• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coupling characteristics of laterally coupled gratings with slots

    2022-11-21 09:29:18KunTian田錕YonggangZou鄒永剛LinlinShi石琳琳HeZhang張賀YingtianXu徐英添
    Chinese Physics B 2022年11期
    關(guān)鍵詞:唐慧

    Kun Tian(田錕), Yonggang Zou(鄒永剛), Linlin Shi(石琳琳), He Zhang(張賀), Yingtian Xu(徐英添),

    Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(馬曉輝)

    State Key Laboratory on High Power Semiconductor Lasers,Changchun University of Science and Technology,Changchun 130022,China

    Laterally-coupled ridge-waveguide distributed feedback lasers fabricated without epitaxial regrowth steps have the advantages of process simplification and low cost. We present a laterally coupled grating with slots. The slots etched between the ridge and grating area are designed to suppress the lateral diffusion of carriers and to reduce the influence of the aspect-ratio-dependent-etching effect on the grating morphology in the etching process. Moreover,the grating height in this structure can be decreased to lower the aspect ratio significantly,which is advantageous over the conventional laterally coupled ridge waveguide gratings. The effects of five main structural parameters on the coupling characteristics of gratings are studied by MODE Solutions. It is found that varying the lateral width of the grating can be used as an effective way to tune the coupling strength;narrow slots(100 nm and 300 nm)and wide ridge(2 μm–4 μm)promote the stability of grating coupling coefficient and device performance. It is important to note that the grating bottom should be fabricated precisely.The comparative study of carrier distribution and mode field distribution shows that the introduction of narrow slots can strengthen the competitive advantage and stability of the fundamental mode.

    Keywords: Bragg gratings,distributed feedback(DFB)lasers,coupling coefficient,mode field distribution

    1. Introduction

    In single mode semiconductor lasers and integrated optical devices, Bragg grating as an important and indispensable functional element influences device stability and performance directly. The grating is a wavelength selection element that is made in or near the waveguide of the epitaxial structure to strengthen its interaction with the optical field to realize appropriate distributed feedback in the traditional distributed feedback(DFB)lasers.[1]However,the fabrication of devices with buried heterostructure gratings[2]often requires at least one epitaxial regrowth step after grating definition, which increases the processing complexity and cost. And,the interface defects introduced in the process of epitaxial overgrowth impact the performance and yield of the device.

    Laterally-coupled ridge-waveguide (LC-RWG) DFB lasers[3–6]circumvent the above problems. Lateral gratings used in this kind of device can be directly etched on the surface of epitaxial wafer,which significantly simplifies the fabrication process and improves the stability and reliability of the device. However,it is worth noting that this structure has two particularities. Firstly,compared with the buried grating having the same period and duty cycle, surface gratings always require a larger etching depth to increase the overlap between the grating and the optical field,so as to obtain sufficient coupling coefficient. Secondly,after grating fabrication,the grating grooves should be filled with insulating medium to eliminate the influence of impurities and electrode metal on grating grooves.

    This device also has its inadequacies. For example,the imperfect morphology of grating grooves caused by the aspect-ratio-dependent-etching (ARDE) effect in the etching process seriously affects the coupling coefficient. There is no doubt that increasing the lateral size of the grating can compensate for the reduction of coupling coefficient at a certain extent. But it brings an extra problem, that is the increased lateral diffusion of pump current. In addition, the uncontrollability of the imperfect profile also adds the complexity of device design and fabrication. Some research results[7–9]indicate that accurate adjustment and control of the coupling coefficient is essential for the design and analysis of DFB lasers.At present, however, there are still no reliable and effective schemes to solve these problems.

    Aiming to deal with the problems mentioned above, we proposed a LC grating structure with narrow slots. Introducing a slot between the grating and the non-etched ridge region help to lower the difficulty of making standard grating profile and to achieve a precise fabrication. It also frames a limitation on the lateral spreading of carriers and reduces the interaction between the carrier and the grating.

    The paper is organized as follows.The structure proposed and epitaxial layers structure used for modelling are presented in Section 2. The dependence of coupling coefficient and effective refractive index on structural parameters as well as the distributions of carriers and optical field are discussed in Section 3. Theoretical research of coupling coefficient dependence on structural variations is carried out to guide the optimal design of the device. The conclusions are summarized in Section 4. The results indicate that such a structure is beneficial to improve up-to-standard rate of grating profile and yield of devices.

