• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A theoretical investigation of glide dislocations in BN/AlN heterojunctions

    2022-11-21 09:36:42ShujunZhang張淑君
    Chinese Physics B 2022年11期

    Shujun Zhang(張淑君)

    Department of Physics,Chongqing Three Gorges University,Wanzhou 404100,China

    Glide dislocations with periodic pentagon-heptagon pairs are investigated within the theory of one-dimensional misfit dislocations in the framework of an improved Peierls–Nabarro (P–N) equation in which the lattice discreteness is fully considered. We find an approximate solution to handle misfit dislocations,where the second-order derivative appears in the improved P–N equation. This result is practical for periodic glide dislocations with narrow width,and those in the BN/AlN heterojunction are studied. The structure of the misfit dislocations and adhesion work are obtained explicitly and verified by first-principles calculations. Compared with shuffle dislocations, the compression force in the tangential direction of glide dislocations has a greater impact on the normal direction, and the contributions of the normal displacement to the interfacial energy cannot simply be ignored.

    Keywords: interfacial misfit dislocation,misfit dislocation energy

    1. Introduction

    It is well known that a large number of dislocations are often induced under mismatch strain field in crystal composites due to inevitable mismatch between interfaces of two different types of crystals. Frank and van der Merwe[1]proposed the concept of misfit dislocations when studying monolayers on crystalline substrates, which is referred to as the Frenkel–Kontorova model. Historically, the well-known Peierls–Nabarro(P–N)model[2,3]was the first to describe dislocation cores at the atomic scale. Later, van der Merwe[4,5]extended the P–N theory to investigate the interface between two semi-infinite crystals and introduced various elastic parameters and lattice constants. Dundurs and Hetenyi[6]produced an explicit expression for the stress function in the limiting case of concentrated forces acting perpendicular to the interface of two semi-infinite crystals based on the Airy stress function in problems from the theory of elasticity,which may be found in the review by Muskhelishvili.[7]Dundurs then obtained the Airy stress function with dislocations at the interface of two different lattices through an analogy between concentrated forces and edge dislocations.[8]Based on Dundur’s results and within the framework of linear elastostatics, the periodic interfacial misfit dislocation equation was discovered by Yaoet al.[9,10]Since then,the appearance of second-order derivative terms has further developed the P–N theory for misfit dislocations,[11]which has been applied to reveal the associated core structure.[11,12]

    Currently, as interface structures and the resultant properties of interfaces play a vital role in determining the material strength, many investigations focused on the influences of misfit dislocations toward the resulting mechanical properties. Although the atomic configuration of interfaces can be determined from the relationship between the mass center displacement and the relative displacement,which has been verified in a two-dimensional(2D)AlN/BN heterojunctions,there are some discrepancies between the theoretical and numerical results for the displacement of shuffle dislocations along interfacial spacings. There are two kinds of interfacial misfit dislocations in 2D honeycomb structures: Glide dislocations with a periodic array of pentagon-heptagon rings,and shuffle dislocations with a periodic array of hexagon-octagon rings. Many studies on the structural stability of two kinds of dislocation,e.g.,reviewed by Zhanget al.[13]and Yaoet al.,[14]have been studied for graphene. This indicates that a similar situation also exists at the interface of BN/AlN heterojunctions, which involves the structural stability of 1D direction misfits. The adhesion work is generally used to determine the most likely form of dislocations. However,to the author’s knowledge,the structure of glide dislocations for honeycomb structures in 2D heterojunctions has not been addressed theoretically.

    Recently, we extended the original P–N model by considering interface effects and applied it to the investigation of misfit dislocations where the lattice parameters differed in one direction only. In the present work, we focus on glide dislocations with periodic pentagon-heptagon pairs in AlN/BN heterojunction interfaces.The narrow interfacial spacing at interfaces where glide dislocations are located indicates that the influence of the interfacial spacing variations caused by misfit dislocations at normal interfaces needs to be considered.

