• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interface modulated electron mobility enhancement in core–shell nanowires

    2022-11-21 09:34:26YanHe賀言HuaKaiXu許華慨andGangOuyang歐陽鋼
    Chinese Physics B 2022年11期
    關(guān)鍵詞:歐陽

    Yan He(賀言) Hua-Kai Xu(許華慨) and Gang Ouyang(歐陽鋼)

    1College of Science,Guangdong University of Petrochemical Technology,Maoming 525000,China

    2Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education,Key Laboratory for Matter Microstructure and Function of Hunan Province,School of Physics and Electronics,Hunan Normal University,Changsha 410081,China

    The transport properties of core–shell nanowires(CSNWs)under interface modulation and confinement are investigated based on the atomic-bond-relaxation(ABR)correlation mechanism and Fermi’s golden rule.An analytical expression for the relationship between carrier mobility and interface mismatch strain is derived and the influence of size,shell thickness and alloyed layer on effective mass, band structures, and deformation potential constant are studied. It is found that interface modulation can not only reduce the lattice mismatch to optimize the band alignment, but also participate in the carrier transport for enhancing mobility. Moreover, the underlying mechanism regarding the interface shape dependence of transport properties in CSNWs is clarified. The great enhancement of electron mobility suggests that the interface modulation may become a potential pathway to improving the performance of nanoelectronic devices.

    Keywords: core–shell nanowires,interface modulated,electron mobility

    1. Introduction

    Core–shell nanowires (CSNWs) have drawn significant attraction due to their outstanding electronic and transport properties, which provide a really possibility for improving the performance of catalytic, field effect transistors, and photovoltaic devices.[1–3]To date, an abundance of reports, experimental and theoretical,have shown that the epitaxial layer of shell can not only decay the surface state and defects to reduce the impurity and phonon scattering,[4,5]but also offer a radical channel for the rapid transport and separation to carriers for enhancing carrier collection efficiency.[6,7]However, some results are anxious for the unimaginably tunable interface phonon scattering and band structures induced by the lattice mismatch between core and shell parts,which exert an important influence on the performance of nanoelectronic devices.[8,9]Therefore, understanding the influence of interface strain on the transport properties and designing an optimized interface structures to achieve the sharpness interface in CSNWs become significant challenging problems in fundamental scientific and technological applications.

    In general,the bottom-up approach is required for achieving a uniform coating of the shell materials during the particle formation and the core–shell transition can occur discontinuously (a “hard” interface) or may expect to be accompanied by interdiffusionions at the interface to smooth the confinement potential (called “interface engineering”), resulting in forming an alloyed transition region(a“soft”interface).[10,11]Nanowires (NWs) with hard or soft interfaces can have different transport and dynamical properties. Atomic-bondrelaxation (ABR) correlation mechanism[12,13]reveals that since a hard interface in CSNWs provides an additional driving induced by lattice mismatch and imperfect coordination numbers(CNs)that forces the interface atoms to deviate from intrinsic position, the mismatch strain and strain energy will take place.The magnitude of the strain energies determined by size,shell thickness and lattice parameters,and it may involve in chemical bonds to modify the Hamiltonian and band structure or even modulate the morphology to induce the charge redistribution.[14,15]Moreover,a sharpness interface modified by the interface modulation to form a soft interface will have less mismatch strain and strain energy as the lattice parameters changes gradually.[16]Contributions have shown that the alloying layer can reduce or eliminate the mixing of conductionband and valence-band to provide a more gradual change in the confinement potential for optimizing the band structure and eventually to improve the charge injection or collection at interface.[17–20]

    Additionally, some studies shave revealed that the interface morphology modulation also plays a significant role in the carrier behaviors as it may provide a large interface area.[21,22]However,although considerable efforts have been made to investigate the effects of sharpness and softness interface on optical and electronic properties, the investigation of the influence of interface modulation on transport properties is still limited by two aspects. (i) Some one attempts to clarify that the epitaxial layer can participate in the carrier transport and provide a strong response to gate biasviathe Stark effect due to the lattice mismatch at the core–shell interface,[23]but there is a lack of quantitative calculation for the transport properties improving with the thickness of epitaxial layer increasing. (ii)Even though experimental measurements and theories have confirmed that the alloyed layer can reduce the interface lattice mismatch strain to optimize the band alignment and improve the carriers’lifetime,[24]the quantitative relationship between mismatch strain and transport properties is unclear. Therefore,in order to evaluate the influence of interface mismatch modulation on the transport properties of CSNWs and establish the relationship between theirs, we propose an analytical model to clarify the effects of size, shell thickness and alloy layer on effective mass,band structure and formation potential constant based on the ABR correlation mechanism and Fermi’s golden rule. The results show that the soft interface is helpful in blocking the phonon scattering and also in increasing the electron mobility as it decays the lattice mismatch strain,which may optimize the band structures and the participation in the carrier transport.Moreover,the difference between electron mobilities in CSNWs with cylinder and elliptic interface are also compared.

