• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite

    2022-11-21 09:29:18LihongShi史麗弘andJiebinPeng彭潔彬
    Chinese Physics B 2022年11期

    Lihong Shi(史麗弘) and Jiebin Peng(彭潔彬)

    1School of Science,JiangNan University,Wuxi 214122,China

    2School of Physics and Optoelectronic Engineering,Guangdong University of Technology,Guangzhou 510006,China

    Advanced textiles for thermal management give rise to many functional applications and unveil a new frontier for the study of human thermal comfort. Manipulating the coated quasi-particles between the composite components offers a platform to study the advanced thermoregulatory textiles. Here, we propose that coating the hyperbolic polariton can be an effective tool to tune infrared absorption in hexagonal boron nitride-coated silk composite. Remarkably, we achieve significant tuning of the infrared absorption efficiency of silk fibrils through the designed hexagonal boron nitride film.The underlying mechanism is related to resonance coupling between hyperbolic phonon polaritons. We find a notably high infrared absorption efficiency,nearly 3 orders larger than that without hBN coating,which can be achieved in our composite system. Our results indicate the promising future of advanced polariton-coated textiles and open a pathway to guide the artificial-intelligence design of advanced functional textiles.

    Keywords: thermal radiation,thermal management,infrared absorption,hyperbolic polaritons

    Human thermal comfort can be regarded as the state in which the surface temperature of the skin is converging on the normal body temperature as much as possible. Thermal comfort is associated with multiple heat transfer pathways among skin, textile, sun and the external environment.[1–4]We can achieve thermal comfort by external active equipment, such as air-conditioning, fans and heaters. Except for those active strategies, it is found that improving the personal microclimate is an effective way to enhance human thermal comfort and reduce unnecessary energy consumption.We can consider the mechanism of heat transfer and manage the heat transfer rate between the clothed skin and environment to regulate the personal microclimate effectively. However, the heat transfer rates in human thermal comfort mainly depend on the design of textiles,and traditional textiles cannot flexibly regulate human heat dissipation in cold and hot conditions.[5–7]Consequently, researchers have explored advanced thermoregulatory textiles to achieve thermal comfort for the human body,such as warming textiles using metals with high reflectance in the field of textiles. Due to the lack of breathability, these warming textiles are not comfortable to wear. Hsuet al.developed a high-cost warming textile using cotton with embedded metallic silver nanowires to overcome the shortcut of breathability.[8]In addition,Hazarikaet al.designed a Woven Kevlar fiber by developing copper–nickel(Cu–Ni)nanowires on the WKF surface in a complicated preparative process to reduce the cost.[9]However,these approaches for warming textiles have the disadvantage of mass production. Except for the above methods with reflectivity regulation, some researchers have proposed utilizing solar energy to enhance the warming effect of textiles. Luoet al.made a colored warming textile using a lossy dielectric layer and a metal layer to coat with nanoporous textile.[10]In this design,the metal layer can largely reduce the emittance of the outer surface in the visible band, and the lossy dielectric layer can absorb a large amount of solar energy in the near infrared band. Zhuet al.presented that by coating the exterior and interior of the enclosure roof with two visible-transparent films with distinctive wavelength selectivity, they can implement simultaneous control over the energy exchange among the enclosure with the hot sun, the cold outer space, the atmosphere and the active cooler.[11]Luoet al.reported that an eco-friendly passive nanostructured textile can harvest energy from the sun and the outer space for tunable control of heating and cooling. Under sunlight exposure, its heating and cooling mode is able to make a skin simulator temperature increase/decrease of 8.1°C/6°C,respectively.[12]It is a promising way for advanced thermoregulatory textiles to use solar energy in the development of warming textiles. Nevertheless, there are few studies based on the concept of improving the infrared absorption of textiles.

    In thermal regulation applications,boron nitride(BN)has been considered as an effective two-dimensional(2D)material because of its high thermal conductance and electrical insulation. For instance,a composite fiber with BN nanosheets can provide external radiative heat transfer channels for body heat dissipation due to its highly confined phonon polaritons.[13–17]Several experimental results show that a composite fiber with a-BN/PVA has excellent thermal conductance.[18]Moreover,silk, as one of the most natural materials, has attracted much attention due to its excellent biological properties, such as degradability, good biocompatibility, water vapor permeability,and excellent oxygen.[19–21]Composites consisting of silk and carbon-based materials have shown promising applications in food processing and engineering,[22]tissue engineering and wearable devices.[23,24]In our previous work,we have found that the infrared absorption efficiency of silk fibrils with a graphene coating can be five orders of magnitude larger than that without a graphene coating due to the help of plasmon polaritons.[25]Analogous concepts can be explored in silk/hBN composite for advanced thermoregulatory textiles.

    In this paper,we propose to design a silk/hBN composite to manipulate infrared radiation for tunable thermal absorption. We analyze the infrared radiation in hBN-coated silk composites in detail based on Mie scattering theory. We also study the impact of the thickness of the hexagonal boron nitride (hBN) film and radius of the silk nanofibrils on the absorption efficiency. We also provided an optimal thickness of hBN film for the best optical performance of nanocomposites.

