• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides

    2022-11-21 09:35:42JiaLiYou游佳麗YuSongWang王雨松TongWang王彤LiLiFu付麗麗QingYangYue岳慶煬XiangFuWang王祥夫RuiLinZheng鄭銳林andChunXiaoLiu劉春曉
    Chinese Physics B 2022年11期
    關(guān)鍵詞:王彤佳麗麗麗

    Jia-Li You(游佳麗) Yu-Song Wang(王雨松) Tong Wang(王彤) Li-Li Fu(付麗麗) Qing-Yang Yue(岳慶煬)Xiang-Fu Wang(王祥夫) Rui-Lin Zheng(鄭銳林) and Chun-Xiao Liu(劉春曉)

    1College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2Shandong Provincial Engineering and Technical Center of Light Manipulations&Shandong Provincial Key Laboratory of Optics and Photonic Device,School of Physics and Electronics,Shandong Normal University,Jinan 250014,China

    3Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices,Nanjing 210023,China

    Terbium gallium garnet(Tb3Ga5O12,TGG)crystal can be used to fabricate various magneto-optical devices due to its optimal Faraday effect. In this work,400-keV He+ ions with a fluence of 6.0×1016 ions/cm2 are irradiated into the TGG crystal for the planar waveguide formation. The precise diamond blade dicing with a rotation speed of 2×104 rpm and a cutting velocity of 0.1 mm/s is performed on the He+-implanted TGG planar waveguide for the ridge structure. The darkmode spectrum of the He+-implanted TGG planar waveguide is measured by the prism-coupling method,thereby obtaining the relationship between the reflected light intensity and the effective refractive index. The refractive index profile of the planar waveguide is reconstructed by the reflectivity calculation method. The near-field light intensity distribution of the planar waveguide and the ridge waveguide are recorded by the end-face coupling method.The He+-implanted and diamond blade-diced TGG crystal planar and ridge waveguides are promising candidates for integrated magneto-optical devices.

    Keywords: TGG crystal,optical waveguide,ion implantation,precise diamond blade dicing

    1. Introduction

    With the rapid development of communication technology, short-distance information propagation has higher requirements for the volume, cost and integration of communication device. Optical waveguides can be adopted to fabricate multifunctional and miniaturized devices.[1,2]They are physical elements that confine electromagnetic waves in the micronscale structures based on the total reflection principle.[3]According to the dimensions of confinement light, they can be divided into planar waveguides and ridge waveguides.[4]A planar waveguide is usually composed of three layers of dielectric media. The refractive index of the upper layer and lower layer are smaller than that of the core layer wrapped in the middle. Furthermore, a ridge waveguide can confine the energy of light field in both horizontal direction and vertical direction.[5]It is easy to build a stable and reliable optical circuit system. Therefore, the ridge waveguide is more widely used in integrated optics, compared with the planar waveguide.[6]In short, as the basic building blocks of integrated optics and optical communication,the waveguides can act as the channel through which signal light is propagated,and thus bridging between the different devices.[7]

    In 1968,ion implantation proved for the first time that it can induce the refractive index of the transparent medium to change and can be used to prepare an optical waveguide.[8]Then,extensive and in-depth researches have been carried out in this field.[9–12]Compared with the other techniques for the waveguide construction, ion implantation has many advantages,such as high processing precision,wide applicable temperature range, and strong repeatability.[13]In the irradiation procedure, the ions with the energy of some keV/MeV are used to bombard the target crystal in the implantor or accelerator. A series of interactions between the irradiation ions and the particles of the target crystal will occur. The implantation ions gradually lose their energy and finally stay in the target crystal,causing the properties(such as the refractive index) of the sample surface to change.[14]Then, the waveguide structure on the order of microns is formed. Furthermore,the depth of ion implantation into the target material and the thickness of the damage layer can be controlled by adjusting the energy and dose of implanted ions.[15]However, ion implantation can be used only to fabricate one-dimensional(1D)waveguides. To fabricate two-dimensional (2D) waveguides,ion implantation needs to be combined with other surface processing techniques, such as precise diamond blade dicing[16]and femtosecond laser ablation.[17]Owing to the high Mohs hardness of the diamond blade,the diamond blade with a fast rotation can dice long grooves on the surface of the planar waveguide.[18]The part between two parallel adjacent grooves is the ridge waveguide.