    2. Principle

    Physically,the transition rate for an electron in an initial statekto a final statek′can be calculated in terms of Fermi’s golden rule[25,26]

    where ˉhωkand ˉhωk′ are the electron energy of initial state and final state,ˉhωqis the phonon energy,Mk′kis the transition matrix elements,ψk= eik·ruk(r) is the wavefunction of a specific state,andV(r)is the scattering potential.

    Generally, the above equation can be solved by the deformation potential theory and virtual-crystals approach.[27,28]By using the effectivemas approximation and the electron–phonon scattering mechanism,the relaxation time involves in an integral equation(see section S1 in the supporting information for details)and is expressed as

    The acoustic deformation potential is proportional to the stretching-induced band-edge shift. We consider ΔEC, which is the conduction-band-edgeupward shift, while ΔEVis the valence-band-edgedownward shift. According to the thermodynamic approach,[29,30]we have (see section S2 in the supporting information for details)

    wherem*eandm*hare the effective mass of electron and hole,respectively.

    Moreover, for the AxB1-xalloy at the interface of A/B core–shell nanowires, the band edge energy can be approximated as[28]

    whereEAandEBare the band edge energy of A and B,respectively,andxis the concentration of A atoms of AxB1-xalloy.Additionally,the electron effective massm*is the electron effective mass,specifically,

    whereEis the electron energy. Moreover, the interaction of long-wavelength longitudinal–vibrational modes with the longitudinal-collective excitations becomes important when the free-carrier plasmon frequencyωpapproaches to the LOphonon frequencyωiwherem*=ne2/ω2pε0ε∞,[31]nandeare the electron concentration and electronic charge,ε0andε∞present are the permittivity of free space and high frequency dielectric constant, respectively. According to the ABR correlation mechanism,the dielectric constant relates to the band gapEgof specimen,andEg/EBg=f(D),[32]f(D)is a function of size andEBgdenotes the band gap of bulk case. Therefore,the effective mass with size and shell thickness can be deduced as follows:

    whereεBandxmare the bulk dielectric constant and molar ratio,zi(zb) andEi(Eb) represent the coordination number and single bond energy ofi-th layer(bulk), ˉzandEc-sdenote the average coordination number and formation enthalpy of an interfacial bond,γiandγintare the surface-to-volume ratio(SVR)and interface-to-volume ratio,zrr(Err),zθθ(Eθθ),andzzz(Ezz)are the CNs(single bond energy)in the radial direction,the tangential direction,and the axial direction.

    Therefore, the change of deformation potential constantDawith the influence of shell and alloy layer can be expressed as

    whereεRis the lattice strain induced by the size effect (see section S2 in the supporting information for details), Δais a small change of lattice constant that results in a position shift ΔEin the energy band near the Fermi surface.

    Consequentially, considering the discrepancies of transport properties between core and interface of AxB1-xalloy layers, the mobility of core can be given by a weight factors=Salloy/(Salloy+Score),whereSalloyandScoreare the area of alloy and the area of core. Thus,

    3. Results and discussion

    In order to clarify the influence of epitaxial layer and geometric shape on the transport properties,Si/Ge core–shell NW with an interface Si0.5Ge0.5alloy layer is considered. Moreover,to solve the Eq.(2),we consider that the relaxation time that involves in an integral equation can be solved numerically,for the scattering of sub-bands is not important for the considered cases and the approximation works well for the lowest sub-band which is the main contributor to mobility.[33]Therefore, we expect the main difference in comparison with the different wires to come from the deformation potentials.

    Figure 1 shows the curves of size-dependent effective mass in various orientations of Si NWs. Evidently,m*increases with the decrease of diameter of Si and thickness of epitaxial layer. Those results are similar to other results that the electron effective mass of semiconductors is observed to decrease with band gap increasing.[34]Moreover, the results indicate that the existence of shell can not only reduce the quantum effect and Coulomb interaction,but also diminish the surface state and CNs defects,resulting in enhancing the cohesive energy and reducing the periodic potential and the effective mass. In our case,there are a lot of dangling bonds in the surface of bare nanostructures, which play an important role in its physical and chemical properties. However,an epitaxial layer coated on the surface of nanostructure is of great benefit to reducing the dangling bonds. As a result,the CNs’defects on the surface and surface state of the nanostructures will decrease dramatically. Our predictions are consistent with those in Refs.[35,36],whereas they deviate from some calculations due to the discrepancy between approximate methods.