    Fig.1. (a)Schematic figure of our simulation model. A transverse electric field normally incident onto a long hBN-coated silk nanofibril, the radius of silk nanofibril is a. (b)Real part of the out-of-plane and in-plane dielectric functions of hBN versus light wavelength. The dashed lines show the hyperbolic regions of hBN.

    As shown in Fig. 1(a), we consider a long hBn-coated silk nanofibril composite with radius ofa. The BN/silk textile can be fabricated by a fast and scalable three-dimensional(3D) printing method, by which the BN/poly (vinyl alcohol)fiber has been realized in Ref.[18]. The 3D printing fabrication process of the BN/silk composite fibers can be illustrated as follows: first, liquid-phase exfoliated BN nanosheets can be prepared by sonicating raw hBN powders in isopropyl alcohol solution. Then, the raw hBN bulk powders can be exfoliated to BN flakes. After exfoliation,the(100), (101), and(102)peaks of the hBN bulk disappear,and the hBN micropowders can be successfully exfoliated to thin BN nanosheets.Uniform BN/silk suspensions can be obtained by dispersing liquid-phase exfoliated BN nanosheets into a silk dimethyl sulfoxide solution using sonication. Finally, the homogeneous BN/silk dispersion solution can be injected into a coagulation bath from a needle by the 3D printer to fabricate the continuous as-printed fibers.

    The hBN film is a uniaxial dielectric material (bandgap~5.9 eV)in the infrared region. When the optical axis is located in thezdirection, the hBN film has two mid-infrared Reststrahlen bands. When the electric field is perpendicular to the optical axis, the in-plane dielectric function includes the contribution from in-plane phonon vibrations (ωTO,⊥=1370 cm-1,andωLO,⊥=1610 cm-1). When the electric field is parallel to the optical axis,the out-plane dielectric function includes the contribution from out-plane phonon vibrations(ωTO,‖=780 cm-1andωLO,‖=830 cm-1). The dielectric function can be expressed as follows:[27–30]

    wherem=‖,⊥are the out-plane and the in-plane directions,respectively. The other parameters used here areε∞,‖=2.95 andγ‖=4 cm-1,ε∞,⊥=4.87 andγ⊥=5 cm-1. Figure 1(b)shows the real part of the in-plane and out-plane dielectric functions of hBN in frequency space. The dashed lines show that the dielectric function can become negative in the Reststrahlen band between the TO and LO phonon modes. Thus,the in-plane and out-plane dielectric functions of hBN have opposite signs in each Restrahlen band and form a hyperbolic band.

    For 2D materials, when the layer thickness is much smaller than the polariton wavelength,we can model the layer as a 2D isotropic conductivity layer with zero thickness. The effective conductivity of 2D materials is written asσeff=(ct/2iλ0)ε,wherecis the light velocity,λ0is the incident light wavelength,εis the dielectric permittivity of the layer, andtis the thickness of the 2D layer.[31]The thickness of the hBN filmtconsidered here is approximately 5 nm–100 nm,which is much smaller than its polariton wavelength. Therefore, it is reasonable to model the hBN film by an isotropic in-plane conducting layer. The effective two-dimensional conductivity of the hBN film can be written asσeff=(ct/2iλ0)ε⊥, whereε⊥is the in-plane dielectric permittivity without considering the contribution of the out-of-plane part of the dielectric permittivity.

    We apply Mie scattering theory to investigate light scattering in cylinders,which has been widely used in coated coreshell particles[32–34]and graphene/silk composite.[25]According to Mie scattering theory,[35–37]the electric field and magnetic field can be given by

    By applying the boundary conditions atr=a, we can obtain the scattering coefficient as follows:

    We consider the incident light wavelength in the infrared region (~μm), and the diameter of the silk nanofibrils observed in the experiment is in the range of several to tens of nanometers.[37]Because the incident light wavelength is much larger than the radius of silk(λ ?a),we can obtain the electric potential both inside (φc) and outside (φh) the cylinders,which satisfy the Laplace equation: ?2φc,h=0.

    Then,we can achieve the general solutions:

    Figure 2(a) shows the scattering efficiencyversusincident light wavelength. We fix the radius of silk to be 60 nm based on recent experimental works[39,40]and tune the thickness of the hBN film.For a certain thickness of the hBN filmt,there is always an optimal incident light wavelength to achieve the maximum value ofQsca. For example, whent=60 nm,a=60 nm, the incident light wavelength to obtain the maximum value ofQscais approximately 7.2 μm. As the thickness of the hBN film increases, the optimal wavelength to achieve the maximum value ofQscablueshifts. The maximum value ofQscadoes not monotonously increase with increasing thickness of the hBN filmt. It first increases as the thicknesstincreases and then decreases after it reaches a peak. In Fig.2(a),we can see that the maximum value ofQscaarrives att=60 nm anda=60 nm when the incident wavelengthλ=7.2 μm.Therefore, in the following, we will focus on the absorption efficiency of an infrared wavelength around 7.2 μm.