    As optical communication puts forward higher requirements for the performances of waveguides,the search for more suitable host materials has become an urgent task.[19]Terbium gallium garnet(Tb3Ga5O12,TGG)is a kind of magnetooptical crystal. It has some unique advantages, such as large Verdet constant (35 rad·T-1·m-1), high thermal conductivity (7.4 W·m-1·K-1), and high laser damage threshold (>1 GW/cm2).[20,21]The Tb3Ga5O12crystal plays a vital role in Faraday rotators and optical isolators. Therefore,investigations on the optical characteristics of the TGG waveguide is of great significance in developing passive devices in the field of optical communications. The ion implantation,such as carbon and silicon ion implantation, has been adopted to manufacture 1D and 2D TGG waveguides.[22,23]However, the exploration of the planar waveguide and the ridge waveguide by the He+-ion implantation combined with the diamond blade dicing in the TGG crystal has not been reported to the best of our knowledge. In the present work, the fabrication and optical properties of planar waveguide and ridge waveguide in the TGG crystal by the He+-ion irradiation and the diamond blade dicing are discussed in detail. It provides the possibility for the development of TGG waveguides as integrated Faraday magneto-optical devices.

    2. Experiments and simulations

    The TGG crystal with a dimension of 10.0 mm×5.0 mm× 1.0 mm was purchased from CASTECH Inc. Its largest surface and the smallest surface were both optically polished for the waveguide fabrication and property measurement. The He+-ion implantation was carried out on one TGG crystal surface with an area of 5.0 mm×10.0 mm for the fabrication of the planar waveguide as shown in Fig. 1(a). The energy and dose of the He+ions were 400 keV and 6.0×1016ions/cm2,respectively. The He+-ion implantation was performed at room temperature at Jinan Jingzheng Electronics Co., Ltd.(China). For the formation of the 2D waveguide, the surface of the planar waveguide was diced by a resin-bonded diamond blade with a thickness of 200 μm as shown in Fig. 1(b). A ridge structure was fabricated into the structure with a width of 30 μm. In order to avoid cracks in the dicing process, the rotation speed and cutting velocity of the blade were set to be 2×104rpm and 0.1 mm/s,respectively.

    Fig. 1. Schematic diagrams of TGG waveguide fabrication, showing (a)He+-ion implantation and(b)precise diamond blade dicing.

    The prism-coupling method (Metricon Model 2010,USA)was employed to measure the m-line curve of the planar TGG waveguide. A prism whose refractive index is 2.8648 at 632.8 nm was used to couple light into the optical waveguide from its polished surface with a width of 5.0 mm and a length of 10.0 mm. There was a thin air layer between the prism and the optical waveguide. When light was incident from the prism,evanescent waves were present in the air layer.If the incident angle of the beam was equal to a certain value,evanescent waves would enter into the waveguide. The dark-mode spectrum with some dips would be obtained at the same time.

    The refractive index change of the host material induced by the implanted ions is affected by many factors, such as the parameters of the implanted ions and the property of the matrix substrate. Reflectivity calculation method (RCM) is a technique used to calculate the refractive index profile of the planar optical waveguide,based on the parameters of the darkmode characteristics(such as effective refractive index).In the simulation process,the parameters of the curve were continuously adjusted so that the difference between the simulated effective refractive index of the guided mode and the corresponding experimental datum is on the order of 10-3. Then,it is considered that the fitted refractive index distribution is close to the actual one.

    The end-face coupling method was utilized to record the modal profiles of the planar waveguide and ridge TGG waveguide as shown in Fig. 2. An optical lens or microscope objective was used to focus the He–Ne laser(DH-HN250)light on the front end-face of the optical waveguide. After the light propagated in the waveguide, it was collected by the second lens or microscope objective. Finally, the guiding properties of the waveguide were characterized by the detection equipment such as a charge coupled device(CCD,CinCam CMOS-1201)and a power meter. In the experiments,the waveguides were placed on a three-dimensional (3D) motorized platform to achieve the precise adjustment of the waveguide positions.

    Fig. 2. Schematic diagram of end-face coupling system for recording the modal profiles of planar waveguide and ridge TGG waveguide.

    3. Results and discussion

    For exploring the mechanism of the planar waveguide formation and refractive index change, the SRIM 2013 software(Stopping and Range of Ions in Matter 2013)[24,25]is used to simulate the electronic energy loss and nuclear energy loss for the 400-keV He+-ion implantation into the TGG crystal as shown in Fig. 3. It can be seen that in an irradiation range of 0 μm–0.9 μm,the main energy loss is the electronic energy loss. Figure 3(a)shows that with approaching the sample surface,the electronic energy loss is greater. Its maximum value is 524.3 keV/μm. At a depth of 1.02 μm, the nuclear energy loss reaches a maximum value of 32.1 keV/μm as indicated in Fig.3(b),which is caused by the elastic collision between the irradiation ion and the nucleus of the target TGG crystal. In general,the ions disrupt the ordered structure of the lattice at the end of the irradiation range,resulting in a damage to layer in the crystal. An optical barrier will be formed at the end of the implantation range, resulting in the decrease of refractive index in this region.[26,27]

    Fig.3.(a)Electronic energy loss and(b)nuclear energy loss for the 400-keV He+-ion implantation into the terbium gallium garnet crystal by the SRIM 2013 simulation.