    2. Structures for modelling and analysis

    The LC DFB structure is based on the conventional LCRWG DFB structure and improved, as shown in Fig. 1. The introduced deep and narrow slots are set between the grating and the non-etched ridge region,and the bottom of slots levels with that of grating grooves. And,the lower height of gratings reduces the grating aspect ratio.

    The manufacturing process of this structure can be as follows: the first lithography and etching are used to form ridge;then,gratings and slots on the both sides of ridge are fabricated in the second lithography and etching and,in lateral direction the epitaxial layers outside the grating area are removed; after dielectric film deposition on the top of wafer, the p electrode window is opened in the third lithography and etching.It should be noted that to reduce the impact of ARDE effect on the slot structure in the etching process,some distances are set between the side wall of the ridge formed in the first etching and the slot.

    Fig.1. Schematic 3D views of LC DFB structure with slots.

    Fig.2. The epitaxial growth structure.

    The vertical structure of wafer used in the simulation and analysis is shown schematically in Fig. 2. A straincompensated InGaAs/GaAs/GaAsP single quantum well active region is applied to realize the emission wavelength about 1.06 μm,And,asymmetric AlGaAs confinement and cladding layers are adopted to reduce the absorption loss of device and increase the optical confinement factor difference between the fundamental mode and higher-order modes, so as to realize the efficient and stable operation of device. The implemented LC grating is 1st order, which leads to a period of 0.16 μm,according to the Bragg condition(λBragg=1.064 μm).

    3. Simulation and analysis

    3.1. Modeling and structural parameters

    Figure 3 plots a cross-sectional view of the device(without electrodes). An important issue for the DFB laser diodes and integrated photonics devices is the sensitivity of structural characteristics to dimensional variations.Some structural changes caused by the process can affect the field distribution and carrier distribution of the device to varying degrees, so these influences need to be clarified. Five parameters were studied: narrow ridge widthWn, wide ridge widthWw, slot widthWs,grating widthWgand variation of grating height ΔH.In the simulation and analysis process,the structure is simplified,the cap layers and electrodes are removed due to the fact that they have little effect on the grating coupling coefficientκand the effective refractive indexneff. The initial value ofWwis set to 2 μm, and the grating widthWgis 2.5 μm. The total lateral width of the structure is 15 μm.The area outside p electrode window is covered with silica. The grating period and duty cycle are 0.16 μm and 0.5,respectively. The distance between the grating top and the ridge top isHr-Hg=0.655 μm.TheκLof device studied in this paper is set to 1.25. For a typical 500 μm cavity length,κof the LC grating is 25 cm-1,thus, the reflectivity of the corresponding passive grating is 0.71858. The structure is modeled by MODE Solution. A TE polarization fundamental mode source is used for calculations. The longitudinal grid length is 0.02 μm,and the lateral and transverse grids are 0.025 μm.

    As slot is the key structure in the device and interacts with the optical mode, three structures with different slot sizes are optimized for comparison to identify and evaluate their influence onκ.[10]Theκof proposed structures(A,B,and C)and traditional LC-RWG DFB structure(D)are set near 25 cm-1as shown in Table 1. In addition to the parameters in the table, the initial values of other structural parameters of three structures are the same.

    The data comparison from the table shows that as the slot widthWsincreases,the grating depthHgneeds to be added to obtain the targetκ,which could be expected,since the widening of slot reduces the overlap between the grating and the optical field. In addition,it is clear that the grating aspect ratio of the structure (A, B, and C) is less than half of aspect ratio of D,which can help drop the processing difficulty of gratings and slots greatly.

    Table 1. Four structures for comparative analysis.

    Fig.3. Cross section of the structure used in simulation.

    3.2. Ridge width

    The dependence ofκandneffonWnis illustrated in Fig.4.With the decline ofWnfrom 2 μm to 1 μm,κof three structures increase slightly. This is because the decrease ofWnenhances the transverse confinement of ridge on the optical mode,making more optical field enter the grating area. What is more,the data comparison between three structures demonstrates that larger slot gives rise to higher sensitivity ofκtoWnvariations. In addition, the variation ofWnhas little effect onneffof waveguide,which is due to the fact that the optical field decays rapidly in the ridge and the intensity of the field near the narrow ridge is very weak. Considering that the influence of a small reduction ofWnon theκandneffcan be ignored and the decrease ofWnwill help weaken the influence of ARDE effect on slot morphology during etching,Ww-Wn=0.2 μm is set as a fixed relationship in the subsequent simulation and analysis.

    Fig.5. The dependence of(a)κ and(b)neff on Ww.