    Figure 2(b)shows the extinction efficiencyQextversusthe incident light wavelength fort=60 nm anda=60 nm. There is an optimal incident light wavelength to obtain the maximum value ofQext. We can obtain the absorption efficiencyQabsfor the hBN-coated silk composite after obtaining the extinction efficiency and scattering efficiency. Figure 2(c)shows the absorption efficiencyversusincident light wavelength with fixedt=60 nm anda=60 nm. The absorption efficiencyQabsalmost follows the same trend asQext, as the absolute value ofQscais much smaller than that ofQext. Therefore, the peak positions ofQabsandQextare approximatelyλ=7.2 μm,and the maximum value ofQabsis up to 0.43 fort=60 nm anda=60 nm.

    Fig. 2. (a) The scattering efficiency Qsca versus incident light wavelength for various thicknesses of hBn film t with a fixed diameter of silk(a=60 nm). (b)Extinction efficiency Qext versus incident light wavelength for a=60 nm and t =60 nm. (c)The absorption efficiency Qabs versus incident light wavelength at a=60 nm and t=60 nm.

    An electromagnetic wave,as the main carrier of radiative heat transfer between the body and environment,can be modified by the optical properties of textiles during the control of human thermal radiation.We calculated the dependence of the absorption efficiency in the hBN-coated silk composite on various factors to understand the intrinsic physical mechanism.Figure 3 shows that there is strong resonance absorption of the silk/hBN composite in the infrared region,which is dependent on the radius of the silk fiber, the thickness of hBN film and the wavelength of the external electromagnetic waves. Such strong absorption comes from the hyperbolic phonon polaritons in the reststrahlen band of the hBN film (see Fig. 1(b)).The hyperbolic phonon polaritons possess the feature of the hyperbolic waveguide mode in the hBN film, which leads to a large value of absorption efficiency. Figure 3(a) shows the absorption efficiencyQabsversusthe incident light wavelength for various thicknesses of hBN film with a fixed radiusa=60 nm. The optimal wavelength to achieve the maximum value ofQabsis blueshifted as the thickness of the hBN film increases. For example,fort=30 nm,[Qabs]max=0.19,which is 63%of that of the case att=60 nm.

    Figure 3(b) shows the absorption efficiencyQabsversusradius of silk for different thicknesses of hBN film with fixed incident light wavelength(7.2 μm and 6.2 μm). The radius of silk ranges from 5 nm to 100 nm, which can be fabricated in the experiment. The solid lines show thatQabsis very sensitive to the radius of silk for a certain thickness of hBN film at the incident light wavelengthλ=7.2 μm due to the existence of the optimal radius of silk to satisfy the ideal resonant state. We also find that the optimal radius of silk is approximately equal to the fixed thickness of the hBN film. In Table 1,the optimal radius of silk to obtain the maximum value ofQabsis 32 nm,64 nm,and 95 nm fort=30 nm,60 nm,and 90 nm,respectively. Furthermore,the maximum value ofQabsalso increases as the thickness of the hBN film increases,i.e.,(Qabs)max=0.81(t=90 nm)>(Qabs)max=0.54(t=60 nm)>(Qabs)max=0.27 (t=30 nm). However, the dashed lines show thatQabsat the incident light wavelengthλ=6.2 μm is remarkably smaller than that atλ=7.2 μm. At this light wavelength,Qabsis not sensitive to the radius of the silk due to the mismatch between the resonant modes and the incident light.

    Fig.3. (a)The absorption efficiency Qabs versus incident light wavelength for various thicknesses of hBN film at a=60 nm:t=30 nm(black line);t=60 nm(red line);t=90 nm(green line);(b)The absorption efficiency versus diameter of silk a for various thicknesses of hBN film t=30 nm(black line),t=60 nm(red line),and t=90 nm(green line)with the two wavelengths of incident light of λ =7.2 μm(solid line)and λ =6.2 μm(dashed line). (c)The absorption efficiency Qabs versus thickness of hBn film t for various diameters of silk fibrils: a=30 nm(black line),a=60 nm(red line),and a=90 nm(green line). (d)The absorption efficiency Qabs versus the thickness of the hexagonal boron nitride film t and the radius of silk a.

    Table 1. Parameters t,aopt,and(Qabs)max.

    Figure 3(c) shows the absorption efficiencyversusthe thickness of the hBN film for various radius of silk. We consider that the range of the thickness of the hBN film is 5 nm–100 nm. The absorption efficiencyQabsfor a certain radius of silk first increases with the thickness of the hBN film,and then decreases after it reaches a peak. The optimal thickness of the hBN film to achieve the maximum value of the absorption efficiencyQabsis approximately equal to the given radius of silk,which is consistent with the results observed in Fig.3(b). Figure 3(d)shows the absorption efficiencyQabsversusboth the thickness of the hBN film and the radius of silk to give a clear picture of the dependence of the absorption efficiency on the silk radius and the thickness of the hBN film. We can see that the maximum value ofQabsincreases as both the thickness of the hBN film and the silk radius increase. The maximum value ofQabscan be obtained when the thickness of the hBN film is approximately equal to the silk radius,which has been observed in Figs.3(b)and 3(c).