    Fig.1.Size-and shell-dependent effective mass of Si NWs,with inset showings schematic illustration of Si/Ge core–shell NWs.

    The influence of interface modulation on band edge energy is studied, figure 2(a) shows the conduction-band-edge upward shift and valence-band-edge downward shift with size increasing, and the shift of bands decreases with shell thickness increasing.Our result is exceedingly well agreement with earlier result. Moreover,the shift of band edges suggests that the deformation potential constant may change with dimensionDand thickness of epitaxial layerHas shown in Fig.2(b).Clearly,the deformation potential constant decreases with core diameter and shell thickness increasing,and it approximates to 9.3 eV which is close to earlier result,9.5 eV.[37]The deformation potential constant is expected to increase since the effective mass approximation has been reported to be ΔE∝D-2,[38]while ABR correlation mechanism proposed that the lattice strain can be expressed asε=Δa/a∝D-1dependence.[39]As a result, the relationship between deformation potential constant and size should satisfyDa∝D-1.Moreover,the decrease ofDaunder a shell coated in Si NWs may be attributed to the reduction of strain. In fact,ΔE∝ΔEcoh∝ε2ζ,[30,39]whereεζis the strain of the core in the radial direction,the tangential direction,and the axial direction(see section S2 in the supporting information for details),then we haveDa∝εζ. Moreover,our results exhibit that the interface Si0.5Ge0.5alloy layer has an effect on the inhibiting of the deformation potential constant due to the reduction of mismatch strain at interfaceviastrain modulation in core–shell NWs with modulating lattice mismatch. The predictions imply that the epitaxial layer and interface alloy play a significant role in the transport properties of NWs.

    Figure 3 shows the curves of mobility of Si NWs as a function of NWs diameter, shell thickness, and alloy layers under various directions. As indicated in Fig. 3(a), mobility decreases with diameter declining. The results demonstrate that the scattering rate determined by electronic structure and mechanical structure,resulting in the different transport properties in the orientations of various crystals due to the discrepancy of effective mass,process of electron transition between energy levels,velocities,etc. Those trends are expected to be due to the wave form factor overlap increasing with diameter decreasing, which may enhance the phonon scattering in NWs. In particular,our results show that the influence of epitaxial layers exert a significant effect on the transport properties of NWs in small size. This trend is similar to the earlier results,but slightly larger.[27,37,40]In order to clarify the transport properties of NWs modulated by interface modulation,figure 3(b) shows the electron mobility as a function of alloy Si0.5Ge0.5thicknesst,with diameterDand thicknessHfixed.We find that the increase ofμcan be attributed to the decrease of mismatch strain and scattering rate. In our case, although epitaxial layer is of great benefit to the decreasing of the surface coordination bonds and surface states,the interface effect and lattice strain will occur as the discrepancy between the lattice constants in core Si and shell Ge.[41,42]The alloying layers may decay or even eliminate the interface effect and lattice mismatch between Si and Ge,resulting in optimization of the band structure of core. Additionally,since the SiGe alloy has a different electronic structure from Si,it can offer a real possibility for optimizing band structures and reducing scattering rate. Note that we may overestimate the carrier mobility due to the fact that the calculations did not take into account the intervalley scattering or alloy scattering.[43]

    To further understand the influence of interface modulation on transport properties, CSNWs with elliptic interfaces are deliberately considered as shown in the inset of Fig.4.The transport properties of Si NWs with cylinder and elliptic interface are compared in Fig.4,and we find the NW with elliptic interface exhibits more excellent electron mobility. The reason may be due to the difference between mechanical structure and electronic structure induced by the SVR. In fact, on the one hand, Si NW with elliptic interface has lower SVR than that of cylinder interface, which suppresses the size effect and quantum effect to disturb the Hamiltonian. On the other hand,since the elliptical interface in core/shell NW has a wider range of interface extension than that of cylinder interface, more donors will provide Si core with alloy layer for taking part in the carrier transport.

    Fig.4. Curves of change of electron mobility with thickness of alloy layer in Si/SiGe/Ge core–shell NWs with elliptic interface,with inset showing the schematic illustration of Si/SiGe/Ge core–shell NWs with elliptic interfaces and electron mobility of Si NWs versus Ra/Rb.