    Fig. 4. (a) Micrograph of cross-section of planar waveguide, (b) end-face photograph,and(c)photo of surface of ridge TGG waveguide.

    Figure 4(a) shows the microscopic image of the crosssection of the TGG planar waveguide taken by a metallographic microscope (Axio Imager A2m) under the transmission mode. The planar waveguide is about 1.08-μm thick,which is consistent with the range of the 400-keV He+-ion irradiation simulated by the SRIM 2013.Figures 4(b)and 4(c)show the photograph of end-face and surface of the ridge TGG waveguide measured by a Nikon microscope. As one can see,a pair of parallel air grooves with a lateral spacing of 30 μm is constructed on a 1D TGG waveguide after implementing the precise diamond blade dicing. Therefore,the light can be confined by the optical barrier layers(and the air layer)in the vertical direction and by the air grooves in the horizontal direction.

    Dark-mode characteristics of the 400-keV He+-implanted TGG planar waveguide at TE mode is measured by the prism coupling system, and the results are shown in Fig. 5. Each dip in the dark-mode spectrum corresponds to a guided mode of the planar TGG waveguide. It can be seen that there are three dips at a wavelength of 632.8 nm. In practice,the effective refractive index is often used to characterize the angle of incidence. It is because the effective refractive index of the mode measured by the prism coupling system is a necessary parameter for fitting the refractive index profile of the waveguide by the RCM.[28,29]The first dip is sharp and represents the real guided mode, whose effective refractive index is 1.9464. The remaining two dips are relatively broad,indicating that they are the irradiation modes.[30–32]The refractive index of the TGG substrate is 1.9660, which is also measured by the prism-coupling method. By comparing the refractive index of the mode with th the substrate, it can be found that the effective refractive index of the guided mode is lower than that of the TGG substrate. It suggests that there may be an optical barrier with the reduced refractive index in the TGG crystal after implementing the ion implantation.[33]

    Fig.5. Relative intensity of light versus(a)incident angle and(b)effective refractive index for He+-implanted TGG waveguide.

    The refractive index distribution of the 400-keV-He+-implanted TGG planar waveguide at 632.8 nm is reconstructed by the RCM[34,35]as shown in Fig. 6. From the figure,the maximum refractive index change is 0.02 at a depth of 1.06 μm. In addition, the surface refractive index is reduced by 0.006 from 0 to 0.7 μm. Therefore, the refractive index distribution of the He+-implanted TGG waveguide is of a typical “optical barrier” type. Therefore, the waveguide core is the layer from the TGG crystal surface to the optical barrier.Furthermore,the depth of the optical barrier calculated by the RCM is 1.048 μm, which is close to the value of 1.02 μm calculated by the SRIM 2013.

    Fig.6. The refractive index profile of the He+-implanted TGG planar waveguide.

    Fig.7. Near-feild light intensity distributions of(a)planar TGG waveguide and(b)ridge TGG waveguide.

    The end-face coupling method is used to measure the near-field light intensity distribution at 632.8 nm for the planar waveguide and the ridge waveguide formed by the He+-ion implantation and the precise diamond blade dicing in the TGG crystal, as shown in Fig. 7. In Fig. 7(a), the planar waveguide fabricated by the He+-ion implantation can well support the propagation of light. That is to say,light can continuously and uniformly propagate in the planar waveguide. Furthermore, in Fig.7(b)the near-field light intensity distribution of the ridge TGG waveguide constructed by the combination of the He+-ion irradiation and the diamond blade dicing has a clear boundary and the light is completely distributed in the ridge structure. It indicates that the ridge waveguide confines the light propagation well and no light leaks into air and the substrate.In addition,the uneven distribution of the light propagation is caused mainly by the poor polishing of the end-face of the TGG crystal. Propagation loss is an important parameter to reflect the performances of a waveguide. Based on the end-face coupling system,the propagation losses of the planar TGG waveguide and the ridge TGG waveguide each with a length of 10 mm are estimated at 2.5 dB/cm and 2.9 dB/cm for the fundamental mode,respectively. The attenuation value of the ridge waveguide is larger than that of the planar waveguide,which is due to the roughness of the groove faces,induced by the diamond blade dicing process.[36,37]