    2. The γ-surface of glide dislocations

    Dislocation core structures and mobilities are usually studied using the classic P–N model.[15–20]However,as arrays of atoms at the interface have varying lattice parameters, van der Merwe[5]proposed a reference lattice to represent the effective interactions between two dissimilar semi-infinite crystals. As illustrated in Fig.1(a),we consider a 2D honeycomb bi-crystal consisting of boron nitride (BN) and aluminum nitride (AlN) with periodic dislocation arrays placed at the interface. Throughout this paper,the convention is to useaandbto denote the properties of crystals above and below the interface,respectively. Thus,aandb,μaandμb,andνaandνbdesignate the lattice parameters, shear moduli, and Poisson’s ratios,respectively. According to the periodicity of misfit dislocations,the parametercof a reference lattice is defined as[5]

    However, there is no geometric relationship similar to Eq. (1) in the direction of the interfacial distance. The distancedis between the two atomic planes on either side of the interface and depends on the bond strength between atoms at the upper and lower planes. A Cartesian coordinate system is chosen with the positivey-axis extending along the normal direction of the interface in the upper half-crystal, and thexaxis along the direction of the slip plane,as shown in Fig.1(a).Variations in energy with the interface distance can be approximated as

    Fig.1. (a)Glide dislocations in the adhesive interface between semi-infinite crystals of BN and AlN with different lattice constants. (b)A reference lattice with the parameter c,generated from the lattice parameters a and b with uniform stretching and compression in the two semi-crystals.

    whered0is the equilibrium distance, ande0is the formation energy wheny=d0. The parametersVs,Vl, andξare determined from the results of numerical fitting. As illustrated in Fig. 1(b), the reference lattice with parameterscanddcare obtained using Eqs.(1)and(2),and the generalized stackingfault energy that considers the effective interaction between the two dissimilar semi-infinite crystals is calculated.

    The proposed method is applied to investigate misfit dislocations under the assumption that the interfacial spacing of the reference latticedcdoes not change compared to that of the heterojunction.[11,12]This assumption works well for shuffle dislocations where the distance between mismatch planes is large. However, the bonds will be greatly distorted in the core for glide dislocations at mismatch interfaces with narrow width. To release the energy generated by bond distortions,especially for small interfacial distances,it is necessary to consider changes in the interaction energy as the interfacial spacing varies. The conventional method is used to calculate the generalized stacking-fault energy for the reference lattice

    where the rigid translation can be horizontal or vertical slip displacements,which are relative to the cut plane. Therefore,theγ-surface (interaction energy per unit area) is defined as a 2D function of the relative displacements=(srx,sry). According to the relationship between the interfacial distance and energy and considering the interfacial atomic arrangement of two semi-crystals,theγ-surface can be expressed as

    The periodicity of theγ-surface can be expanded into a Fourier series,and the third-order approximation is based on the convergence characteristics of theγ-surface of glide dislocation,which can be described by

    whereδ1andδ2are dimensionless parameters to correct the energy along the slip plane. Here the relative displacement of the slip plane (srx=0) corresponds to the unstable equilibrium state, andγmis the height of the barrier. Thus, theγ-surface provides useful information about the core structure of the misfit dislocation and energy.

    To verify the theoretical results, the glide dislocations in a BN/AlN heterojunction are numerically simulated using the Viennaab initiosimulation package(VASP).The ion–electron interactions are handled using the projector augmented wave(PAW) method[21]in the generalized gradient approximation(GGA)of the Perdew–Burke–Ernzerhof(PBE)exchangecorrelation functions.[22–24]The plane-wave kinetic-energy cutoff is 600 eV, and the relaxation of the electronic degree of freedom is halted when the total energy change is smaller than 10-6eV. To prevent interactions between inter-layers, a 20 ?A vacuum spacing is used to simulate the single-layer case.Thekpoints are chosen as 17×1×1 for the reference lattice. For the BN/AlN heterojunction, thekpoints are chosen as 3×1×1 Monkhorst–Pack meshes due to the large size of the supercell. For the reference lattice and the BN/AlN heterojunction, we add a hydrogen bond saturation treatment to eliminate edge influences.

    The lattice parameters of BN and AlN are 2.513 ?A and 3.127 ?A,respectively. Based on Merwe’s definition of the lattice parameter for the reference lattice, we selectc=1.11a.From Eq.(2),dc=0.675 ?A represents the interfacial distance from the reference lattice shown in Fig. 2(a). As an approximation to the effective interactions of the BN/AlN heterojunction, Fig. 2(b) shows the results for theγ-surface using the numerical calculations based on density functional theory,and the corresponding parameters obtained from the fitting of Eq.(3)are shown in Table 1.