    Additionally,as indicated in the inset of Fig.4,the electron mobility of Si NWs with elliptical interface demonstrates a first rapid increase with size increasing and then it become a constant whenRa/Rb>4. This result may be due to the fact that the electron mobility of elliptic interface withRa/Rb>4 can be treated as a two-dimensional phonon scattering rather than one-dimensional scattering as the transformation effect from one-dimensional to two-dimensional structures.

    4. Conclusions

    In this work, we proposed an analytical model to clarify the influence of interface modulation on the transport properties of core–shell NWs based on Fermi’s golden rule and ABR correlation mechanism. Our results indicate that the size and shell thickness exert a significant effect on phonon scattering and transport properties as the deformation potential constant and band structure change. We find the thick size and epitaxial layer reduce the surface state and wave overlap, resulting in the increase of electron mobility. In particular, the core/alloying/shell NWs,leading to the“smoothing”confinement potential, can dramatically enhance the transport properties of NWs as the alloy layer can decay or even eliminate the interface effect and lattice mismatch to optimize the band structures and participate in the carrier transport. Moreover,benefited from the low SVR and wider range of interface extension in elliptic interface, NWs with elliptic interface exhibits more excellent electron mobility than that of cylinder interface.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 91833302 and U2001215),the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2022A1515010989), and the Special Project in Key Fields of Guandong Universities,China(Grant No.2022ZDZX3015).