    Before summary, we emphasize the effect of the hBN coating on the infrared absorption efficiency in silks. Figure 4 shows the absorption efficiencyQabsversusincident light wavelength ata=60 nm for both the cases with and without the hBN coating. It is obvious that the absorption efficiencyQabsfor the hBN-coated silk composite is much larger than that without the hBN coating in the wavelength range(6 μm≤λ ≤8 μm). For instance,Qabs=0.43 for the case with the hBN coating is three orders larger than that without the hBN coating (Qabs=1.3×10-4). Figure 4 also shows that the absorption efficiencyQabsfor pure silk is 9.8×10-5–4.0×10-4, which is consistent with the experimental results of Ref. [41]. The experimental data in Ref. [41] show that the absorption of pure silk is from 0–4.0×10-3for the wavelength range from 16 μm–18 μm. This shows the feasibility of Mie scattering theory in the description of the absorption of pure silk and functionalized silk. Therefore, it is concluded that the absorption of the silk composite is improved with the hBN coating. The enhancement of the infrared absorption in the hBN-coated silk composite comes from electromagnetic resonance coupling between the hBN coating and neighboring silk. The electromagnetic resonance can shift the high absorption efficiency of the silk/hBN composite to the mid-infrared electromagnetic wave to make it more closely matched with the thermal radiation of the human body. A similar phenomenon is also shown in Refs.[25,42],and we have demonstrated that infrared radiation can be modulated by silk fibers coated with a thin sheet of graphene.[25]Our previous results show that this modulation arises from the electromagnetic coupling between graphene coated on neighboring silk.In addition,Zhanget al.,have reported that infrared radiation can be tuned by a unique artificial fiber, which is also based on electromagnetic coupling between carbon nanotubes and neighboring fibers.[42]

    Fig.4. The absorption efficiency Qabs versus incident light wavelength for a=60 nm and t =60 nm for silk fibrils with(black line)and without hBn film coating(red line).

    In summary, we studied infrared radiation in an hBNcoated silk composite. Our results show that the enhanced infrared absorption efficiency in the composite depends strongly on the hBN coating on the silk. The observed dependence on the hBN coating arises from the electromagnetic resonance coupling between the hBN coating and neighboring silk. Furthermore, by tuning the thickness of the coated hBN film and radius of silk, we could control the absorption efficiency through the composites since there is an optimal condition to satisfy the ideal resonant state. We can obtain an absorption efficiency of approximately 0.43 when the thickness of the coated hBN is approximately 60 nm. Our results provide a new way to explore an effective way to enhance the abilities of personal regulation of advanced textiles based on infrared absorption. In future work,we can make use of the out-plane phonon vibrations to improve the enhancement in the long wavelength region, and several strategies have been provided in the following section. We will provide several other ways to increase the infrared absorption efficiency as follows: (i)enhancing in-plane anisotropy,such as grating or doping. We only use an isotropic coated hBn thin film for convenience in our numerical calculation. However,as we know,the in-plane anisotropy can provide a highly confined in-plane hyperbolic phonon polariton,which can be tuned by the structural parameters and enhance the infrared absorption efficiency in a specific direction.Such an anisotropic coating has more functions and aptitudes,for example,dual-mode textiles. (ii)Cooperating with other polaritons. For example, we can coat hBn and graphene together regardless of the difficulty of preparation.In that case,the phonon polariton in hBn can interact with the plasmon polariton in graphene and form hybridized phononplasmon polariton modes over a wide frequency region,which can further improve the infrared absorption efficiency.