    4. Conclusions

    The planar and the ridge waveguide structure are fabricated on the TGG crystal by a combination of the 400-keV He+-ion implantation with a fluence of 6.0×1016ions/cm2and the 0.1-mm/s diamond blade dicing with a rotation speed of 2.0×104rpm. Based on the prism-coupling technique,there is one propagation mode on the m-line curve with an effective refractive index of 1.9464 for the planar waveguide.The refractive index of the planar waveguide core is 0.0014 higher than that of the optical barrier layer, according to the RCM simulation. The near-field light intensity distributions measured by the end-face coupling method suggest that the planar waveguide and the ridge waveguide can confine light propagation in the 1D direction and 2D direction with good guiding performances,respectively.They have the potential to server as Faraday rotators and waveguide isolators.

    Acknowledgements

    Project supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China(Grant No. SJCX21 0274), the National Natural Science Foundation of China (Grant Nos. 11405041 and 61905119),the Scientific Research Foundation for Youths Supported by Jiangxi Province Science Foundation, China (Grant No. 20192BAB217015), and the University Natural Science Research Project of Jiangsu Province, China (Grant No.19KJB140013).

    猜你喜歡
    王彤佳麗麗麗
    小豬吃西瓜
    新銳詩人欄目作者:王彤樂
    椰城(2022年10期)2022-10-20 05:13:40
    快點 快點
    孤獨的小兔子
    放假前VS放假后,快說是不是你
    家長群VS 你的群,究竟區(qū)別何在
    2021,我們一起走花路吧
    好餓的暖暖
    畫一畫
    談初中化學(xué)實驗教學(xué)的初探
    狠狠精品人妻久久久久久综合| 亚洲 欧美一区二区三区| 999精品在线视频| 中文欧美无线码| 久久毛片免费看一区二区三区| 国产精品香港三级国产av潘金莲 | 欧美性长视频在线观看| 少妇被粗大的猛进出69影院| 亚洲欧美中文字幕日韩二区| 人人澡人人妻人| 国产伦人伦偷精品视频| 精品卡一卡二卡四卡免费| 国产精品秋霞免费鲁丝片| 久久久精品94久久精品| 99热网站在线观看| 99国产精品免费福利视频| 女人精品久久久久毛片| 黄频高清免费视频| 亚洲免费av在线视频| 黄色毛片三级朝国网站| 韩国精品一区二区三区| 欧美日韩综合久久久久久| 欧美日韩一级在线毛片| 国产亚洲午夜精品一区二区久久| 性少妇av在线| 如日韩欧美国产精品一区二区三区| 