    猜你喜歡
    歐陽
    動(dòng)物怎樣聽和看?
    Positive unlabeled named entity recognition with multi-granularity linguistic information①
    雅皮狗(7)
    雅皮狗(6)
    雅皮狗(5)
    雅皮狗(4)
    雅皮狗(1)
    我家的健忘老媽
    歐陽彥等
    依依送別歐陽鶴先生
    中華詩詞(2019年9期)2019-05-21 03:05:18
    国产精品综合久久久久久久免费| 日日摸夜夜添夜夜添小说| 一级片免费观看大全| or卡值多少钱| 最近视频中文字幕2019在线8| 免费看美女性在线毛片视频| 九九热线精品视视频播放| 一a级毛片在线观看| 免费电影在线观看免费观看| 夜夜夜夜夜久久久久| 别揉我奶头~嗯~啊~动态视频| 久久午夜亚洲精品久久| 欧美黄色淫秽网站| 免费看日本二区| 亚洲欧美激情综合另类| 在线看三级毛片| 精品无人区乱码1区二区| 久久这里只有精品19| 亚洲人成伊人成综合网2020| 国产69精品久久久久777片 | 欧美黑人巨大hd| www.www免费av| 久久久久国内视频| 一本久久中文字幕| 在线观看日韩欧美| 99久久精品国产亚洲精品| 国产亚洲欧美98| 中文字幕最新亚洲高清| 一级毛片高清免费大全| 欧美精品亚洲一区二区| 亚洲乱码一区二区免费版| 亚洲国产欧洲综合997久久,| 男女视频在线观看网站免费 | 亚洲熟女毛片儿| 777久久人妻少妇嫩草av网站| 欧美成人午夜精品| 日韩 欧美 亚洲 中文字幕| 免费高清视频大片| 国产午夜精品久久久久久| a级毛片在线看网站| 免费看日本二区| 亚洲av中文字字幕乱码综合| 欧美三级亚洲精品| 女人高潮潮喷娇喘18禁视频| 在线观看舔阴道视频| 久久久久国内视频| 成年女人毛片免费观看观看9| 日日爽夜夜爽网站| 日本成人三级电影网站| 日本成人三级电影网站| 三级国产精品欧美在线观看 | 人妻丰满熟妇av一区二区三区| 精品午夜福利视频在线观看一区| 在线观看免费日韩欧美大片| 在线免费观看的www视频| 国产av麻豆久久久久久久| 亚洲第一电影网av| 欧美中文综合在线视频| 欧美中文综合在线视频| 欧洲精品卡2卡3卡4卡5卡区| 最近最新中文字幕大全电影3| 久久久精品大字幕| 日韩欧美在线乱码| 麻豆一二三区av精品| 一本综合久久免费| av在线播放免费不卡| 久久精品国产亚洲av高清一级| 性欧美人与动物交配| 搡老熟女国产l中国老女人| 女人高潮潮喷娇喘18禁视频| 久久亚洲真实| 50天的宝宝边吃奶边哭怎么回事| 午夜视频精品福利| 天天添夜夜摸| 久久久国产成人精品二区| 亚洲专区字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 欧美zozozo另类| 亚洲精品国产一区二区精华液| 欧美日韩瑟瑟在线播放| 欧美黑人欧美精品刺激| tocl精华| 亚洲国产欧美网| 亚洲精品在线观看二区| 亚洲国产欧美一区二区综合| 九色国产91popny在线| 久久精品91蜜桃| 亚洲18禁久久av| 久久香蕉激情| 欧美乱码精品一区二区三区| 国产精品香港三级国产av潘金莲| 十八禁人妻一区二区| 亚洲第一电影网av| 好男人电影高清在线观看| 国产精品九九99| 免费在线观看成人毛片| 日本熟妇午夜| 亚洲成人国产一区在线观看| 麻豆成人午夜福利视频| 在线观看舔阴道视频| 一级a爱片免费观看的视频| 国产成人精品久久二区二区91| 精品久久久久久成人av| 12—13女人毛片做爰片一| 久久香蕉国产精品| 日本一二三区视频观看| 成年免费大片在线观看| 亚洲欧美精品综合久久99| 男女午夜视频在线观看| 久久精品国产清高在天天线| 国产三级黄色录像| 国产精品九九99| 在线观看日韩欧美| 淫妇啪啪啪对白视频| 午夜两性在线视频| 亚洲真实伦在线观看| 亚洲国产欧洲综合997久久,| 丝袜人妻中文字幕| 中文字幕最新亚洲高清| 精品少妇一区二区三区视频日本电影| 日本 av在线| 男女之事视频高清在线观看| 老司机午夜福利在线观看视频| 一本大道久久a久久精品| 日韩成人在线观看一区二区三区| 一个人免费在线观看的高清视频| 国产真实乱freesex| 国产1区2区3区精品| 两个人的视频大全免费| videosex国产| 亚洲人成伊人成综合网2020| 中文资源天堂在线| 久久久久亚洲av毛片大全| 九九热线精品视视频播放| 黄色片一级片一级黄色片| 黄色毛片三级朝国网站| 一进一出抽搐gif免费好疼| 亚洲国产欧洲综合997久久,| 男人的好看免费观看在线视频 | 久久香蕉精品热| 一进一出好大好爽视频| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 手机成人av网站| av天堂在线播放| 久久精品国产清高在天天线| 日本 欧美在线| 很黄的视频免费| 国产单亲对白刺激| 亚洲精品国产一区二区精华液| 天堂av国产一区二区熟女人妻 | 搡老岳熟女国产| 超碰成人久久| 国产精品免费一区二区三区在线| 精品无人区乱码1区二区| 欧美激情久久久久久爽电影| 国产黄a三级三级三级人| aaaaa片日本免费| 岛国在线观看网站| 久久久久久久久久黄片| 又爽又黄无遮挡网站| av免费在线观看网站| 免费在线观看完整版高清| 欧美日韩福利视频一区二区| 曰老女人黄片| 老汉色av国产亚洲站长工具| 国产日本99.