    满18在线观看网站| 亚洲少妇的诱惑av| 亚洲婷婷狠狠爱综合网| 九九久久精品国产亚洲av麻豆| 两个人的视频大全免费| 亚洲国产日韩一区二区| 日韩电影二区| 三上悠亚av全集在线观看| 欧美日韩av久久| 久久国产亚洲av麻豆专区| 一级a做视频免费观看| 日日撸夜夜添| 国产一区二区在线观看av| 成人黄色视频免费在线看| 91久久精品电影网| 女性生殖器流出的白浆| 一区二区日韩欧美中文字幕 | 日韩中字成人| 男的添女的下面高潮视频| 国产男女超爽视频在线观看| 免费看光身美女| 80岁老熟妇乱子伦牲交| av黄色大香蕉| 国产在线一区二区三区精| 最近的中文字幕免费完整| 日韩亚洲欧美综合| 精品国产国语对白av| 黑人欧美特级aaaaaa片| 一级毛片电影观看| 我的女老师完整版在线观看| 色婷婷av一区二区三区视频| av在线观看视频网站免费| 18在线观看网站| 在线观看免费日韩欧美大片 | 日韩欧美精品免费久久| 亚洲高清免费不卡视频| 校园人妻丝袜中文字幕| 高清不卡的av网站| 在线观看免费高清a一片| 欧美日韩视频高清一区二区三区二| 一级二级三级毛片免费看| 欧美另类一区| 国产男女内射视频| 国产国拍精品亚洲av在线观看| 少妇丰满av| 又大又黄又爽视频免费| 91aial.com中文字幕在线观看| 亚洲激情五月婷婷啪啪| 日韩一本色道免费dvd| 成人毛片a级毛片在线播放| 高清黄色对白视频在线免费看| a级毛片在线看网站| 亚洲第一区二区三区不卡| 高清毛片免费看| 美女国产高潮福利片在线看| 最后的刺客免费高清国语| 亚洲欧美日韩卡通动漫| 18在线观看网站| 午夜视频国产福利| 久热这里只有精品99| 亚洲少妇的诱惑av| 丁香六月天网| 高清在线视频一区二区三区| 国产欧美日韩一区二区三区在线 | 亚洲人成77777在线视频| 亚洲久久久国产精品| 国产午夜精品一二区理论片| 80岁老熟妇乱子伦牲交| 乱码一卡2卡4卡精品| 高清在线视频一区二区三区| 纯流量卡能插随身wifi吗| 欧美成人精品欧美一级黄| 国产日韩欧美视频二区| 天堂俺去俺来也www色官网| 午夜老司机福利剧场| 激情五月婷婷亚洲| 91久久精品国产一区二区三区| 国产成人精品婷婷| 亚洲欧美日韩另类电影网站| 亚洲欧美清纯卡通| 成年人午夜在线观看视频| 国产精品久久久久成人av| 欧美日韩国产mv在线观看视频| 国产精品久久久久久av不卡| 国产精品久久久久久av不卡| 欧美日韩视频高清一区二区三区二| 免费av中文字幕在线| 免费不卡的大黄色大毛片视频在线观看| 成人国语在线视频| 少妇人妻久久综合中文| 亚洲欧美日韩另类电影网站| 91久久精品国产一区二区成人| 色视频在线一区二区三区| 日日摸夜夜添夜夜爱| 午夜福利视频精品| 91在线精品国自产拍蜜月| 国产综合精华液| 亚洲情色 制服丝袜| 日韩成人av中文字幕在线观看| 午夜激情久久久久久久| 免费播放大片免费观看视频在线观看| 国产极品粉嫩免费观看在线 | 色哟哟·www| 久久久精品94久久精品| 久久久精品94久久精品| 99九九线精品视频在线观看视频| 一级二级三级毛片免费看| 最近中文字幕高清免费大全6| 国产精品女同一区二区软件| 亚洲精品久久午夜乱码| 一区二区三区四区激情视频| 国产黄片视频在线免费观看| 制服人妻中文乱码| 9色porny在线观看| xxxhd国产人妻xxx| av电影中文网址| 国产在视频线精品| 精品国产国语对白av| 午夜91福利影院| 国语对白做爰xxxⅹ性视频网站| 国产免费一区二区三区四区乱码| 在线观看免费高清a一片| 大片免费播放器 马上看| 国产精品嫩草影院av在线观看| 久久久久国产精品人妻一区二区| 51国产日韩欧美| 婷婷色av中文字幕| 欧美xxxx性猛交bbbb| 国产无遮挡羞羞视频在线观看| 欧美精品高潮呻吟av久久| 亚洲欧美成人精品一区二区| 精品少妇黑人巨大在线播放| 99精国产麻豆久久婷婷| 国产有黄有色有爽视频| 在线看a的网站| 只有这里有精品99| 免费播放大片免费观看视频在线观看| 亚洲国产av影院在线观看| 18禁裸乳无遮挡动漫免费视频| 日韩中文字幕视频在线看片| 一级a做视频免费观看| 免费av中文字幕在线| 国产男人的电影天堂91| 亚洲欧洲国产日韩| 色婷婷av一区二区三区视频| 成人18禁高潮啪啪吃奶动态图 | 在现免费观看毛片| 久久久久网色| 久久久久精品性色| 婷婷色av中文字幕| 黄色欧美视频在线观看| 