二三区av| 麻豆乱淫一区二区| 中文字幕免费在线视频6| 乱码一卡2卡4卡精品| 日韩欧美一区视频在线观看| 欧美精品高潮呻吟av久久| 新久久久久国产一级毛片| 极品少妇高潮喷水抽搐| 国产色爽女视频免费观看| 免费黄频网站在线观看国产| 免费少妇av软件| 亚洲,欧美精品.| 午夜福利视频在线观看免费| tube8黄色片| 国产色爽女视频免费观看| 日日啪夜夜爽| 国产免费又黄又爽又色| 超碰97精品在线观看| 欧美成人午夜精品| 99久久精品国产国产毛片| 亚洲精品av麻豆狂野| 黄片播放在线免费| 久久久精品94久久精品| 免费av中文字幕在线| 两个人看的免费小视频| 日韩av免费高清视频| 亚洲精品乱久久久久久| 搡女人真爽免费视频火全软件| av播播在线观看一区| 国产精品人妻久久久影院| 黑人猛操日本美女一级片| 夫妻午夜视频| 国产成人免费观看mmmm| 我的女老师完整版在线观看| 观看av在线不卡| 亚洲熟女精品中文字幕| 国产男人的电影天堂91| 人人妻人人添人人爽欧美一区卜| xxx大片免费视频| 欧美日韩视频精品一区| 亚洲精品,欧美精品| 天天躁夜夜躁狠狠久久av| 一区二区三区精品91| 亚洲av国产av综合av卡| 成人亚洲精品一区在线观看| 婷婷色综合www| 一二三四在线观看免费中文在 | 国产精品熟女久久久久浪| 久久青草综合色| 色视频在线一区二区三区| 久久狼人影院| 久久精品aⅴ一区二区三区四区 | 插逼视频在线观看| 日韩熟女老妇一区二区性免费视频| 性高湖久久久久久久久免费观看| 1024视频免费在线观看| 热re99久久精品国产66热6| 蜜臀久久99精品久久宅男| 欧美97在线视频| 色94色欧美一区二区| 亚洲一码二码三码区别大吗| 少妇高潮的动态图| 国产精品99久久99久久久不卡 | 夫妻午夜视频| 超碰97精品在线观看| 精品人妻熟女毛片av久久网站| 午夜日本视频在线| 美女主播在线视频| 99香蕉大伊视频| 街头女战士在线观看网站| 美女内射精品一级片tv| 国产黄色视频一区二区在线观看| 高清毛片免费看| 亚洲性久久影院| 国产精品 国内视频| 我的女老师完整版在线观看| 亚洲精品久久午夜乱码| 亚洲精品日本国产第一区| 久久久久久人妻| 国产伦理片在线播放av一区| 国产熟女欧美一区二区| 国产精品一国产av| 亚洲国产欧美在线一区| 久久精品国产综合久久久 | 国产 精品1| 日本与韩国留学比较| 亚洲精品,欧美精品| 街头女战士在线观看网站| 色婷婷av一区二区三区视频| 欧美精品国产亚洲| 91aial.com中文字幕在线观看| 国产国语露脸激情在线看| 精品国产一区二区久久| 国产免费现黄频在线看| 男人添女人高潮全过程视频| 国产精品三级大全| 日本av手机在线免费观看| 99九九在线精品视频| 美女福利国产在线| 全区人妻精品视频| videos熟女内射| 9191精品国产免费久久| 五月玫瑰六月丁香| 欧美bdsm另类| 久久久亚洲精品成人影院| 亚洲欧美成人精品一区二区| 国产精品不卡视频一区二区| 欧美日韩综合久久久久久| 成人毛片a级毛片在线播放| 成人毛片a级毛片在线播放| 欧美亚洲 丝袜 人妻 在线| 精品熟女少妇av免费看| 久久99热6这里只有精品| 少妇 在线观看| 久久影院123| 亚洲美女黄色视频免费看| 亚洲国产精品一区二区三区在线| 精品少妇黑人巨大在线播放| 九色亚洲精品在线播放| 久久 成人 亚洲| 搡老乐熟女国产| 国产极品天堂在线| 