伊人亚洲综合成人网| 一区福利在线观看| 热99国产精品久久久久久7| 国产99久久九九免费精品| 午夜激情av网站| 国产在线一区二区三区精| 久久国产精品男人的天堂亚洲| 亚洲欧美清纯卡通| 一级毛片 在线播放| 久久久欧美国产精品| 成年av动漫网址| 中文字幕精品免费在线观看视频| 亚洲第一av免费看| 一区在线观看完整版| 国产成人精品久久久久久| 欧美日韩亚洲综合一区二区三区_| 建设人人有责人人尽责人人享有的| 亚洲,一卡二卡三卡| 中文欧美无线码| 大陆偷拍与自拍| 老司机影院毛片| 国产精品久久久久久人妻精品电影 | 伊人久久大香线蕉亚洲五| 日本vs欧美在线观看视频| 狠狠婷婷综合久久久久久88av| 在线亚洲精品国产二区图片欧美| 久久久久精品人妻al黑| 97人妻天天添夜夜摸| 人人妻人人添人人爽欧美一区卜| 成人影院久久| 国产一区二区 视频在线| 51午夜福利影视在线观看| 高潮久久久久久久久久久不卡| 99精品久久久久人妻精品| 在线观看国产h片| 国产免费一区二区三区四区乱码| 亚洲欧美清纯卡通| 久久午夜综合久久蜜桃| 欧美精品一区二区免费开放| 国产精品 国内视频| 亚洲av日韩精品久久久久久密 | 亚洲一区二区三区欧美精品| 国产免费现黄频在线看| 日韩精品免费视频一区二区三区| 亚洲成人手机| 亚洲伊人久久精品综合| 各种免费的搞黄视频| 自拍欧美九色日韩亚洲蝌蚪91| 一级,二级,三级黄色视频| 久久精品人人爽人人爽视色| 国产不卡av网站在线观看| 无遮挡黄片免费观看| 女人高潮潮喷娇喘18禁视频| 成年动漫av网址| 一区二区av电影网| 99香蕉大伊视频| 亚洲欧美日韩高清在线视频 | 夫妻性生交免费视频一级片| 国产精品久久久人人做人人爽| 亚洲国产最新在线播放| 欧美黄色淫秽网站| 国产男人的电影天堂91| 精品少妇一区二区三区视频日本电影| 久久国产精品男人的天堂亚洲| 少妇被粗大的猛进出69影院| 午夜两性在线视频| 高清不卡的av网站| 国产片内射在线| 又粗又硬又长又爽又黄的视频| 婷婷丁香在线五月| 久久综合国产亚洲精品| 美女主播在线视频| 精品少妇黑人巨大在线播放| 国产无遮挡羞羞视频在线观看| 777久久人妻少妇嫩草av网站| 亚洲国产欧美日韩在线播放| 亚洲欧美一区二区三区国产| 国产精品欧美亚洲77777| 大陆偷拍与自拍| 看免费成人av毛片| 两性夫妻黄色片| 欧美日韩视频高清一区二区三区二| 又黄又粗又硬又大视频| 国精品久久久久久国模美| a级毛片在线看网站| 日韩制服丝袜自拍偷拍| 超碰97精品在线观看| 久久久精品免费免费高清| 日本黄色日本黄色录像| 国产又爽黄色视频| 啦啦啦啦在线视频资源| 一区二区三区乱码不卡18| 男女国产视频网站| 国产高清国产精品国产三级| 一本综合久久免费| 建设人人有责人人尽责人人享有的| 两个人免费观看高清视频| 九草在线视频观看| 国产淫语在线视频| 一区在线观看完整版| 国产免费福利视频在线观看| 亚洲精品国产色婷婷电影| 七月丁香在线播放| 69精品国产乱码久久久| 如日韩欧美国产精品一区二区三区| 精品人妻在线不人妻| 午夜免费观看性视频| 精品亚洲成a人片在线观看| 亚洲国产毛片av蜜桃av| 天天躁夜夜躁狠狠久久av| 欧美大码av| 天堂俺去俺来也www色官网| 午夜免费观看性视频| 一区福利在线观看| 欧美日韩精品网址| 久久久久网色| 一本久久精品| 人人澡人人妻人| 欧美性长视频在线观看| 一个人免费看片子| 十八禁人妻一区二区| 日本av手机在线免费观看| 久久久久国产精品人妻一区二区| 欧美精品啪啪一区二区三区 | 国产高清视频在线播放一区 | 国产黄色视频一区二区在线观看| 三上悠亚av全集在线观看| 国产爽快片一区二区三区| 欧美 日韩 精品 国产| 久久久久久免费高清国产稀缺| 在线 av 中文字幕| 咕卡用的链子| 秋霞在线观看毛片| 欧美黑人精品巨大| 久久久久国产精品人妻一区二区| 777米奇影视久久| 亚洲激情五月婷婷啪啪| www.999成人在线观看| 女人久久www免费人成看片| 久久人妻熟女aⅴ| 一级,二级,三级黄色视频| 18在线观看网站| 亚洲人成电影免费在线| 国产伦人伦偷精品视频| 国产成人精品在线电影| 黑丝袜美女国产一区| 亚洲av国产av综合av卡| 久久久精品国产亚洲av高清涩受| 观看av在线不卡| 