    Fig. 2. (a) Energy variation as a function of the interfacial distance d for c=1.11a. The solid line is given by Eq.(2),and the discrete dots are given by first-principles calculations. (b)Characteristic γ-surface in units of eV/c plotted as a function of the relative displacement(srx,sry)between two semiinfinite crystals given by cutting the reference lattice along the slip surface.The vertical displacement sry is measured in the bond length dc =0.675 ?A,c=2.789 ?A is the lattice parameter. The solid curves are given by Eq.(3),and the discrete dots are obtained from first-principles calculations.

    Table 1. Parameters for Eqs.(1)–(3)and Eq.(5).

    3. Structure and energy of misfit dislocations

    Following the original P–N theory, dislocations occur at the interface where two semi-infinite lattices are glued together. The boundary displacements for the upper and lower semi-infinite materials are denoted asuajandubj(j=x,y),respectively. To describe the interfacial atomic configuration,we introduce the relative and mass center displacements as

    Considering two dissimilar materials with different lattice constants,the dislocations are arranged periodically at the latticemismatched heterointerface in Fig.1(a).Thus,the relative displacement of interfacial atomsurj(j=x,y) as periodic functions satisfies

    The relative displacement of the reference latticesrxis often referred to as the plastic displacement, which is parallel to the Burgers vectorb. The dislocation is a topological defect characterized by the Burgers vector whose densityρis defined as dsrx/dx,and the distribution of infinitesimal dislocations is satisfied by

    The integral terms in the misfit dislocation equations describe the long-range interactions,which include the elastic effect inside semi-infinite lattices. Compared with Yaoet al.[9]and Zhanget al.,[12]Eq.(10) contains the second derivative modification of the results for the continuum elasticity theory.The appearance of the second derivative term reflects the discrete nature of the crystal lattice,which is generated by shortrange interactions between atoms at the heterointerface. The upper and lower semi-infinite crystals are BN and AlN glued together along the interface between narrowly(widely)spaced atom chains,which results in glide(shuffle)dislocations. For glide and shuffle dislocations, surface chains are different,which causes the second-order expansion coefficients to differ significantly. With reference to the results of the elastic constant (Poisson’s ratiosνa=0.229 andνb=0.461, and shear moduliμa=111.44 N/m andμb=38.92 N/m),we list the relevant parameters in Table 2 from the equations.This improved P–N equation is a nonlinear integro-differential equation and is difficult to solve analytically like the equations in Refs.[4,9].Considering thatsryis sufficiently small so that it can be ignored in Eq.(10),and the boundary conditionssrx(-p/2)=c/2 andsrx(p/2)=-c/2 are satisfied,this dislocation solution can be expressed as

    where the dimensional parametersk,δm, andδnare small modifications to the solution of the improved P–N equation.These parameters can be determined by fitting to this equation,as shown in Fig.3(a). When the parameters arek=1,δm=0,andδn=0, this is the exact solution to the misfit dislocation equation constructed by Yaoet al.[9]To present the contributions of the second derivative term,the parametert(t >0)is generated from the solution of the improved misfit dislocation equation,which is defined by

    From the solution of Yao’s equation,[9]the characteristic scale isζ=0.126 ?A whent=1.00, whereas for the solution of Eq. (10) has a characteristic scale ofζ= 0.287 ?A whent= 0.13. The characteristic scale of the misfit dislocation under the second-order correction is more than double from before the correction. This illustrates that when discreteness corrections are included,the solution of the misfit dislocation is corrected near the dislocation core. The dislocation density illustrates the difference between the solutions of the two equations,as shown in Fig.3(b).

    Table 2. The parameters(N/m)for Eqs.(10)and(11).

    Fig.3. (a)For glide dislocations,the left-hand side(red dashed curve)and right-hand side (blue solid curve) from Eq. (10) are compared for the fitting parameters of k=0.81, δm =-0.90, and δn =-0.02. The green solid curve represents the expression from Yao et al.[9] without discreteness correction. (b)Application of the dislocation solution(srx)and the dislocation density(ρ)to compare the differences between Yao et al.[9] and Eq. (10). The red dashed curve represents srx and ρ of Eq.(10)for Ω(2)xx /=0,and the green solid curve is for Ω(2)xx =0.