免费观看| 欧美激情久久久久久爽电影| 亚洲av日韩精品久久久久久密| 狂野欧美激情性xxxx| 欧美日韩精品网址| 国产午夜精品久久久久久| 欧美3d第一页| 夜夜看夜夜爽夜夜摸| 亚洲精品粉嫩美女一区| 成年免费大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品免费一区二区三区在线| 久久草成人影院| 在线观看免费视频日本深夜| 黄色视频,在线免费观看| 国内久久婷婷六月综合欲色啪| 国产高清视频在线播放一区| 久久亚洲真实| 香蕉久久夜色| 丰满人妻一区二区三区视频av | 亚洲性夜色夜夜综合| 亚洲精品国产一区二区精华液| 999久久久精品免费观看国产| or卡值多少钱| 黑人欧美特级aaaaaa片| 国产男靠女视频免费网站| 免费搜索国产男女视频| 久久久久免费精品人妻一区二区| 88av欧美| √禁漫天堂资源中文www| 日韩欧美 国产精品| 91av网站免费观看| 欧美最黄视频在线播放免费| 午夜福利欧美成人| 中文字幕精品亚洲无线码一区| 成人国产综合亚洲| 91成年电影在线观看| 成人18禁在线播放| 搡老岳熟女国产| 免费搜索国产男女视频| 久久久国产成人免费| av欧美777| 色在线成人网| 久久香蕉国产精品| 久久精品成人免费网站| 18美女黄网站色大片免费观看| 国产成人aa在线观看| 久久久久精品国产欧美久久久| 日日摸夜夜添夜夜添小说| 国产一区二区三区视频了| 久久天堂一区二区三区四区| 亚洲国产精品合色在线| 三级国产精品欧美在线观看 | 久久国产精品人妻蜜桃| 中文字幕av在线有码专区| 中文亚洲av片在线观看爽| 色在线成人网| 变态另类丝袜制服| 亚洲国产欧美人成| 999久久久精品免费观看国产| 婷婷精品国产亚洲av在线| 九九热线精品视视频播放| 精品熟女少妇八av免费久了| 50天的宝宝边吃奶边哭怎么回事| 亚洲人成网站在线播放欧美日韩| 少妇被粗大的猛进出69影院| 最近最新中文字幕大全免费视频| 国产精品亚洲av一区麻豆| 亚洲男人的天堂狠狠| 成人一区二区视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品在线美女| av在线播放免费不卡| av在线天堂中文字幕| 免费在线观看成人毛片| 欧美高清成人免费视频www| 妹子高潮喷水视频| 免费av毛片视频| 18美女黄网站色大片免费观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美乱码精品一区二区三区| av中文乱码字幕在线| 久久久久久国产a免费观看| 欧美日韩福利视频一区二区| 黄色a级毛片大全视频| 国语自产精品视频在线第100页| www日本黄色视频网| 久久人妻福利社区极品人妻图片| 久久这里只有精品19| 成人欧美大片| 中文亚洲av片在线观看爽| 亚洲成人国产一区在线观看| 国模一区二区三区四区视频 | 久99久视频精品免费| 国产av一区在线观看免费| 亚洲午夜精品一区,二区,三区| 一a级毛片在线观看| 久久精品91无色码中文字幕| 色av中文字幕| 天天一区二区日本电影三级| 国产又色又爽无遮挡免费看| 久久中文字幕人妻熟女| 午夜老司机福利片| 国产探花在线观看一区二区| 午夜视频精品福利| 国产精品日韩av在线免费观看| 99精品久久久久人妻精品| 亚洲av片天天在线观看| 午夜影院日韩av| 听说在线观看完整版免费高清| 美女 人体艺术 gogo| 韩国av一区二区三区四区| 亚洲 国产 在线| 国产精品影院久久| 麻豆国产97在线/欧美 | 最近最新中文字幕大全电影3| 成年版毛片免费区| 巨乳人妻的诱惑在线观看| 免费人成视频x8x8入口观看| 校园春色视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人系列免费观看| 69av精品久久久久久| 免费看日本二区| 宅男免费午夜| 19禁男女啪啪无遮挡网站| 精品无人区乱码1区二区| 成人高潮视频无遮挡免费网站| 18禁国产床啪视频网站| 黄片大片在线免费观看| 日日夜夜操网爽| 国产精品久久久久久亚洲av鲁大| 