亚洲av国产av综合av卡| 十分钟在线观看高清视频www| 成人18禁高潮啪啪吃奶动态图| 中文字幕精品免费在线观看视频| 自线自在国产av| 日韩电影二区| 精品一区二区三卡| 亚洲国产看品久久| 久久久欧美国产精品| 午夜福利一区二区在线看| 黑丝袜美女国产一区| 久久精品亚洲av国产电影网| 国产精品久久久久久人妻精品电影 | 亚洲欧美一区二区三区黑人| 欧美精品一区二区大全| 亚洲人成电影观看| 天天操日日干夜夜撸| 亚洲av电影在线进入| 久久精品成人免费网站| 亚洲色图 男人天堂 中文字幕| 大码成人一级视频| 91字幕亚洲| 欧美精品人与动牲交sv欧美| √禁漫天堂资源中文www| 91九色精品人成在线观看| 黄色视频在线播放观看不卡| 9热在线视频观看99| 亚洲av片天天在线观看| 99久久99久久久精品蜜桃| 国产在视频线精品| 精品人妻1区二区| 国产免费福利视频在线观看| 免费不卡黄色视频| 男人操女人黄网站| 婷婷色麻豆天堂久久| 久久女婷五月综合色啪小说| 色精品久久人妻99蜜桃| 精品熟女少妇八av免费久了| 久久午夜综合久久蜜桃| 亚洲精品国产av蜜桃| 欧美人与善性xxx| 岛国毛片在线播放| 性高湖久久久久久久久免费观看| 热99久久久久精品小说推荐| 午夜免费男女啪啪视频观看| 丝袜美腿诱惑在线| 亚洲色图综合在线观看| 亚洲国产看品久久| 桃花免费在线播放| 999精品在线视频| 亚洲一码二码三码区别大吗| 我的亚洲天堂| 精品一品国产午夜福利视频| 操出白浆在线播放| 亚洲三区欧美一区| 国产成人精品久久二区二区91| 色视频在线一区二区三区| 国产日韩欧美在线精品| 日韩一卡2卡3卡4卡2021年| 精品少妇一区二区三区视频日本电影| 亚洲国产精品一区二区三区在线| 久久精品国产综合久久久| 久热这里只有精品99| 久久这里只有精品19| 侵犯人妻中文字幕一二三四区| 成在线人永久免费视频| 丁香六月欧美| 亚洲成av片中文字幕在线观看| 国产成人免费观看mmmm| 五月天丁香电影| 女人被躁到高潮嗷嗷叫费观| 久久久久久久大尺度免费视频| 亚洲国产成人一精品久久久| 国产亚洲精品第一综合不卡| a级片在线免费高清观看视频| 免费女性裸体啪啪无遮挡网站| 欧美黄色淫秽网站| 蜜桃国产av成人99| 亚洲av日韩在线播放| 欧美另类一区| 午夜福利影视在线免费观看| 秋霞在线观看毛片| 日韩视频在线欧美| 欧美老熟妇乱子伦牲交| 女人久久www免费人成看片| 中文欧美无线码| 一区二区三区四区激情视频| 成人国产一区最新在线观看 | 日韩av在线免费看完整版不卡| 又大又黄又爽视频免费| 男的添女的下面高潮视频| 两人在一起打扑克的视频| 一边摸一边抽搐一进一出视频| 亚洲精品成人av观看孕妇| 亚洲成人国产一区在线观看 | 亚洲欧美精品综合一区二区三区| 久久国产精品男人的天堂亚洲| 亚洲中文av在线| 一级片免费观看大全| 在线观看免费日韩欧美大片| av又黄又爽大尺度在线免费看| 精品少妇久久久久久888优播| 少妇 在线观看| 国产淫语在线视频| 纵有疾风起免费观看全集完整版| 精品福利永久在线观看| 久久久亚洲精品成人影院| 国产成人精品在线电影| 亚洲 国产 在线| av视频免费观看在线观看| 色94色欧美一区二区| cao死你这个sao货| 国产极品粉嫩免费观看在线| 亚洲综合色网址| 成人影院久久| 热99国产精品久久久久久7| 国产精品一二三区在线看| 国产精品国产av在线观看| 国产极品粉嫩免费观看在线| 少妇粗大呻吟视频| 日本午夜av视频| 亚洲专区国产一区二区| 欧美精品人与动牲交sv欧美| 日日爽夜夜爽网站| 国产日韩欧美在线精品| 中文字幕人妻丝袜制服| 欧美人与性动交α欧美精品济南到| 女警被强在线播放| 操美女的视频在线观看| 黄色怎么调成土黄色| 中文乱码字字幕精品一区二区三区| 欧美精品高潮呻吟av久久| 看十八女毛片水多多多| 色精品久久人妻99蜜桃| 老司机午夜十八禁免费视频| 91精品伊人久久大香线蕉| 韩国高清视频一区二区三区| 99国产精品免费福利视频| 熟女少妇亚洲综合色aaa.