    Compared with shuffle dislocations,[11,12]two bonds break during the slip processes for the glide dislocation, and theγ-surface is much higher. This causes great compressive stress in the tangential direction of the interface and concentrates on the dislocation core,and the effect on the normal direction cannot be simply neglected. Equation(11)represents the influence of periodic interface mismatches on changes in the interface spacing. According to periodic misfit dislocation in relation to spatial variations, we assume that the changed form of the interfacial spacing is

    The dimensional parameterscy1,cy2,g1,...can be determined by fitting to Eq. (11), as shown in Fig. 4(a). In Fig. 4(b), the relative displacement along the normal direction of the interface can be obtained by using these parameters. Merwe applied the generalized stacking-fault energy of the reference lattice to replace the interface interaction energy for two semiinfinite crystals.[4]This assumption ignores the differences in the equilibrium of the interface distance between the crystals.Considering the relationship between the displacement of the mass center and the relative displacement,these terms can be expressed as

    Table 3. The parameters for Eqs.(15)and(16).

    Fig. 4. (a) The component of the normal stress to the adhesive interface,which is much larger at the dislocation core and falls off rapidly as the distance increases. The associated normal stress is drawn, and the fitting parameters(cy1=0.001,cy2=0.091,g1=5.2,cy3=0.056 and g2 =35.0) are obtained by comparing the left-hand side (red dashed curve)and right-hand side(blue solid curve)of Eq.(11). (b)Change in interfacial spacing induced by misfit dislocation.

    Fig.5. (a)The BN/AlN heterojunction consisting of an upper semi-crystal of BN and a lower semi-crystal of AlN glued together along a given surface and adding hydrogen-bond saturation treatment at the boundary. The small solid circles represent the atomic positions given after relaxation. (b) The theoretical and numerical results for the interface displacement of the a-plane(above misfit interface) and b-plane (below misfit interface) in comparison.(c)The red and blue solid curves represent the theoretical predictions for the displacements of the interface atoms uaj and ubj (j=x,y), respectively, and the gray and green dots represent the numerical results along the x and y directions,respectively.

    Here,scyrepresents the plastic deformation along the interfacial spacing direction when dislocations are in the periodic arrangement of the heterointerface. As the interfacial distance of the heterojunction(d)is different from that of the reference lattice(dc), the mass-center displacement along they-axis is

    As is shown in Fig. 5(a), the interfacial atomic configuration is evaluated from first-principles calculations after full relaxation. The definition of the dislocation width indicates that narrow dislocations will cause large compressive stresses at the coordinates of the dislocation core, which induces bending deformation at the interface. To verify the accuracy of the theoretical predictions for interfacial displacements based on the relationship between the mass-center and relative displacements, we compare the results with the first-principles calculations in Figs.5(b)and 5(c). The theoretical results are close to the numerical results for the interface atomic displacement,which indicates that the theory can be widely used to investigate misfit dislocations.

    The energy of misfit dislocations contains contributions from both the elastic strain energy and misfit energy, and the characteristic width of the dislocations depends on the results of the competition between them. These contributions are expressed in terms of the energy per unit length due to the periodic arrangement of misfit dislocations. Following the classical P–N theory,the boundary equilibrium equation at the interface provides the elastic strain energy through the variational formulation,which is written as

    whereρx= durx/dxandρy= dury/dx. The first term ofELprovides the elastic energy from long-range interaction based on the dislocation distribution from the elastic continuum theory and the superposition principle because the stress out of the dislocation core is slowly varying. The second term ofEscomes from discrete corrections at the interface. By substituting the solutions to Eqs. (10) and (11), the two terms of the elastic energy are

    Here,the parametersm=(1+δm)gandn=(1+δn)g. If the dislocation is regarded as a superposition of each infinitesimal dislocation,then the misfit energy is attractive and causes the dislocations to condense into nucleation. The misfit energy can be written as

    However, it is difficult to calculate the energy of misfit dislocations from first-principles calculations and to verify the accuracy of the theoretical results. As heterointerfaces greatly influence the properties of composites, theoretical studies have focused on understanding the microscopic mechanism that controls the strength and fracture of composite materials.Here,we introduce the theoretical adhesion work written as

    Table 4. Energy of shuffle and glide dislocation(eV/?A).