    Figures 5(a) and 5(b) depict theκandneffas functions ofWwrespectively. Obviously,κdecreases asWwincreases,which can be attributed to the fact that the increase ofWwmakes the mode more confined in the ridge,reducing the overlap between the grating and the optical field. Furthermore,with the decline ofWw,the growth ofκaccelerates gradually,which means that smallWw(<1.5 μm)is not suitable for the device due to the high sensitivity ofκtoWwvariations. It is important to know that from practical aspect, too narrow a ridge results in the increase of electrical resistance and lithography alignment difficulty of electrode window. A ridge width of 2 μm–4 μm is recommended. In addition, it can be found that the larger the slots is, the higher the slope ofκbecomes and, asWwincreases, theneffof waveguide keeps improving.This shows that too wide slot will increase the sensitivity ofκtoWwvariations,so it is not suitable for device structures.

    3.3. Grating width

    Forκandneffdependence on the lateral width of grating,Wgis increased from 1.5 μm to 3.5 μm and other parameters are kept. Figure 6(a)indicates that the grating width variation influencesκevidently. The reason is that the increase ofWgpulls more optical field into the grating region and expands grating confinement factor,which is accepted and foreseeable.The comparison of the four structures shows that for the structures with wider slots,κchanges more rapid withWg. In this case,the grating with narrow slots is conducive to theκstability of the device. In addition,it can be seen from Fig.6(b)that the change ofWgwill not exert a significant effect on waveguideneff. These characteristics enable that broadening the lateral width of grating is an effective way to realize the accurate adjustment ofκ.

    Fig.6. The dependence of(a)κ and(b)neff on Wg.

    3.4. Grating height

    The deviation of grating top and bottom from the design position caused by process error affectsκandneff.Their influence effect and law are of great importance and have reference value for the adjustment of device parameters and process conditions.

    When ΔHis less than 0,the grating is overetched;otherwise the grating is not etched enough. As can be seen from Fig.7(a),with the rise of grating top,κincreases slightly,and the growth rates of three structures are very close. This is because the expansion of transverse size of the grating improves its overlaps with the optical field. However, for grating bottom,a small change of position can cause obvious variation ofκ. The comparison shows that the position change of grating bottom is more likely to influenceκandneff. Theκchanging rates as a function of ΔHare 9.426×104cm-2(grating top)and 1.46×106cm-2(grating bottom). The reason for the difference is that the intensity of optical field near the bottom of gratings is higher than that near the top. This also means that the position of the grating bottom needs to be precisely etched, and a priority should be given to the introduction of etching stop layer.

    Fig.7. The κ and neff versus variation of grating top(a)and bottom(b).

    3.5. Distributions of carriers and optical field

    In traditional LC-RWG DFB lasers,during the downward transmission of the current in the ridge, some carriers will spread into the lateral grating,reducing the injection efficiency of the device.Separating the grating and the ridge is a straightforward way to hinder carrier lateral diffusion.

    The left panel of Fig. 8 shows the carrier distribution of semi structure of LC DFB lasers with slots and conventional LC-RWG DFB lasers. The carrier distribution of four structures is calculated by Crosslight PICS3D.The right panel of Fig. 8 shows the optical field distributions of fundamental mode, first- and second-order mode (λBragg=1.064 μm)simulated by MODE Solutions. While multiple lateral optical modes supported in waveguide structures are not desired,they are for comparison only.

    By comparing the four figures on the left panel, we can find that the carrier distribution of LC DFB lasers with slots is distinctly different from that of conventional LC-RWG DFB lasers. In structure D, the lateral spreading of carriers into grating region is obvious. What is more,there appears the aggregation of carriers at the lateral edge of the grating region and near the bottom of the p-cladding,the optical field intensity of the fundamental mode is weak here,which is opposite to that of the first and second-order modes. The coupling between carriers with high order modes in this region decreases the lateral mode discrimination.However,the incorporation of slots effectively restricts the lateral spreading of carriers and weakens carrier aggregation,allowing for a better carrier confinement.

    Fig.8. Carrier distribution of four lasers(left panel). (a)Semi structure of A.(b)Semi structure of B.(c)Semi structure of C.(d)Semi structure of D.Optical field distribution of fundamental mode,first-order mode and second-order mode(right panel),The first column shows fundamental mode,the second shows first-order mode and the third shows second-order mode. In the figure,the carrier distribution and three field distributions in a row belong to the same device.