| 精品亚洲乱码少妇综合久久| 少妇人妻久久综合中文| 老司机靠b影院| 你懂的网址亚洲精品在线观看| 国产亚洲欧美精品永久| 中文字幕av电影在线播放| 午夜激情av网站| 在线亚洲精品国产二区图片欧美| 黄片小视频在线播放| 这个男人来自地球电影免费观看| 日韩一卡2卡3卡4卡2021年| 国产老妇伦熟女老妇高清| 99re6热这里在线精品视频| 后天国语完整版免费观看| 久久久精品94久久精品| 侵犯人妻中文字幕一二三四区| 超碰97精品在线观看| 国产一区二区三区综合在线观看| 欧美日韩成人在线一区二区| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区蜜桃| 精品一品国产午夜福利视频| 亚洲九九香蕉| 日本色播在线视频| 如日韩欧美国产精品一区二区三区| 日本vs欧美在线观看视频| 精品第一国产精品| 免费在线观看影片大全网站 | 国产又爽黄色视频| 五月开心婷婷网| 日韩一本色道免费dvd| 欧美亚洲 丝袜 人妻 在线| 成人国语在线视频| 国精品久久久久久国模美| 嫩草影视91久久| 欧美激情高清一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 婷婷色综合www| 三上悠亚av全集在线观看| 国产91精品成人一区二区三区 | av在线播放精品| 久久精品熟女亚洲av麻豆精品| 亚洲人成电影免费在线| 色婷婷久久久亚洲欧美| 午夜影院在线不卡| 亚洲,欧美精品.| 色视频在线一区二区三区| 黄色 视频免费看| 18禁国产床啪视频网站| 制服诱惑二区| 中国国产av一级| 亚洲欧美清纯卡通| 国产av一区二区精品久久| 精品国产乱码久久久久久男人| 亚洲精品乱久久久久久| 亚洲精品中文字幕在线视频| 叶爱在线成人免费视频播放| 自拍欧美九色日韩亚洲蝌蚪91| 咕卡用的链子| 丝袜在线中文字幕| 亚洲,欧美精品.| 十八禁人妻一区二区| 国产在线免费精品| 日韩中文字幕视频在线看片| 水蜜桃什么品种好| 赤兔流量卡办理| 少妇人妻 视频| 中文字幕精品免费在线观看视频| 夫妻性生交免费视频一级片| 欧美人与性动交α欧美软件| 亚洲黑人精品在线| 91老司机精品| 久久国产精品男人的天堂亚洲| 伊人亚洲综合成人网| 国产亚洲午夜精品一区二区久久| 97精品久久久久久久久久精品| 黄色一级大片看看| 男女边摸边吃奶| 国精品久久久久久国模美| 亚洲av在线观看美女高潮| 亚洲av国产av综合av卡| 一区二区三区乱码不卡18| 国产精品国产av在线观看| 在线av久久热| 亚洲专区国产一区二区| 久久av网站| 性少妇av在线| 高清不卡的av网站| 国产欧美日韩一区二区三区在线| 视频区欧美日本亚洲| 精品久久蜜臀av无| 在线亚洲精品国产二区图片欧美| 久久久久久久久久久久大奶| 黄色毛片三级朝国网站| 在线观看人妻少妇| 老鸭窝网址在线观看| 久久 成人 亚洲| 女人高潮潮喷娇喘18禁视频| 亚洲av国产av综合av卡| 久久精品久久精品一区二区三区| 午夜免费成人在线视频| 黄频高清免费视频| 啦啦啦视频在线资源免费观看| 精品视频人人做人人爽| 亚洲精品自拍成人| 日日摸夜夜添夜夜爱| 午夜免费成人在线视频| 国产精品av久久久久免费| 夫妻午夜视频| av线在线观看网站| 亚洲精品日韩在线中文字幕| 午夜福利影视在线免费观看| 另类亚洲欧美激情| 国产色视频综合| 国产成人免费无遮挡视频| 亚洲图色成人| 麻豆国产av国片精品| 97人妻天天添夜夜摸| 岛国毛片在线播放| 久久久久精品国产欧美久久久 | 美女高潮到喷水免费观看| 欧美在线黄色| 日韩人妻精品一区2区三区| 精品国产国语对白av| 久久久久精品人妻al黑| 国产高清国产精品国产三级| 波多野结衣av一区二区av| 又大又爽又粗| 天天躁日日躁夜夜躁夜夜| 国产日韩欧美在线精品| 1024视频免费在线观看| 男男h啪啪无遮挡| av欧美777| 黄色片一级片一级黄色片| 亚洲欧美激情在线| 满18在线观看网站| 午夜福利影视在线免费观看| 国产不卡av网站在线观看| 欧美在线一区亚洲| 一区二区三区四区激情视频| 精品人妻一区二区三区麻豆| 日韩av在线免费看完整版不卡| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一青青草原| 亚洲精品国产一区二区精华液| 在线观看人妻少妇| 成年人黄色毛片网站| 99国产精品99久久久久| 久久精品国产a三级三级三级| 欧美日韩综合久久久久久| 国产精品一区二区免费欧美 | 亚洲国产精品成人久久小说| 