    4. Summary

    Periodic pentagon-heptagon defects are glide dislocations located between narrowly spaced atom chains at mismatched interfaces,which gives a discrepancy between glide and shuffle dislocations for interfacial interactions. Based on the definition of the restoring stress in the original P–N theory, a generalized stacking fault energy for the reference lattice is introduced as an effective interaction for the heterointerface.The approximate solution of the nonlinear integro-differential equation(improved P–N equation considering lattice discrete correction) is obtained based on Merwe’s solution. This approximate solution clarifies the characteristic width of the dislocation and estimates the effect of the compression force on the normal direction. When approximating the interface interaction energy,Merwe ignored the differences between the interfacial spacing of the heterojunction and reference lattice.To predict the interfacial atomic coordinates with a high accuracy,the relationship between the mass center displacement and relative displacement is slightly modified. The core structure of the misfit dislocations and the interfacial atomic configuration in BN/AlN heterostructures are detailedly expressed through the improved P–N equation, which is reliable compared with the results from first-principles calculations. The energy of misfit dislocation has two components: the energy of the elastic strain and the misfit energy. For larger misfits, interface atoms with a single-bond connection have a second-order correction along the tangential direction that greatly influences the elastic energy,while the normal displacement has no influence.Thus,the misfit energy provides the primary component.With a considerable impact on changes in the interfaces spacing when glide dislocations exist at the interface, the associated effect on the dislocation energy is compared with shuffle dislocations in Table 4. The elastic strain energy becomes an important term due to the interactions between the tangential and normal directions at the glide dislocation with a narrow interfacial spacing. Here, we verify the accuracy of the theoretical value by applying the correlation of the adhesion work with the energy of misfit dislocations and show that the structure for glide dislocations is more stable than that of shuffle dislocation based on the magnitude of the adhesion work.

    Appendix A: Coefficients for the improved Peierls–Nabarro equation

    According to previous studies on misfit dislocations, the lattice discreteness effect is considered to be caused by surface effects in the improved Peierls–Nabarro (P–N) equation.[11]The parameters are expressed with the properties of materials(Poisson’s ratioνand the shear modulusμ)as

    It is noted that the subscriptsaandbdistinguish the elastic constant of the upper and lower semi-infinite crystals,respectively. The discrete parametersβaandβbare related to the atomic arrangement of the interface where the dislocations are.For the surface chain of glide dislocations, these can be expressed as[13]

    Appendix B: Transformation of the integrand function

    Since the relative displacement and dislocation density are periodic functions, they describe the periodic dislocation array at the misfit interface. To facilitate the description of the transformation process of the integrand of the misfit equations,we usef(x)and df(x)/dxto represent periodic functions for Eqs.(8)and(9),respectively. The details of the derivation are given as follows:

    欧美潮喷喷水| 中文字幕av成人在线电影| 欧美日韩在线观看h| www.色视频.com| 国产日本99.免费观看| 女的被弄到高潮叫床怎么办| 日韩一区二区视频免费看| 又黄又爽又刺激的免费视频.| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久久久中文| 婷婷亚洲欧美| 精品熟女少妇av免费看| 在线观看av片永久免费下载| 十八禁网站免费在线| 国产女主播在线喷水免费视频网站 | 伦理电影大哥的女人| 日韩精品青青久久久久久| 亚洲国产欧洲综合997久久,| 少妇的逼好多水| 少妇熟女欧美另类| 色综合站精品国产| 久久人人精品亚洲av| 99热只有精品国产| 午夜福利在线观看吧| 午夜精品国产一区二区电影 | 国产在线精品亚洲第一网站| 大香蕉久久网| 日本与韩国留学比较| 18禁在线播放成人免费| 国产精品一二三区在线看| 看黄色毛片网站| 国产女主播在线喷水免费视频网站 | 秋霞在线观看毛片| 精品久久久噜噜| 久久久午夜欧美精品| 我要搜黄色片| 国产成人aa在线观看| 尾随美女入室| 特级一级黄色大片| 国产午夜精品久久久久久一区二区三区 | 波多野结衣高清无吗| 久久综合国产亚洲精品| 亚洲欧美中文字幕日韩二区| 真人做人爱边吃奶动态| 此物有八面人人有两片| 久久久精品欧美日韩精品| 一级毛片电影观看 | 精品一区二区三区av网在线观看| 一个人看视频在线观看www免费| 亚洲成人中文字幕在线播放| videossex国产| 又黄又爽又刺激的免费视频.| 一级黄色大片毛片| 久久欧美精品欧美久久欧美| 天美传媒精品一区二区| 欧美成人精品欧美一级黄| 在线a可以看的网站| 亚洲熟妇熟女久久| 99在线视频只有这里精品首页| 亚洲精品乱码久久久v下载方式| 亚洲无线观看免费| 午夜福利18| 成熟少妇高潮喷水视频| 联通29元200g的流量卡| 国产精品亚洲美女久久久| 国产三级中文精品| 久久中文看片网| 简卡轻食公司| 又黄又爽又刺激的免费视频.| 99热6这里只有精品| 国产午夜精品久久久久久一区二区三区 | 极品教师在线视频| 国产精品一区二区三区四区免费观看 | 亚洲最大成人中文| 亚洲乱码一区二区免费版| 简卡轻食公司| 插逼视频在线观看| 亚洲精品粉嫩美女一区| 国产单亲对白刺激| 波野结衣二区三区在线| 99在线人妻在线中文字幕| 九九爱精品视频在线观看| 亚洲国产高清在线一区二区三| 丰满人妻一区二区三区视频av| 最近在线观看免费完整版| 国产激情偷乱视频一区二区| 日韩欧美精品v在线| 一个人观看的视频www高清免费观看| 日本三级黄在线观看| 此物有八面人人有两片| 男女视频在线观看网站免费| 丝袜喷水一区| 午夜福利18| 一区二区三区免费毛片| 91精品国产九色| 91午夜精品亚洲一区二区三区| 综合色丁香网| 欧美成人一区二区免费高清观看| 99热这里只有是精品50| 成人欧美大片| 五月伊人婷婷丁香| 国产精品美女特级片免费视频播放器| 一级毛片aaaaaa免费看小| 国产精品久久久久久亚洲av鲁大| 18禁在线播放成人免费| 老司机福利观看| 91久久精品电影网| 少妇裸体淫交视频免费看高清| 国产精品国产高清国产av| 日本精品一区二区三区蜜桃| 99在线视频只有这里精品首页| 99视频精品全部免费 在线| 黄色视频,在线免费观看| 国产精品永久免费网站| 秋霞在线观看毛片| 国产人妻一区二区三区在| 一级毛片aaaaaa免费看小| 国产精品无大码| 精品欧美国产一区二区三| 亚洲天堂国产精品一区在线| 午夜福利在线在线| 亚洲va在线va天堂va国产| 亚洲色图av天堂| 99九九线精品视频在线观看视频| 日本一本二区三区精品| 又粗又爽又猛毛片免费看| 久久午夜福利片| 亚洲国产日韩欧美精品在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 好男人在线观看高清免费视频| 看免费成人av毛片| 精品久久久久久久久亚洲| 