    It can be seen from the graphs of right panel that the change of slot structure has an substantial effect on the field distribution. Enlargement of slots dimensions increases the confinement of the waveguide structure on the optical mode in transverse direction. Moreover, the growth of slot size increases the distance between the two intensity centers of the first-order mode field,raising the threshold gain of first order mode. For second order mode,there is a considerable overlap between the optical field and the ridge,which helps to obtain sufficient gain. However, the field intensity in the side grating reduces as the increase of slot size, resulting in insufficient coupling. In summary, compared with the fundamental mode,higher-order modes have similar overlap with the active region, but lowered mode gain or insufficient wavelength selectivity,which helps to strengthen the competitive advantage of the fundamental mode and the mode stability of the device.

    4. Conclusion

    We have put forward a laterally-coupled grating with slots set between the ridge and grating region. Such a structure not only restricts the lateral current leakage but also reduces the impact of ARDE effect on grating profile. In addition,compared with the traditional LC-RWG grating structure,this structure has a decreased grating height, which significantly reduces the difficulty of grating etching. Simulation results show that the lateral width of gratings as an important parameter can be altered to tailor the coupling coefficient. Moreover,it is also found that narrow slots (100 nm and 300 nm) and wide ridge(2 μm–4 μm)contribute to the stability of grating characteristic and device performance. It should be noted that grating bottom needs to be precisely fabricated to ensure the accuracy ofκ. The comparative analysis of carrier distribution and multi-mode field distribution shows that the addition of narrow slots can enhance the competitive advantage and the stability of fundamental mode.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 61804013, 61804014, and 61805023) and Department of Science and Technology of Jilin Province, China (Grant Nos. 20190302052GX and 20210201030GX).