精品国产一区二区三区久久久樱花| 18禁国产床啪视频网站| 国产伦理片在线播放av一区| 国产激情久久老熟女| 少妇被粗大猛烈的视频| 两性夫妻黄色片 | 亚洲成av片中文字幕在线观看 | 边亲边吃奶的免费视频| 久久99热6这里只有精品| 麻豆精品久久久久久蜜桃| 中文欧美无线码| 亚洲国产精品999| 免费黄频网站在线观看国产| 乱人伦中国视频| 成年动漫av网址| 深夜精品福利| 插逼视频在线观看| 黑丝袜美女国产一区| 欧美激情极品国产一区二区三区 | 好男人视频免费观看在线| 精品久久久久久电影网| 又大又黄又爽视频免费| 久久鲁丝午夜福利片| 久久精品国产亚洲av涩爱| 久久女婷五月综合色啪小说| 亚洲av电影在线进入| 高清黄色对白视频在线免费看| 国产在线免费精品| 久热这里只有精品99| 免费人成在线观看视频色| 97在线人人人人妻| 婷婷成人精品国产| 免费不卡的大黄色大毛片视频在线观看| 99热国产这里只有精品6| 久久99一区二区三区| 午夜日本视频在线| 国产精品秋霞免费鲁丝片| 精品一区二区免费观看| 国产成人精品婷婷| 久久午夜综合久久蜜桃| 男女高潮啪啪啪动态图| 欧美少妇被猛烈插入视频| 国产综合精华液| 久久久久网色| a级毛片黄视频| 久久久久国产精品人妻一区二区| 黄网站色视频无遮挡免费观看| 人人澡人人妻人| www.熟女人妻精品国产 | 国产日韩欧美视频二区| 亚洲综合精品二区| 黑人高潮一二区| 久久精品久久精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 欧美国产精品一级二级三级| 亚洲国产精品专区欧美| 免费高清在线观看视频在线观看| 精品人妻熟女毛片av久久网站| 亚洲三级黄色毛片| 夫妻性生交免费视频一级片| 永久网站在线| 人妻 亚洲 视频| 久久国产精品大桥未久av| 中文字幕另类日韩欧美亚洲嫩草| 久久免费观看电影| 日韩大片免费观看网站| 午夜福利影视在线免费观看| 日韩视频在线欧美| 国产精品久久久av美女十八| av黄色大香蕉| 丰满少妇做爰视频| 亚洲内射少妇av| 亚洲精品国产av成人精品| 一区二区三区四区激情视频| www.熟女人妻精品国产 | 91国产中文字幕| 精品福利永久在线观看| 国产免费现黄频在线看| 国产免费福利视频在线观看| 国产精品国产三级专区第一集| 搡女人真爽免费视频火全软件| av免费在线看不卡| 一级片'在线观看视频| av免费在线看不卡| 少妇猛男粗大的猛烈进出视频| 我要看黄色一级片免费的| 中文字幕av电影在线播放| av在线播放精品| 纯流量卡能插随身wifi吗| 高清在线视频一区二区三区| 久久久久精品人妻al黑| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 五月玫瑰六月丁香| 综合色丁香网| 久久午夜福利片| 国产欧美日韩一区二区三区在线| 高清视频免费观看一区二区| 亚洲欧美一区二区三区黑人 | 久久99一区二区三区| 18禁国产床啪视频网站| 伦理电影大哥的女人| 超色免费av| 欧美国产精品一级二级三级| 男人爽女人下面视频在线观看| 亚洲精品一区蜜桃| 国产免费现黄频在线看| 国产精品国产三级专区第一集| 午夜福利在线观看免费完整高清在| av.