人人妻人人爽人人添夜夜欢视频| 久久久国产精品麻豆| 午夜日本视频在线| av福利片在线| 久久久久久伊人网av| 男女高潮啪啪啪动态图| 亚洲,一卡二卡三卡| 成年人午夜在线观看视频| 国产精品久久久久久久久免| 丁香六月天网| 99国产精品免费福利视频| 色网站视频免费| 日韩av不卡免费在线播放| 26uuu在线亚洲综合色| 国产一区亚洲一区在线观看| av天堂久久9| 插阴视频在线观看视频| a级毛片黄视频| 成年av动漫网址| 在线播放无遮挡| 久久久国产精品麻豆| 亚洲av欧美aⅴ国产| 日韩不卡一区二区三区视频在线| 国产成人精品婷婷| 校园人妻丝袜中文字幕| 少妇猛男粗大的猛烈进出视频| 黄色视频在线播放观看不卡| 亚洲av不卡在线观看| 日韩一区二区视频免费看| 精品人妻熟女毛片av久久网站| 美女脱内裤让男人舔精品视频| 满18在线观看网站| 免费观看a级毛片全部| 亚洲av福利一区| 久久久久久久精品精品| 丝袜脚勾引网站| 精品亚洲成国产av| 国产成人freesex在线| 三级国产精品欧美在线观看| 国产 一区精品| 欧美另类一区| 男男h啪啪无遮挡| 免费日韩欧美在线观看| 欧美精品亚洲一区二区| 亚洲av在线观看美女高潮| 免费看不卡的av| 国产免费现黄频在线看| 亚洲av欧美aⅴ国产| 精品国产乱码久久久久久小说| √禁漫天堂资源中文www| 成人18禁高潮啪啪吃奶动态图 | 少妇人妻精品综合一区二区| 少妇人妻精品综合一区二区| 嘟嘟电影网在线观看| 伊人久久国产一区二区| 赤兔流量卡办理| 精品熟女少妇av免费看| 久久精品国产自在天天线| 午夜久久久在线观看| 亚洲av电影在线观看一区二区三区| 国产精品熟女久久久久浪| 婷婷成人精品国产| videos熟女内射| 国产精品国产av在线观看| 久久久久久久久久久免费av| 全区人妻精品视频| 街头女战士在线观看网站| 色婷婷av一区二区三区视频| 日本爱情动作片www.在线观看| 高清欧美精品videossex| 亚洲国产成人一精品久久久| 亚洲丝袜综合中文字幕| 精品国产露脸久久av麻豆| 亚洲天堂av无毛| 欧美另类一区| 亚洲av免费高清在线观看| 亚洲国产欧美日韩在线播放| 久久久国产欧美日韩av| 人妻制服诱惑在线中文字幕| 久久99一区二区三区| 亚洲欧美成人综合另类久久久| 国产综合精华液| a级毛片黄视频| 国产精品麻豆人妻色哟哟久久| 99re6热这里在线精品视频| .国产精品久久| 欧美日韩视频精品一区| 一边亲一边摸免费视频| 天美传媒精品一区二区| 麻豆乱淫一区二区| 久久久a久久爽久久v久久| videosex国产| 日韩av在线免费看完整版不卡| av免费在线看不卡| 卡戴珊不雅视频在线播放| 在线免费观看不下载黄p国产| 黄色欧美视频在线观看| 免费大片黄手机在线观看| 边亲边吃奶的免费视频| 少妇被粗大猛烈的视频| 久久人人爽人人爽人人片va| 国产精品久久久久久av不卡| 亚洲av在线观看美女高潮| 少妇的逼水好多| 你懂的网址亚洲精品在线观看| 成人手机av| 亚洲国产欧美在线一区| 亚洲色图综合在线观看| 中文乱码字字幕精品一区二区三区| 国产乱人偷精品视频| 国产不卡av网站在线观看| 一级毛片黄色毛片免费观看视频| av播播在线观看一区| 一级毛片电影观看| 美女cb高潮喷水在线观看| 国产乱来视频区| 成人综合一区亚洲| 成人免费观看视频高清| 国产黄色免费在线视频| 少妇人妻 视频| 成人漫画全彩无遮挡| 色婷婷久久久亚洲欧美| 如何舔出高潮| 美女中出高潮动态图| 日韩熟女老妇一区二区性免费视频| 久久免费观看电影| 精品久久久久久电影网| 高清不卡的av网站| 少妇熟女欧美另类| 少妇的逼水好多| 亚洲精品aⅴ在线观看| 欧美bdsm另类| 一边亲一边摸免费视频| 高清欧美精品videossex| 中文字幕亚洲精品专区| 人妻一区二区av| 美女大奶头黄色视频| 桃花免费在线播放| 亚洲精品av麻豆狂野| 国产精品一二三区在线看| 国产精品不卡视频一区二区| 18+在线观看网站| 一级毛片黄色毛片免费观看视频| 少妇被粗大猛烈的视频| 青春草亚洲视频在线观看| 性色avwww在线观看| 精品亚洲成a人片在线观看| 日本免费在线观看一区| 搡女人真爽免费视频火全软件| 国产成人av激情在线播放 | 午夜精品国产一区二区电影| 亚洲精品乱码久久久v下载方式| 伊人久久精品亚洲午夜| 国产 一区精品| 亚洲国产精品一区三区| 建设人人有责人人尽责人人享有的| 