你懂的网址亚洲精品在线观看| 王馨瑶露胸无遮挡在线观看| 国产欧美亚洲国产| 黄色怎么调成土黄色| av视频免费观看在线观看| 操美女的视频在线观看| 亚洲欧美中文字幕日韩二区| 成在线人永久免费视频| 亚洲欧美成人综合另类久久久| 中文字幕av电影在线播放| 午夜精品国产一区二区电影| 成年美女黄网站色视频大全免费| 国产免费一区二区三区四区乱码| 亚洲中文av在线| 成年女人毛片免费观看观看9 | 国产主播在线观看一区二区 | 日韩 亚洲 欧美在线| 免费观看人在逋| 午夜91福利影院| 91精品三级在线观看| 欧美久久黑人一区二区| av天堂在线播放| 1024视频免费在线观看| 咕卡用的链子| 少妇精品久久久久久久| 日韩一本色道免费dvd| 欧美国产精品va在线观看不卡| 欧美老熟妇乱子伦牲交| xxx大片免费视频| 日本五十路高清| 国产精品三级大全| 大香蕉久久网| 曰老女人黄片| 别揉我奶头~嗯~啊~动态视频 | 韩国精品一区二区三区| 99热国产这里只有精品6| 久久久久久久大尺度免费视频| 日韩大码丰满熟妇| 手机成人av网站| 大陆偷拍与自拍| a级毛片黄视频| 91国产中文字幕| 精品亚洲成a人片在线观看| 国产深夜福利视频在线观看| xxx大片免费视频| 亚洲国产精品999| 美女福利国产在线| 日韩人妻精品一区2区三区| 亚洲国产成人一精品久久久| 中文精品一卡2卡3卡4更新| 青春草视频在线免费观看| 久久久久国产一级毛片高清牌| 无遮挡黄片免费观看| 日本色播在线视频| 成年人午夜在线观看视频| 久久久国产精品麻豆| 黄色a级毛片大全视频| 一个人免费看片子| 欧美亚洲 丝袜 人妻 在线| 脱女人内裤的视频| 美女中出高潮动态图| 亚洲av男天堂| 涩涩av久久男人的天堂| 国产一区亚洲一区在线观看| 两个人免费观看高清视频| 制服人妻中文乱码| 人人妻人人爽人人添夜夜欢视频| 黄色怎么调成土黄色| 在线精品无人区一区二区三| 亚洲精品国产一区二区精华液| 999精品在线视频| 精品福利永久在线观看| 高清不卡的av网站| 巨乳人妻的诱惑在线观看| 久久99精品国语久久久| 欧美乱码精品一区二区三区| 成在线人永久免费视频| av片东京热男人的天堂| 男男h啪啪无遮挡| 日本黄色日本黄色录像| 国产成人免费无遮挡视频| 亚洲精品美女久久av网站| 99久久99久久久精品蜜桃| 香蕉丝袜av| 亚洲午夜精品一区,二区,三区| 久久免费观看电影| 久久久久国产精品人妻一区二区| 日韩人妻精品一区2区三区| 天堂俺去俺来也www色官网| 在线观看免费日韩欧美大片| 在线亚洲精品国产二区图片欧美| 国产成人一区二区三区免费视频网站 | www.熟女人妻精品国产| 国产免费又黄又爽又色| 精品久久蜜臀av无| 国产免费又黄又爽又色| 一本—道久久a久久精品蜜桃钙片| 亚洲少妇的诱惑av| 两人在一起打扑克的视频| 精品亚洲成a人片在线观看| 国产成人91sexporn| 成年av动漫网址| 性少妇av在线| 国产高清视频在线播放一区 | 男女床上黄色一级片免费看| 亚洲国产欧美在线一区| 欧美日韩亚洲高清精品| 亚洲欧美一区二区三区黑人| 高潮久久久久久久久久久不卡| av欧美777| 18禁裸乳无遮挡动漫免费视频| 精品少妇一区二区三区视频日本电影| 国产一区二区激情短视频 | av国产精品久久久久影院| 久久久久久久国产电影| 99国产精品一区二区蜜桃av | 亚洲精品美女久久av网站| 国产精品人妻久久久影院| 久久国产精品影院| 午夜福利在线免费观看网站| 亚洲精品国产一区二区精华液| 成年av动漫网址| 一级片免费观看大全| 国产免费一区二区三区四区乱码| 久久久欧美国产精品| e午夜精品久久久久久久| 亚洲av综合色区一区| 老鸭窝网址在线观看| 婷婷色综合www| 亚洲中文av在线| 男女边吃奶边做爰视频| 日韩视频在线欧美| 自拍欧美九色日韩亚洲蝌蚪91| 精品国产一区二区三区四区第35| 爱豆传媒免费全集在线观看| 亚洲成人免费av在线播放| 2018国产大陆天天弄谢| 考比视频在线观看| 久久热在线av| 日韩,欧美,国产一区二区三区| 国产成人免费无遮挡视频| 中文字幕人妻丝袜制服| 一级黄色大片毛片| 国产精品国产三级专区第一集| 国产日韩欧美亚洲二区| 日本av手机在线免费观看| 天天躁夜夜躁狠狠久久av| 丝袜喷水一区| 久久 成人 亚洲|