在线天堂| 亚洲色图 男人天堂 中文字幕 | 国产色婷婷99| 国产成人精品久久久久久| 夫妻午夜视频| 青春草国产在线视频| 亚洲第一av免费看| 久久这里有精品视频免费| 青春草视频在线免费观看| 少妇精品久久久久久久| 插逼视频在线观看| 久久久久视频综合| 黑人欧美特级aaaaaa片| 日日摸夜夜添夜夜爱| 亚洲图色成人| 亚洲美女搞黄在线观看| 少妇精品久久久久久久| 人成视频在线观看免费观看| 免费大片黄手机在线观看| 亚洲精华国产精华液的使用体验| 黄色视频在线播放观看不卡| 国产精品嫩草影院av在线观看| 亚洲精品久久午夜乱码| 国产成人欧美| 欧美亚洲日本最大视频资源| 99久久综合免费| 国产视频首页在线观看| 在线观看美女被高潮喷水网站| 建设人人有责人人尽责人人享有的| 女性被躁到高潮视频| 九九爱精品视频在线观看| 日韩熟女老妇一区二区性免费视频| 只有这里有精品99| 桃花免费在线播放| 精品久久国产蜜桃| 国产乱来视频区| 高清毛片免费看| 老女人水多毛片| 老司机影院毛片| 中文精品一卡2卡3卡4更新| 好男人视频免费观看在线| 男女午夜视频在线观看 | 九草在线视频观看| xxx大片免费视频| 激情五月婷婷亚洲| 老女人水多毛片| 精品熟女少妇av免费看| 国产亚洲午夜精品一区二区久久| 久久久a久久爽久久v久久| 高清黄色对白视频在线免费看| 91久久精品国产一区二区三区| 亚洲国产毛片av蜜桃av| 一级片免费观看大全| 在线观看国产h片| 日本欧美视频一区| 18在线观看网站| 久久 成人 亚洲| 深夜精品福利| 国产亚洲欧美精品永久| 女性被躁到高潮视频| 国产午夜精品一二区理论片| 成人黄色视频免费在线看| 久久热在线av| 久久这里有精品视频免费| 免费在线观看黄色视频的| 一区二区三区乱码不卡18| 97超碰精品成人国产| 中文字幕人妻熟女乱码| 欧美成人午夜精品| 国产高清不卡午夜福利| 国产精品国产三级国产av玫瑰| 最近的中文字幕免费完整| 男人添女人高潮全过程视频| www.av在线官网国产| 国产免费现黄频在线看| 亚洲色图 男人天堂 中文字幕 | 欧美少妇被猛烈插入视频| a级毛片黄视频| 午夜福利视频在线观看免费| 日本免费在线观看一区| 五月玫瑰六月丁香| 国产成人aa在线观看| 国产xxxxx性猛交| 国产精品人妻久久久久久| 最近中文字幕2019免费版| 九色亚洲精品在线播放| 国产精品蜜桃在线观看| kizo精华| 亚洲美女黄色视频免费看| 亚洲精品久久午夜乱码| 亚洲欧美日韩另类电影网站| 亚洲成av片中文字幕在线观看 | 精品人妻在线不人妻| 亚洲国产精品999| 美女大奶头黄色视频| 91精品三级在线观看| 男女午夜视频在线观看 | 免费看不卡的av| 日本91视频免费播放| 国产成人欧美| 美女中出高潮动态图| 一级毛片黄色毛片免费观看视频| 波多野结衣一区麻豆| 亚洲天堂av无毛| 亚洲欧美精品自产自拍| a级片在线免费高清观看视频| 日韩成人伦理影院| 免费观看av网站的网址| 亚洲欧美成人综合另类久久久| 色哟哟·www| 97精品久久久久久久久久精品| 涩涩av久久男人的天堂| 99精国产麻豆久久婷婷| 国国产精品蜜臀av免费| 久久国内精品自在自线图片| 丝袜脚勾引网站| av女优亚洲男人天堂| 免费黄频网站在线观看国产| 亚洲成人一二三区av| 国语对白做爰xxxⅹ性视频网站| 国产精品一区二区在线不卡| 97人妻天天添夜夜摸| 亚洲五月色婷婷综合| 国产在线一区二区三区精| 久久av网站| 纵有疾风起免费观看全集完整版| 亚洲欧美成人综合另类久久久| 国语对白做爰xxxⅹ性视频网站| 精品视频人人做人人爽| 看免费成人av毛片| 色婷婷av一区二区三区视频| 欧美 亚洲 