免费在线观看成人毛片| 网址你懂的国产日韩在线| 噜噜噜噜噜久久久久久91| 亚洲在线自拍视频| 午夜福利在线在线| 久久人人爽人人片av| 国产av在哪里看| 最近2019中文字幕mv第一页| 内射极品少妇av片p| 激情 狠狠 欧美| 级片在线观看| 18禁黄网站禁片免费观看直播| 亚洲欧美日韩高清专用| 久久亚洲国产成人精品v| 成人特级av手机在线观看| 午夜免费男女啪啪视频观看 | 3wmmmm亚洲av在线观看| 国产精品美女特级片免费视频播放器| 日本成人三级电影网站| 亚洲七黄色美女视频| a级一级毛片免费在线观看| 国产av不卡久久| 一夜夜www| 丰满乱子伦码专区| 日本-黄色视频高清免费观看| 我要搜黄色片| 国产精品99久久久久久久久| 亚洲熟妇熟女久久| 欧美极品一区二区三区四区| 22中文网久久字幕| 免费大片18禁| 欧美激情久久久久久爽电影| 国产一级毛片七仙女欲春2| 成人永久免费在线观看视频| 亚洲国产欧美人成| 欧美最黄视频在线播放免费| 精品一区二区免费观看| 国产单亲对白刺激| 国产精品,欧美在线| 简卡轻食公司| av.在线天堂| 欧美xxxx性猛交bbbb| 免费观看在线日韩| 性色avwww在线观看| 亚洲成人av在线免费| 最近手机中文字幕大全| 两性午夜刺激爽爽歪歪视频在线观看| 色哟哟·www| 午夜免费男女啪啪视频观看 | 国产精品三级大全| 日韩欧美国产在线观看| 久久这里只有精品中国| 精品日产1卡2卡| 国产精品av视频在线免费观看| 国产在视频线在精品| 一进一出好大好爽视频| 黄色欧美视频在线观看| 欧美一区二区国产精品久久精品| 久久久久久久亚洲中文字幕| 精品一区二区免费观看| 美女被艹到高潮喷水动态| 天堂√8在线中文| 国产欧美日韩精品一区二区| 国产精品久久久久久精品电影| 蜜桃久久精品国产亚洲av| 久久久久久久久大av| 国产综合懂色| 男女做爰动态图高潮gif福利片| 青春草视频在线免费观看| 国产精品精品国产色婷婷| 天天一区二区日本电影三级| 久久这里只有精品中国| 日韩精品中文字幕看吧| 超碰av人人做人人爽久久| .国产精品久久| 三级毛片av免费| av在线蜜桃| 日日摸夜夜添夜夜爱| 国产成人精品久久久久久| 欧美色视频一区免费| 一进一出抽搐gif免费好疼| 少妇人妻精品综合一区二区 | 黄色欧美视频在线观看| 亚洲精品日韩av片在线观看| 天堂网av新在线| 草草在线视频免费看| 精品久久久久久久久久久久久| 热99在线观看视频| 国产精品乱码一区二三区的特点| 亚洲欧美中文字幕日韩二区| 日日啪夜夜撸| 亚洲精品456在线播放app| www.色视频.com| 国产精品人妻久久久久久| 国产成人影院久久av| 国产高清视频在线播放一区| 免费在线观看成人毛片| 22中文网久久字幕| 久久久久久九九精品二区国产| 中文字幕人妻熟人妻熟丝袜美| 久久人人精品亚洲av| 欧美极品一区二区三区四区| 丰满人妻一区二区三区视频av| 久久久精品大字幕| 日本精品一区二区三区蜜桃| 日韩一区二区视频免费看| 国产一区二区亚洲精品在线观看| 亚洲丝袜综合中文字幕| 俄罗斯特黄特色一大片| 国产高清三级在线| www.色视频.com| 亚洲av成人精品一区久久| 俄罗斯特黄特色一大片| 国产探花在线观看一区二区| 亚洲精品国产成人久久av| av在线亚洲专区| 久久综合国产亚洲精品| 国产亚洲精品综合一区在线观看| 91在线精品国自产拍蜜月| 91久久精品电影网| 午夜精品国产一区二区电影 | 国产av不卡久久| 国产成人freesex在线 | 亚洲性夜色夜夜综合| 久久精品91蜜桃| 秋霞在线观看毛片| 婷婷六月久久综合丁香| 菩萨蛮人人尽说江南好唐韦庄 | 精品一区二区三区视频在线观看免费| 偷拍熟女少妇极品色| 白带黄色成豆腐渣| 99热6这里只有精品| 丰满人妻一区二区三区视频av| 亚洲欧美日韩东京热| 亚洲av免费在线观看| av天堂中文字幕网| 啦啦啦观看免费观看视频高清| 久久久色成人| 国产老妇女一区| 