    猜你喜歡
    唐慧
    自助購物
    等量代換
    借球拍
    先中間 后兩邊
    巧放五角星
    圖圖借書
    踢毽子比賽
    破解機關(guān)
    捉迷藏
    巧破算式謎
    最近2019中文字幕mv第一页| 伦精品一区二区三区| 肉色欧美久久久久久久蜜桃| 我的女老师完整版在线观看| 国产亚洲精品久久久com| 中文字幕亚洲精品专区| 人妻制服诱惑在线中文字幕| 国产一区二区在线观看日韩| 久久影院123| 国产精品一区www在线观看| videos熟女内射| 免费大片黄手机在线观看| 国产精品偷伦视频观看了| 男女高潮啪啪啪动态图| 日韩亚洲欧美综合| 久久精品熟女亚洲av麻豆精品| 久久国产精品大桥未久av| 日韩伦理黄色片| 精品少妇久久久久久888优播| 韩国av在线不卡| 少妇的逼水好多| 纵有疾风起免费观看全集完整版| 我的女老师完整版在线观看| 夜夜骑夜夜射夜夜干| 亚洲av在线观看美女高潮| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品少妇久久久久久888优播| 麻豆乱淫一区二区| 人人妻人人爽人人添夜夜欢视频| 国产一区二区三区av在线| 亚洲欧洲精品一区二区精品久久久 | 99热6这里只有精品| 成年女人在线观看亚洲视频| 欧美激情极品国产一区二区三区 | 日韩人妻高清精品专区| 国产欧美日韩综合在线一区二区| 黑人高潮一二区| av国产久精品久网站免费入址| 高清毛片免费看| 国产欧美亚洲国产| 亚洲国产av新网站| 能在线免费看毛片的网站| 欧美成人午夜免费资源| 国产熟女欧美一区二区| 久久久国产一区二区| 久久国内精品自在自线图片| 亚洲国产毛片av蜜桃av| av网站免费在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 性色avwww在线观看| 极品少妇高潮喷水抽搐| 男女免费视频国产| 国产片内射在线| 欧美精品亚洲一区二区| 国产精品不卡视频一区二区| 蜜臀久久99精品久久宅男| 激情五月婷婷亚洲| a级毛色黄片| 色5月婷婷丁香| 日韩人妻高清精品专区| 在线观看美女被高潮喷水网站| 妹子高潮喷水视频| 国产一区二区三区综合在线观看 | 久久综合国产亚洲精品| 晚上一个人看的免费电影| 午夜视频国产福利| 亚洲精品久久久久久婷婷小说| 久久久精品94久久精品| 99热这里只有是精品在线观看| 国产伦理片在线播放av一区| 蜜臀久久99精品久久宅男| 丰满乱子伦码专区| 亚洲五月色婷婷综合| 人妻 亚洲 视频| 人成视频在线观看免费观看| 国产高清国产精品国产三级| 婷婷成人精品国产| 看十八女毛片水多多多| 亚洲精品色激情综合| 2021少妇久久久久久久久久久| 自线自在国产av| 五月开心婷婷网| 人人妻人人澡人人看| 亚洲成人手机| 男人添女人高潮全过程视频| 国产精品久久久久久久电影| 欧美日韩精品成人综合77777| 国产成人91sexporn| 少妇的逼好多水| 搡老乐熟女国产| 午夜福利视频精品| 一本一本综合久久| 999精品在线视频| 不卡视频在线观看欧美| 日韩伦理黄色片| 久久午夜福利片| av在线app专区| av有码第一页| 母亲3免费完整高清在线观看 | 春色校园在线视频观看| 99热这里只有是精品在线观看| 久久久久久久久久久丰满| 国产午夜精品一二区理论片| 麻豆成人av视频| 夜夜看夜夜爽夜夜摸| 日产精品乱码卡一卡2卡三| 草草在线视频免费看| 夫妻午夜视频| 91久久精品国产一区二区成人| 亚洲图色成人| 午夜福利网站1000一区二区三区| 国产综合精华液| 18禁动态无遮挡网站| 久久久久久久久久久免费av| 国产精品免费大片| 美女视频免费永久观看网站| 欧美日韩综合久久久久久| 最近最新中文字幕免费大全7| 国产亚洲精品久久久com| 精品视频人人做人人爽| 婷婷色综合大香蕉| 我要看黄色一级片免费的| 青春草视频在线免费观看| 日韩av不卡免费在线播放| 久久午夜综合久久蜜桃| 久久精品国产a三级三级三级| 高清午夜精品一区二区三区| 国国产精品蜜臀av免费| 999精品在线视频| 亚洲经典国产精华液单| 丰满乱子伦码专区| 久久久久久久大尺度免费视频| 亚洲成色77777| 色吧在线观看| 亚洲欧美日韩另类电影网站| videosex国产| 欧美另类一区| 三上悠亚av全集在线观看| 国产高清不卡午夜福利| 国产视频首页在线观看| 十八禁高潮呻吟视频| 大话2 男鬼变身卡| 久久综合国产亚洲精品| 