国产 日韩一| tube8黄色片| 不卡视频在线观看欧美| 大话2 男鬼变身卡| 成人国产麻豆网| 久久99热这里只频精品6学生| 美女内射精品一级片tv| 精品亚洲乱码少妇综合久久| 18+在线观看网站| 99视频精品全部免费 在线| 在线天堂最新版资源| 亚洲av欧美aⅴ国产| 精品一区二区免费观看| av在线观看视频网站免费| 伦理电影免费视频| 最近2019中文字幕mv第一页| 国产又爽黄色视频| 熟女电影av网| 视频区图区小说| 在线观看美女被高潮喷水网站| 一边摸一边做爽爽视频免费| 在线天堂中文资源库| 国产亚洲精品第一综合不卡 | 王馨瑶露胸无遮挡在线观看| 国产在线一区二区三区精| 日本wwww免费看| 欧美成人午夜精品| 日韩人妻精品一区2区三区| 侵犯人妻中文字幕一二三四区| 亚洲欧美精品自产自拍| 九色成人免费人妻av| videos熟女内射| 免费观看av网站的网址| 97人妻天天添夜夜摸| 女人久久www免费人成看片| 久久热在线av| 国产精品麻豆人妻色哟哟久久| 免费观看在线日韩| 2021少妇久久久久久久久久久| 国产成人午夜福利电影在线观看| 久久综合国产亚洲精品| 免费观看无遮挡的男女| 成人免费观看视频高清| www.熟女人妻精品国产 | 国产一级毛片在线| 少妇被粗大猛烈的视频| 少妇熟女欧美另类| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 亚洲国产欧美在线一区| 欧美成人精品欧美一级黄| 日产精品乱码卡一卡2卡三| a级毛片黄视频| 国产av精品麻豆| 久久韩国三级中文字幕| 精品国产露脸久久av麻豆| 日韩成人av中文字幕在线观看| 妹子高潮喷水视频| 美女主播在线视频| 国产 精品1| 久久久久精品人妻al黑| 99九九在线精品视频| 亚洲在久久综合| 九色成人免费人妻av| 欧美成人午夜免费资源| av.在线天堂| 午夜激情av网站| 狠狠婷婷综合久久久久久88av| 少妇人妻久久综合中文| 精品亚洲成国产av| 交换朋友夫妻互换小说| av在线播放精品| 亚洲第一av免费看| 日韩欧美精品免费久久| 最后的刺客免费高清国语| 伊人久久国产一区二区| 国产日韩欧美在线精品| 中国美白少妇内射xxxbb| 九九在线视频观看精品| 汤姆久久久久久久影院中文字幕| 日韩欧美精品免费久久| 熟女av电影| 日本wwww免费看| 夫妻午夜视频| 亚洲欧美色中文字幕在线| 久久久久精品久久久久真实原创| 亚洲国产看品久久| 精品人妻熟女毛片av久久网站| 亚洲精品视频女| 亚洲精品国产色婷婷电影| 亚洲精品久久午夜乱码| 在线亚洲精品国产二区图片欧美| 国产免费福利视频在线观看| 制服人妻中文乱码| 妹子高潮喷水视频| 飞空精品影院首页| 日本黄大片高清| 黄片播放在线免费| 久久久精品区二区三区| 91精品三级在线观看| 国产永久视频网站| 国产精品久久久久久久电影| 免费不卡的大黄色大毛片视频在线观看| 高清毛片免费看| 两个人免费观看高清视频| 亚洲第一av免费看| 精品亚洲成a人片在线观看| 三上悠亚av全集在线观看| av网站免费在线观看视频| 国产日韩一区二区三区精品不卡| 少妇 在线观看| 国产精品久久久av美女十八| 成人漫画全彩无遮挡| 天天躁夜夜躁狠狠躁躁| 两性夫妻黄色片 | 制服诱惑二区| 国产精品99久久99久久久不卡 | 亚洲精品自拍成人| 免费大片18禁| 伦精品一区二区三区| 亚洲天堂av无毛| 97精品久久久久久久久久精品| 