亚洲九九香蕉| 亚洲avbb在线观看| www日本在线高清视频| 久久久国产欧美日韩av| cao死你这个sao货| 色尼玛亚洲综合影院| 女同久久另类99精品国产91| 18禁国产床啪视频网站| 欧美人与性动交α欧美精品济南到| 脱女人内裤的视频| 午夜福利高清视频| 91成年电影在线观看| 精品午夜福利视频在线观看一区| 国产精品免费视频内射| 99热只有精品国产| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 国产av一区二区精品久久| 91国产中文字幕| 国产又黄又爽又无遮挡在线| 亚洲一区中文字幕在线| 国产成年人精品一区二区| 亚洲人成伊人成综合网2020| 超碰成人久久| 黄片小视频在线播放| 亚洲人与动物交配视频| 国产亚洲精品综合一区在线观看 | 丝袜人妻中文字幕| 精品国内亚洲2022精品成人| 婷婷精品国产亚洲av在线| 日本a在线网址| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品久久久久久毛片| 波多野结衣高清作品| 成年免费大片在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产三级黄色录像| 国产视频内射| 中文资源天堂在线| 久久婷婷人人爽人人干人人爱| 日韩高清综合在线| 黄色毛片三级朝国网站| 国产三级在线视频| 国产精品 国内视频| 国产在线精品亚洲第一网站| 嫩草影视91久久| 国产黄色小视频在线观看| svipshipincom国产片| 免费在线观看影片大全网站| 国产一区二区三区在线臀色熟女| 国产激情久久老熟女| 久久精品91蜜桃| 国产91精品成人一区二区三区| 后天国语完整版免费观看| 国产伦在线观看视频一区| 国产精品久久久人人做人人爽| 色精品久久人妻99蜜桃| 亚洲精品av麻豆狂野| 亚洲欧美日韩无卡精品| а√天堂www在线а√下载| 午夜成年电影在线免费观看| 我的老师免费观看完整版| 亚洲一码二码三码区别大吗| 精品久久久久久久久久免费视频| 波多野结衣高清无吗| 亚洲五月天丁香| 丰满人妻熟妇乱又伦精品不卡| 特级一级黄色大片| 国产av一区二区精品久久| 亚洲国产精品成人综合色| 国产v大片淫在线免费观看| 夜夜看夜夜爽夜夜摸| 国内毛片毛片毛片毛片毛片| 日韩欧美国产在线观看| av天堂在线播放| 老鸭窝网址在线观看| 国产av麻豆久久久久久久| 18禁黄网站禁片免费观看直播| 日本一二三区视频观看| 香蕉久久夜色| 精品国产美女av久久久久小说| 成人手机av| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇中文字幕五十中出| 国产日本99.免费观看| av福利片在线观看| 90打野战视频偷拍视频| 99热这里只有精品一区 | 在线国产一区二区在线| 亚洲美女视频黄频| bbb黄色大片| 在线观看免费视频日本深夜| 淫秽高清视频在线观看| 日本三级黄在线观看| av中文乱码字幕在线| 在线观看免费日韩欧美大片| 超碰成人久久| 老汉色av国产亚洲站长工具| 欧美丝袜亚洲另类 | 国产激情久久老熟女| 999精品在线视频| 国产精品 国内视频| 国产成人精品久久二区二区免费| 一区福利在线观看| 日本撒尿小便嘘嘘汇集6| 一边摸一边做爽爽视频免费| 少妇裸体淫交视频免费看高清 | 日韩精品中文字幕看吧| 五月玫瑰六月丁香| 在线播放国产精品三级| 美女大奶头视频| 国产一区二区三区在线臀色熟女| 最近最新免费中文字幕在线| 91九色精品人成在线观看| 亚洲国产欧洲综合997久久,| 男人舔奶头视频| videosex国产| 国产激情偷乱视频一区二区| 国产精品免费一区二区三区在线| www.精华液| 国产三级在线视频| 后天国语完整版免费观看| 午夜两性在线视频| 亚洲国产精品成人综合色| 麻豆一二三区av精品| 国产精品免费一区二区三区在线| 国产精品一及| 又大又爽又粗| 天堂av国产一区二区熟女人妻 | 无遮挡黄片免费观看| 亚洲五月婷婷丁香| 国产精品一区二区三区四区免费观看 | 亚洲人成网站在线播放欧美日韩| 国产精品98久久久久久宅男小说| 我的老师免费观看完整版| 国产高清激情床上av| 日韩欧美三级三区| 亚洲五月天丁香| 蜜桃久久精品国产亚洲av| 少妇熟女aⅴ在线视频| 精品久久久久久,| 国产亚洲欧美在线一区二区| 中国美女看黄片| 日本三级黄在线观看| 男人舔奶头视频| 国产成人精品无人区| 国产1区2区3区精品| 国产av一区二区精品久久| www国产在线视频色| 国产高清视频在线播放一区| 18美女黄网站色大片免费观看| netflix在线观看网站| 哪里可以看免费的av片| 精品久久久久久成人av| 免费观看精品视频网站| 日韩欧美 国产精品| 