国产精品麻豆人妻色哟哟久久| 伊人亚洲综合成人网| 国产片内射在线| 如何舔出高潮| 亚洲欧美一区二区三区黑人 | 一级片'在线观看视频| 日韩一区二区三区影片| 老司机影院毛片| 啦啦啦在线观看免费高清www| 人妻系列 视频| 女性生殖器流出的白浆| 黑人高潮一二区| 99热全是精品| 人人妻人人澡人人爽人人夜夜| 亚洲精品色激情综合| 亚洲精品成人av观看孕妇| 国产毛片在线视频| 亚洲怡红院男人天堂| 大香蕉97超碰在线| 91精品三级在线观看| 久久久久久伊人网av| 国产成人aa在线观看| 欧美激情国产日韩精品一区| 啦啦啦在线观看免费高清www| a级毛色黄片| 久久女婷五月综合色啪小说| 国产精品三级大全| 九九爱精品视频在线观看| 欧美三级亚洲精品| 久久97久久精品| 在线观看人妻少妇| 免费人妻精品一区二区三区视频| 99久久精品国产国产毛片| 亚洲精华国产精华液的使用体验| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 久久精品人人爽人人爽视色| 成人18禁高潮啪啪吃奶动态图 | 亚洲美女黄色视频免费看| 亚洲成人手机| 国产在线一区二区三区精| 看十八女毛片水多多多| a级毛片在线看网站| 久久99热这里只频精品6学生| 国产亚洲av片在线观看秒播厂| 国产精品 国内视频| 高清不卡的av网站| 久久国产精品男人的天堂亚洲 | 观看美女的网站| 国产乱人偷精品视频| 纵有疾风起免费观看全集完整版| 好男人视频免费观看在线| 亚洲精品久久成人aⅴ小说 | 美女福利国产在线| 中文字幕久久专区| 久久精品久久久久久噜噜老黄| 中文乱码字字幕精品一区二区三区| 欧美激情国产日韩精品一区| 草草在线视频免费看| 男人爽女人下面视频在线观看| 99re6热这里在线精品视频| 亚洲一级一片aⅴ在线观看| 精品人妻熟女av久视频| 成人亚洲精品一区在线观看| 女人精品久久久久毛片| 狂野欧美白嫩少妇大欣赏| 大香蕉久久网| 又粗又硬又长又爽又黄的视频| 少妇熟女欧美另类| 国产av码专区亚洲av| 久久久久人妻精品一区果冻| tube8黄色片| 汤姆久久久久久久影院中文字幕| 美女cb高潮喷水在线观看| 熟女av电影| 婷婷色综合大香蕉| 91精品国产国语对白视频| 国产精品久久久久久久久免| 国产又色又爽无遮挡免| 制服丝袜香蕉在线| 婷婷色综合大香蕉| 美女xxoo啪啪120秒动态图| 国产 精品1| 久久久a久久爽久久v久久| 十八禁网站网址无遮挡| av免费观看日本| 日日摸夜夜添夜夜爱| 亚洲精品第二区| 人妻 亚洲 视频| 久久99精品国语久久久| 夫妻午夜视频| 国产精品一区www在线观看| 亚洲欧美色中文字幕在线| 精品国产一区二区三区久久久樱花| 成人手机av| 国产日韩一区二区三区精品不卡 | 日韩视频在线欧美| 最近中文字幕2019免费版| 18在线观看网站| 男女边吃奶边做爰视频| 五月天丁香电影| 男女无遮挡免费网站观看| 亚洲欧美精品自产自拍| 亚洲伊人久久精品综合| 久久人人爽av亚洲精品天堂| 51国产日韩欧美| 久热这里只有精品99| 国产精品偷伦视频观看了| 观看美女的网站| 久久久久久人妻| 老司机影院毛片| 国产欧美另类精品又又久久亚洲欧美| 成年人午夜在线观看视频| 高清毛片免费看| 边亲边吃奶的免费视频| 一二三四中文在线观看免费高清| a级片在线免费高清观看视频| 成人国产av品久久久| 蜜臀久久99精品久久宅男| 一级毛片我不卡| 高清视频免费观看一区二区| 欧美另类一区| 在线观看免费视频网站a站| 草草在线视频免费看| 日韩一区二区三区影片| 精品酒店卫生间| www.色视频.com| 夜夜骑夜夜射夜夜干| 18+在线观看网站| 亚洲精品乱码久久久久久按摩| 欧美激情国产日韩精品一区| 国产欧美日韩综合在线一区二区| 丝袜美足系列| 午夜福利视频在线观看免费| 18在线观看网站| 国产高清国产精品国产三级| 一级黄片播放器| 少妇被粗大的猛进出69影院 | 青春草视频在线免费观看| 欧美xxⅹ黑人| av又黄又爽大尺度在线免费看| av不卡在线播放| 久久久久久久亚洲中文字幕| 国产高清不卡午夜福利| 国产欧美日韩综合在线一区二区| 黑人欧美特级aaaaaa片| 婷婷色av中文字幕| 99国产精品免费福利视频| 日本色播在线视频| 欧美日韩视频高清一区二区三区二| 中文字幕免费在线视频6| 高清午夜精品一区二区三区| 日韩av免费高清视频| 少妇熟女欧美另类| 91久久精品电影网| 老司机亚洲免费影院| 大香蕉久久网| 