纵有疾风起免费观看全集完整版| 久久97久久精品| 精品亚洲成a人片在线观看| 久久久久精品人妻al黑| 啦啦啦在线观看免费高清www| 久久人人97超碰香蕉20202| 亚洲在久久综合| 亚洲国产欧美在线一区| 春色校园在线视频观看| 国产无遮挡羞羞视频在线观看| 亚洲av日韩在线播放| 黑人欧美特级aaaaaa片| 国产亚洲午夜精品一区二区久久| 欧美 日韩 精品 国产| 午夜福利,免费看| 国产精品国产三级国产av玫瑰| 亚洲av综合色区一区| 日本免费在线观看一区| 亚洲精品久久午夜乱码| 日韩精品免费视频一区二区三区 | 国产白丝娇喘喷水9色精品| 日日撸夜夜添| 一级黄片播放器| h视频一区二区三区| 永久免费av网站大全| 精品午夜福利在线看| 黄色 视频免费看| 大片免费播放器 马上看| 国产爽快片一区二区三区| 男的添女的下面高潮视频| 亚洲国产色片| 欧美激情国产日韩精品一区| 日韩中字成人| a 毛片基地| 久久精品国产自在天天线| 久久精品国产亚洲av天美| av在线观看视频网站免费| 涩涩av久久男人的天堂| 国产精品人妻久久久影院| 国产成人精品一,二区| 久久综合国产亚洲精品| 亚洲人成网站在线观看播放| 亚洲国产精品专区欧美| h视频一区二区三区| 久久久精品94久久精品| 国产男女超爽视频在线观看| 好男人视频免费观看在线| 视频在线观看一区二区三区| 超碰97精品在线观看| av.在线天堂| 婷婷色av中文字幕| 男女边摸边吃奶| 亚洲国产精品国产精品| 看非洲黑人一级黄片| h视频一区二区三区| 极品人妻少妇av视频| 午夜福利视频在线观看免费| 人人妻人人澡人人看| 高清毛片免费看| 欧美+日韩+精品| a级毛片在线看网站| 两个人看的免费小视频| 欧美97在线视频| 亚洲精品日韩在线中文字幕| av国产久精品久网站免费入址| 成人无遮挡网站| 国产又爽黄色视频| 一级,二级,三级黄色视频| 国产激情久久老熟女| 美女福利国产在线| 如何舔出高潮| 你懂的网址亚洲精品在线观看| 咕卡用的链子| 欧美+日韩+精品| 免费观看性生交大片5| 伊人久久国产一区二区| 岛国毛片在线播放| kizo精华| 成年美女黄网站色视频大全免费| 亚洲国产精品专区欧美| 美女xxoo啪啪120秒动态图| 丝瓜视频免费看黄片| 大码成人一级视频| 视频中文字幕在线观看| 高清在线视频一区二区三区| 人人妻人人澡人人看| 黄色视频在线播放观看不卡| 乱人伦中国视频| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久人人人人人人| 97在线视频观看| 久久精品久久久久久久性| 99视频精品全部免费 在线| 成人国产麻豆网| 亚洲婷婷狠狠爱综合网| 飞空精品影院首页| 日韩不卡一区二区三区视频在线| 精品人妻一区二区三区麻豆| 菩萨蛮人人尽说江南好唐韦庄| 晚上一个人看的免费电影| 亚洲欧洲国产日韩| 国产精品蜜桃在线观看| av一本久久久久| 欧美激情极品国产一区二区三区 | 99视频精品全部免费 在线| 亚洲精品av麻豆狂野| 国产精品一二三区在线看| 国产极品粉嫩免费观看在线| 91成人精品电影| 久久久亚洲精品成人影院| 国产乱来视频区| 菩萨蛮人人尽说江南好唐韦庄| 人妻 亚洲 视频| xxxhd国产人妻xxx| 五月开心婷婷网| 一区二区三区四区激情视频| 免费观看在线日韩| 国产乱来视频区| 日本wwww免费看| 少妇被粗大的猛进出69影院 | 成年av动漫网址| 少妇的逼好多水|