日韩欧美一区视频在线观看| 久久人妻熟女aⅴ| 亚洲怡红院男人天堂| 在线观看免费高清a一片| 亚洲精品国产av蜜桃| 高清视频免费观看一区二区| 免费高清在线观看视频在线观看| 男女边吃奶边做爰视频| 久久久久精品性色| 亚洲精品久久成人aⅴ小说 | 少妇人妻 视频| 校园人妻丝袜中文字幕| 国产精品蜜桃在线观看| 亚洲,欧美,日韩| 在线观看免费日韩欧美大片 | 午夜福利视频在线观看免费| 女性生殖器流出的白浆| av免费观看日本| 欧美少妇被猛烈插入视频| 久久久久精品性色| 久久久欧美国产精品| 亚洲精品日韩在线中文字幕| 搡老乐熟女国产| 亚洲精品中文字幕在线视频| 国产在线免费精品| 草草在线视频免费看| 午夜福利视频精品| 91精品国产九色| 亚洲无线观看免费| 日韩不卡一区二区三区视频在线| 成人无遮挡网站| 男人添女人高潮全过程视频| 亚洲av国产av综合av卡| 观看美女的网站| 亚洲精品中文字幕在线视频| 人人妻人人澡人人爽人人夜夜| 亚洲一级一片aⅴ在线观看| 国模一区二区三区四区视频| 精品人妻一区二区三区麻豆| 国产免费福利视频在线观看| 国产成人精品婷婷| 性色avwww在线观看| 精品久久久噜噜| 视频在线观看一区二区三区| 精品一区在线观看国产| 国产精品久久久久久精品古装| 国产在线免费精品| 亚洲天堂av无毛| 亚洲精品久久午夜乱码| 如何舔出高潮| 亚洲经典国产精华液单| 亚州av有码| 国产亚洲一区二区精品| 伊人久久精品亚洲午夜| 草草在线视频免费看| xxxhd国产人妻xxx| 99久久人妻综合| 国产精品久久久久久久电影| 少妇被粗大猛烈的视频| 一区二区三区四区激情视频| 国产在线一区二区三区精| 交换朋友夫妻互换小说| 久久久精品94久久精品| 九色亚洲精品在线播放| 免费看不卡的av| 亚洲天堂av无毛| 中文字幕av电影在线播放| 丝瓜视频免费看黄片| 99精国产麻豆久久婷婷| 精品午夜福利在线看| 美女cb高潮喷水在线观看| 少妇被粗大的猛进出69影院 | 婷婷成人精品国产| 少妇被粗大的猛进出69影院 | 国产午夜精品一二区理论片| 超色免费av| 天美传媒精品一区二区| 亚洲不卡免费看| 日韩av不卡免费在线播放| 亚洲精品久久午夜乱码| 国产在线一区二区三区精| 国产成人精品久久久久久| 久久久精品94久久精品| 下体分泌物呈黄色| 国产精品99久久久久久久久| 91久久精品电影网| 亚洲欧洲精品一区二区精品久久久 | 99国产精品免费福利视频| 国产永久视频网站| 免费观看性生交大片5| 精品亚洲乱码少妇综合久久| 久久99一区二区三区| 少妇的逼好多水| 欧美精品亚洲一区二区| 国产在线视频一区二区| 美女主播在线视频| 国产在视频线精品| tube8黄色片| 成年美女黄网站色视频大全免费 | 最近2019中文字幕mv第一页| 超碰97精品在线观看| 波野结衣二区三区在线| 免费不卡的大黄色大毛片视频在线观看| 蜜臀久久99精品久久宅男| 18禁在线播放成人免费| 亚洲国产精品国产精品| 人成视频在线观看免费观看| 色视频在线一区二区三区| 久久久久久久国产电影| 满18在线观看网站| √禁漫天堂资源中文www| 99久久精品国产国产毛片| 少妇的逼水好多| 亚洲怡红院男人天堂| 久久久久精品性色| 日韩成人伦理影院| 极品人妻少妇av视频| 欧美丝袜亚洲另类| 你懂的网址亚洲精品在线观看| 久久午夜综合久久蜜桃| 久久精品国产鲁丝片午夜精品| av在线观看视频网站免费| 91久久精品国产一区二区成人| 久久婷婷青草| 亚洲av成人精品一二三区| 少妇人妻精品综合一区二区| 国产免费现黄频在线看| 国产视频首页在线观看| av黄色大香蕉| 久久久亚洲精品成人影院| 99久久综合免费| 热99久久久久精品小说推荐| 日本vs欧美在线观看视频| 国产精品国产三级国产专区5o| 熟女电影av网| 在线观看美女被高潮喷水网站| 极品少妇高潮喷水抽搐| 只有这里有精品99| 99九九在线精品视频| 99热这里只有精品一区| 精品国产一区二区三区久久久樱花| 搡女人真爽免费视频火全软件| 免费日韩欧美在线观看| 制服诱惑二区| 熟女人妻精品中文字幕| 色网站视频免费| 国产日韩一区二区三区精品不卡 | 亚洲欧美成人精品一区二区| 亚洲av男天堂| 久久人人爽人人片av| 全区人妻精品视频| 免费av中文字幕在线| 亚洲国产成人一精品久久久| 高清黄色对白视频在线免费看| 免费观看无遮挡的男女| 两个人免费观看高清视频| 99热国产这里只有精品6| 