免费搜索国产男女视频| 国产午夜精品论理片| 亚洲av成人av| 国产片内射在线| 午夜福利18| 免费在线观看黄色视频的| 国产99白浆流出| 久久精品成人免费网站| 欧美日本视频| 五月玫瑰六月丁香| www国产在线视频色| 人人妻,人人澡人人爽秒播| 免费看十八禁软件| 欧美性长视频在线观看| 亚洲人成77777在线视频| 丁香六月欧美| 精品乱码久久久久久99久播| svipshipincom国产片| 亚洲欧美日韩无卡精品| a级毛片在线看网站| 亚洲最大成人中文| av在线天堂中文字幕| 啦啦啦韩国在线观看视频| 99久久精品热视频| 欧美一级毛片孕妇| 久久久国产欧美日韩av| 老司机午夜十八禁免费视频| 亚洲熟女毛片儿| 久久精品成人免费网站| 国产精品一区二区三区四区免费观看 | 男女下面进入的视频免费午夜| 亚洲人成伊人成综合网2020| 麻豆久久精品国产亚洲av| 午夜福利在线观看吧| 超碰成人久久| 久久人妻福利社区极品人妻图片| 最新美女视频免费是黄的| 日韩欧美一区二区三区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品一区av在线观看| 亚洲欧美激情综合另类| 久久久久亚洲av毛片大全| 热99re8久久精品国产| 少妇粗大呻吟视频| 禁无遮挡网站| 婷婷精品国产亚洲av| 精品久久久久久久末码| 亚洲av五月六月丁香网| 男女之事视频高清在线观看| 好看av亚洲va欧美ⅴa在| 俄罗斯特黄特色一大片| 男男h啪啪无遮挡| 亚洲中文av在线| 国产av麻豆久久久久久久| 国产三级黄色录像| 看片在线看免费视频| 天堂√8在线中文| 美女扒开内裤让男人捅视频| 国产亚洲精品第一综合不卡| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久亚洲av鲁大| 成人av一区二区三区在线看| 丝袜美腿诱惑在线| 久久久久久久久中文| 麻豆国产97在线/欧美 | 国产一区二区三区视频了| 午夜免费激情av| 小说图片视频综合网站| 18美女黄网站色大片免费观看| 亚洲一区中文字幕在线| 母亲3免费完整高清在线观看| 老司机在亚洲福利影院| 国产成人精品无人区| 免费无遮挡裸体视频| 亚洲一码二码三码区别大吗| 欧美日韩瑟瑟在线播放| 亚洲av熟女| 精品第一国产精品| 免费av毛片视频| 欧美中文日本在线观看视频| 人人妻人人澡欧美一区二区| 麻豆成人午夜福利视频| 日本免费一区二区三区高清不卡| 亚洲色图 男人天堂 中文字幕| 亚洲成人免费电影在线观看| 日韩高清综合在线| 亚洲中文字幕一区二区三区有码在线看 | 看免费av毛片| 88av欧美| 黄色毛片三级朝国网站| 亚洲精品国产精品久久久不卡| 淫妇啪啪啪对白视频| 长腿黑丝高跟| 啦啦啦韩国在线观看视频| 国产三级黄色录像| 精品久久久久久久人妻蜜臀av| 国产亚洲欧美在线一区二区| 中文字幕av在线有码专区| 欧美性猛交╳xxx乱大交人| 9191精品国产免费久久| 搡老妇女老女人老熟妇| 在线十欧美十亚洲十日本专区| 99国产精品一区二区蜜桃av| 国产精品免费视频内射| 成年人黄色毛片网站| 欧美一区二区精品小视频在线| 免费在线观看黄色视频的| 神马国产精品三级电影在线观看 | 亚洲精品在线观看二区| 欧美人与性动交α欧美精品济南到| 人妻夜夜爽99麻豆av| 国产精品久久视频播放| 中文亚洲av片在线观看爽| 成年人黄色毛片网站| 亚洲av成人不卡在线观看播放网| 女人被狂操c到高潮| 欧美在线黄色| 亚洲国产中文字幕在线视频| 黄片小视频在线播放| 精品一区二区三区av网在线观看| 十八禁网站免费在线| 国产精品野战在线观看| 午夜福利免费观看在线| 99久久99久久久精品蜜桃| 最近视频中文字幕2019在线8| 久久 成人 亚洲| 欧美性猛交╳xxx乱大交人| 特级一级黄色大片| av视频在线观看入口| 成人国产综合亚洲| 国产成人精品久久二区二区91| 亚洲av五月六月丁香网| 在线观看午夜福利视频| 国产一级毛片七仙女欲春2| 一级作爱视频免费观看| 亚洲 国产 在线| 成人国语在线视频| 亚洲片人在线观看| 欧美久久黑人一区二区| 黄色视频不卡| 天堂av国产一区二区熟女人妻 | 国产成人一区二区三区免费视频网站| 最好的美女福利视频网| 老司机福利观看| 免费电影在线观看免费观看| 国产成人av激情在线播放| 90打野战视频偷拍视频| 欧美精品啪啪一区二区三区| 这个男人来自地球电影免费观看| 亚洲中文字幕一区二区三区有码在线看 | 波多野结衣高清作品| 国产1区2区3区精品| 中文字幕熟女人妻在线| 日日爽夜夜爽网站| 国产亚洲欧美在线一区二区| 国产精品亚洲美女久久久| 99久久无色码亚洲精品果冻| 亚洲人成网站在线播放欧美日韩| 麻豆国产av国片精品| 男女午夜视频在线观看| 国产精品 欧美亚洲|