黄色毛片三级朝国网站| 在线精品无人区一区二区三| 中国国产av一级| 99久久精品一区二区三区| 亚洲av.av天堂| 亚洲精品456在线播放app| 亚洲av欧美aⅴ国产| 一本大道久久a久久精品| 国产欧美亚洲国产| 午夜免费鲁丝| 国产成人freesex在线| 多毛熟女@视频| 十八禁高潮呻吟视频| av免费观看日本| 天堂俺去俺来也www色官网| 永久免费av网站大全| 日韩欧美精品免费久久| 老司机影院毛片| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 搡老乐熟女国产| 男女无遮挡免费网站观看| 七月丁香在线播放| 午夜福利视频在线观看免费| 女人精品久久久久毛片| av在线app专区| 少妇人妻 视频| 亚洲av综合色区一区| 免费高清在线观看视频在线观看| 久久久久网色| 亚洲欧美精品自产自拍| 亚洲精品日本国产第一区| 99国产综合亚洲精品| 国产成人免费无遮挡视频| 欧美人与善性xxx| 国产视频首页在线观看| 考比视频在线观看| a级毛片免费高清观看在线播放| 亚洲欧美色中文字幕在线| av免费在线看不卡| 日日啪夜夜爽| 另类精品久久| 91午夜精品亚洲一区二区三区| 2021少妇久久久久久久久久久| 97超碰精品成人国产| 五月伊人婷婷丁香| 亚洲av免费高清在线观看| 日日摸夜夜添夜夜添av毛片| 美女国产视频在线观看| 狂野欧美激情性bbbbbb| 女人久久www免费人成看片| 日韩中文字幕视频在线看片| 韩国高清视频一区二区三区| 黑丝袜美女国产一区| 夫妻午夜视频| 国产成人精品一,二区| 七月丁香在线播放| 一个人免费看片子| 日本vs欧美在线观看视频| 国产精品国产三级国产专区5o| 国产成人精品在线电影| 色哟哟·www| 精品人妻一区二区三区麻豆| 亚洲av.av天堂| 亚洲精品一区蜜桃| 99久久中文字幕三级久久日本| 熟妇人妻不卡中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 韩国av在线不卡| 久久久久久久久久人人人人人人| 亚洲欧美成人综合另类久久久| 婷婷色麻豆天堂久久| 免费av中文字幕在线| 另类精品久久| 一级毛片黄色毛片免费观看视频| 有码 亚洲区| 三级国产精品片| 大香蕉久久网| av免费在线看不卡| 一边摸一边做爽爽视频免费| 国产白丝娇喘喷水9色精品| 成人国产av品久久久| 中文精品一卡2卡3卡4更新| a级毛色黄片| 久久精品人人爽人人爽视色| 午夜激情久久久久久久| 特大巨黑吊av在线直播| 亚洲第一区二区三区不卡| 丰满少妇做爰视频| 精品国产露脸久久av麻豆| 一本大道久久a久久精品| 肉色欧美久久久久久久蜜桃| 国产片特级美女逼逼视频| 国产女主播在线喷水免费视频网站| 在线 av 中文字幕| av网站免费在线观看视频| 欧美xxxx性猛交bbbb| 天天躁夜夜躁狠狠久久av| 少妇 在线观看| 婷婷色麻豆天堂久久| 一边摸一边做爽爽视频免费| 久久99蜜桃精品久久| 欧美3d第一页| 欧美bdsm另类| 新久久久久国产一级毛片| 中国三级夫妇交换| 欧美精品高潮呻吟av久久| 亚洲av福利一区| 午夜免费观看性视频| 夫妻午夜视频| 亚洲久久久国产精品| 免费观看性生交大片5| 女性生殖器流出的白浆| av电影中文网址| 狠狠婷婷综合久久久久久88av| 免费观看的影片在线观看| 制服丝袜香蕉在线| 亚洲五月色婷婷综合| a级毛片在线看网站| 三级国产精品片| 如日韩欧美国产精品一区二区三区 | 美女中出高潮动态图| 午夜久久久在线观看| 久久毛片免费看一区二区三区| 久久久久人妻精品一区果冻| 日本黄色日本黄色录像| 美女内射精品一级片tv| 欧美xxⅹ黑人| 人妻系列 视频| 欧美精品一区二区免费开放| 18禁观看日本| xxx大片免费视频| av专区在线播放| 丰满迷人的少妇在线观看| 亚洲无线观看免费| 久久国产亚洲av麻豆专区| 免费高清在线观看日韩| 曰老女人黄片| 在线观看免费日韩欧美大片 | 777米奇影视久久| 在线观看免费视频网站a站| 国产片内射在线| 国产成人freesex在线| 少妇猛男粗大的猛烈进出视频| 国产精品.