少妇人妻精品综合一区二区| 色网站视频免费| 免费大片18禁| 精品亚洲成国产av| 一区在线观看完整版| 日韩亚洲欧美综合| 国产探花极品一区二区| 亚州av有码| 亚洲国产成人一精品久久久| 欧美精品人与动牲交sv欧美| 大片免费播放器 马上看| 人妻 亚洲 视频| 搡女人真爽免费视频火全软件| 久久久久网色| 99国产综合亚洲精品| 观看美女的网站| 秋霞伦理黄片| 一区二区三区精品91| 人妻人人澡人人爽人人| 人妻一区二区av| 一级a做视频免费观看| 久久精品国产a三级三级三级| 街头女战士在线观看网站| 丝袜脚勾引网站| 久久久久久久久久人人人人人人| 久久久精品94久久精品| 日本91视频免费播放| 亚洲色图 男人天堂 中文字幕 | 母亲3免费完整高清在线观看 | 男人爽女人下面视频在线观看| 国产免费现黄频在线看| 亚洲国产精品一区三区| 国产亚洲精品第一综合不卡 | 日韩制服骚丝袜av| 亚洲成人一二三区av| 日韩一本色道免费dvd| 国产精品熟女久久久久浪| 成人免费观看视频高清| 精品少妇久久久久久888优播| 免费看不卡的av| √禁漫天堂资源中文www| av在线老鸭窝| 国产极品粉嫩免费观看在线 | 精品视频人人做人人爽| 精品午夜福利在线看| 国产深夜福利视频在线观看| 久久99蜜桃精品久久| a级毛色黄片| 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 亚洲欧美一区二区三区黑人 | 亚洲精品乱码久久久久久按摩| 久久国内精品自在自线图片| 久久国产精品大桥未久av| 色视频在线一区二区三区| 99久久精品一区二区三区| 女人精品久久久久毛片| 亚洲av综合色区一区| 免费高清在线观看视频在线观看| 免费日韩欧美在线观看| 久久久久久久久久久免费av| 国产亚洲午夜精品一区二区久久| 亚洲欧美色中文字幕在线| 成人国产av品久久久| 9色porny在线观看| 久久久精品免费免费高清| 亚洲av福利一区| 国产高清三级在线| 一本—道久久a久久精品蜜桃钙片| 精品人妻一区二区三区麻豆| 精品久久久久久电影网| 久久精品国产a三级三级三级| 国产欧美日韩综合在线一区二区| 91精品国产九色| 免费观看a级毛片全部| 97精品久久久久久久久久精品| 亚洲欧美一区二区三区黑人 | 国产精品一国产av| 建设人人有责人人尽责人人享有的| 蜜臀久久99精品久久宅男| 亚洲人与动物交配视频| 亚洲av中文av极速乱| 国产视频内射| 在线观看免费日韩欧美大片 | 日产精品乱码卡一卡2卡三| 最近的中文字幕免费完整| 精品熟女少妇av免费看| 亚洲国产最新在线播放| 久久鲁丝午夜福利片| 久久综合国产亚洲精品| 91精品一卡2卡3卡4卡| 9色porny在线观看| 人妻一区二区av| 黑人猛操日本美女一级片| 国产免费又黄又爽又色| 一边亲一边摸免费视频| 国产亚洲av片在线观看秒播厂| 日韩大片免费观看网站| 日本欧美视频一区| 大片电影免费在线观看免费| 久久婷婷青草| 中文字幕最新亚洲高清| 欧美老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 高清视频免费观看一区二区| av在线播放精品| 欧美日韩综合久久久久久| 男人爽女人下面视频在线观看| 十八禁网站网址无遮挡| 日日爽夜夜爽网站| 国产精品不卡视频一区二区| 久久午夜综合久久蜜桃| 国产不卡av网站在线观看| 18禁在线播放成人免费| 日韩,欧美,国产一区二区三区| 18禁在线无遮挡免费观看视频| 国产熟女欧美一区二区| 色婷婷久久久亚洲欧美| 亚洲精品aⅴ在线观看| 老司机影院成人| 精品人妻偷拍中文字幕| 国产日韩欧美视频二区| 欧美日韩视频精品一区| 免费黄网站久久成人精品| 一级毛片 在线播放| 美女中出高潮动态图| 久久午夜综合久久蜜桃| 成年人免费黄色播放视频| 99九九在线精品视频| 三级国产精品欧美在线观看| 久久精品夜色国产| 欧美日韩在线观看h| 丝瓜视频免费看黄片| 大码成人一级视频| av视频免费观看在线观看| 久久久久久久精品精品| 亚洲经典国产精华液单| 亚洲综合精品二区| 国产永久视频网站| 婷婷色av中文字幕| 这个男人来自地球电影免费观看 | 久久久久精品性色| 草草在线视频免费看| 观看美女的网站| 国产又色又爽无遮挡免| www.色视频.com| 999精品在线视频| 精品久久久噜噜| 九九久久精品国产亚洲av麻豆| 在线 av 中文字幕| 看免费成人av毛片|