久久久| 国产 精品1| 狠狠婷婷综合久久久久久88av| 亚洲欧美中文字幕日韩二区| freevideosex欧美| 性色av一级| 欧美精品一区二区免费开放| 亚洲精品乱码久久久v下载方式| 免费不卡的大黄色大毛片视频在线观看| 国产免费又黄又爽又色| 成人漫画全彩无遮挡| 亚洲精华国产精华液的使用体验| 久久人人爽人人爽人人片va| 蜜桃国产av成人99| 亚洲精品亚洲一区二区| 99久国产av精品国产电影| 欧美激情极品国产一区二区三区 | 91精品伊人久久大香线蕉| 少妇的逼水好多| 激情五月婷婷亚洲| 国产一区二区三区综合在线观看 | 久久久国产欧美日韩av| 男女边吃奶边做爰视频| 十八禁网站网址无遮挡| 精品久久久精品久久久| 久久99一区二区三区| 99九九在线精品视频| 91久久精品电影网| 性色av一级| 99热国产这里只有精品6| 熟妇人妻不卡中文字幕| 亚洲综合色网址| 97超碰精品成人国产| 久久97久久精品| 九九在线视频观看精品| 欧美日韩av久久| 在线观看免费日韩欧美大片 | 一边亲一边摸免费视频| 91精品一卡2卡3卡4卡| 少妇猛男粗大的猛烈进出视频| 国产成人一区二区在线| 中文字幕最新亚洲高清| 夜夜爽夜夜爽视频| 亚洲欧洲国产日韩| 欧美 日韩 精品 国产| 美女主播在线视频| 亚洲精品第二区| 美女大奶头黄色视频| 一本大道久久a久久精品| 人体艺术视频欧美日本| 美女内射精品一级片tv| 国产精品一区二区三区四区免费观看| 成人18禁高潮啪啪吃奶动态图 | 亚洲综合色惰| 自线自在国产av| 精品国产一区二区久久| 亚洲精品456在线播放app| 只有这里有精品99| 99热6这里只有精品| 日本免费在线观看一区| 亚洲精品久久午夜乱码| 久久这里有精品视频免费| 精品午夜福利在线看| 国产色爽女视频免费观看| 日本vs欧美在线观看视频| 高清毛片免费看| 欧美人与性动交α欧美精品济南到 | 中文字幕人妻熟人妻熟丝袜美| 看非洲黑人一级黄片| 飞空精品影院首页| 国产精品偷伦视频观看了| 美女cb高潮喷水在线观看| 99精国产麻豆久久婷婷| 亚洲婷婷狠狠爱综合网| 波野结衣二区三区在线| 美女内射精品一级片tv| 国产av精品麻豆| 一级毛片我不卡| 国产成人精品久久久久久| 久久国内精品自在自线图片| 国产精品一区二区在线观看99| 国产免费视频播放在线视频| 日本黄色日本黄色录像| 黄片播放在线免费| 一个人看视频在线观看www免费| 国产精品三级大全| 欧美精品高潮呻吟av久久| 国产 一区精品| 国产精品国产三级国产专区5o| 天天躁夜夜躁狠狠久久av| 老司机影院成人| 成人毛片60女人毛片免费| 午夜激情av网站| 一区二区三区精品91| 极品少妇高潮喷水抽搐| 亚洲国产精品一区三区| 国产有黄有色有爽视频| 丰满饥渴人妻一区二区三| 亚洲精品乱久久久久久| 久久久久久久久久成人| 欧美 亚洲 国产 日韩一| 亚洲熟女精品中文字幕| 午夜影院在线不卡| 精品少妇久久久久久888优播| 久久久久久久久久人人人人人人| 亚洲五月色婷婷综合| 免费播放大片免费观看视频在线观看| 中文字幕久久专区| 久久97久久精品| 日本黄大片高清| 婷婷色av中文字幕| 五月玫瑰六月丁香| 伦精品一区二区三区| 一本久久精品| 黄片无遮挡物在线观看| 日本91视频免费播放| 搡老乐熟女国产| 色网站视频免费| 欧美丝袜亚洲另类| 日韩大片免费观看网站| 高清视频免费观看一区二区| 欧美 亚洲 国产 日韩一| 如日韩欧美国产精品一区二区三区 | 成年人免费黄色播放视频| 一区二区三区乱码不卡18| 欧美xxⅹ黑人| 99久国产av精品国产电影| 色网站视频免费| 一本久久精品| 一级毛片黄色毛片免费观看视频| av女优亚洲男人天堂| 日本免费在线观看一区| 国产精品熟女久久久久浪| 制服丝袜香蕉在线| 免费日韩欧美在线观看| av.在线天堂| 国产亚洲精品久久久com| 纵有疾风起免费观看全集完整版| 狂野欧美白嫩少妇大欣赏| 高清黄色对白视频在线免费看| 人妻人人澡人人爽人人| 狠狠婷婷综合久久久久久88av| 国产黄色视频一区二区在线观看| 汤姆久久久久久久影院中文字幕| 超碰97精品在线观看| 又大又黄又爽视频免费| 丝瓜视频免费看黄片| 爱豆传媒免费全集在线观看| 国产午夜精品一二区理论片| 综合色丁香网| 看十八女毛片水多多多| 在线 av 中文字幕| 久久99精品国语久久久| 亚洲精品一区蜜桃| 久久人人爽人人爽人人片va| 赤兔流量卡办理| 91精品国产国语对白视频| .国产精品久久| 久久国内精品自在自线图片| 亚洲一区二区三区欧美精品| 国产无遮挡羞羞视频在线观看| 精品国产乱码久久久久久小说| 午夜福利视频在线观看免费| 男女边吃奶边做爰视频| 久久av网站| 王馨瑶露胸无遮挡在线观看| 亚洲国产精品一区二区三区在线| 51国产日韩欧美| 久久久久精品久久久久真实原创| 亚洲国产毛片av蜜桃av| 激情五月婷婷亚洲|