久99久视频精品免费| 永久网站在线| 国产精品一区二区免费欧美| 婷婷色综合大香蕉| 久久国内精品自在自线图片| 在线观看av片永久免费下载| 成人美女网站在线观看视频| 亚洲精品国产成人久久av| 免费黄网站久久成人精品| 亚洲av一区综合| 国产精品一区二区性色av| 日韩 亚洲 欧美在线| 精品国产三级普通话版| 天堂影院成人在线观看| 中文字幕熟女人妻在线| 久久人妻av系列| 床上黄色一级片| 欧美潮喷喷水| 91久久精品国产一区二区成人| 国产蜜桃级精品一区二区三区| 久久综合国产亚洲精品| av天堂在线播放| 国产伦精品一区二区三区四那| 成人无遮挡网站| 草草在线视频免费看| 波野结衣二区三区在线| 国内精品久久久久精免费| 乱系列少妇在线播放| 日韩制服骚丝袜av| 国产毛片a区久久久久| 欧美成人一区二区免费高清观看| 日日啪夜夜撸| 国产在视频线在精品| 超碰av人人做人人爽久久| 在线天堂最新版资源| 黄色欧美视频在线观看| 午夜精品在线福利| 日本免费一区二区三区高清不卡| 又爽又黄无遮挡网站| 亚洲成av人片在线播放无| 亚洲熟妇熟女久久| 99久久无色码亚洲精品果冻| 国产午夜福利久久久久久| 直男gayav资源| 成人午夜高清在线视频| 免费av毛片视频| 大香蕉久久网| 国产精品美女特级片免费视频播放器| 久久精品国产自在天天线| 中文字幕av在线有码专区| 99在线视频只有这里精品首页| av国产免费在线观看| 免费观看精品视频网站| 久久久久九九精品影院| 亚洲国产精品sss在线观看| 在线播放无遮挡| 我要搜黄色片| 午夜福利18| 免费av不卡在线播放| 春色校园在线视频观看| 亚洲国产精品sss在线观看| 成年版毛片免费区| 国产美女午夜福利| 国产精品,欧美在线| 少妇熟女aⅴ在线视频| 亚洲久久久久久中文字幕| 一夜夜www| 又粗又爽又猛毛片免费看| 熟妇人妻久久中文字幕3abv| 人妻少妇偷人精品九色| av国产免费在线观看| 日韩欧美在线乱码| 秋霞在线观看毛片| 欧美性猛交黑人性爽| 人人妻,人人澡人人爽秒播| 欧洲精品卡2卡3卡4卡5卡区| av免费在线看不卡| av福利片在线观看| 成人亚洲精品av一区二区| 春色校园在线视频观看| 久久婷婷人人爽人人干人人爱| 高清午夜精品一区二区三区 | 国内精品一区二区在线观看| 亚洲av二区三区四区| 深爱激情五月婷婷| 国内精品美女久久久久久| 人妻久久中文字幕网| 久久国产乱子免费精品| 老师上课跳d突然被开到最大视频| 18禁裸乳无遮挡免费网站照片| 国产黄a三级三级三级人| 国产一区二区在线观看日韩| 精品久久久久久久人妻蜜臀av| 亚洲婷婷狠狠爱综合网| 欧美色视频一区免费| 美女cb高潮喷水在线观看| 国产亚洲91精品色在线| 久久欧美精品欧美久久欧美| 久久国产乱子免费精品| 热99re8久久精品国产| 寂寞人妻少妇视频99o| 乱系列少妇在线播放| 亚洲中文字幕一区二区三区有码在线看| 99riav亚洲国产免费| 中国国产av一级| 欧美日韩精品成人综合77777| 亚洲av五月六月丁香网| 免费看av在线观看网站| 国产精品爽爽va在线观看网站| 男人舔女人下体高潮全视频| 黄色日韩在线| 极品教师在线视频| 国产成人a∨麻豆精品| 久久久久久久午夜电影| 此物有八面人人有两片| 欧美激情国产日韩精品一区| 国产精品久久视频播放| 高清日韩中文字幕在线| 国产三级中文精品| 免费人成在线观看视频色| 久久精品91蜜桃| 91在线观看av| 国产精品99久久久久久久久| 亚洲成人av在线免费| 在线a可以看的网站| 国产私拍福利视频在线观看| 国产成人91sexporn| 99视频精品全部免费 在线| 国产又黄又爽又无遮挡在线| 午夜久久久久精精品| 国产精品久久电影中文字幕| 中文在线观看免费www的网站| 又爽又黄a免费视频| 国产午夜精品久久久久久一区二区三区 | 午夜福利在线观看免费完整高清在 | 在线观看一区二区三区| 欧美日韩精品成人综合77777| 日韩欧美一区二区三区在线观看| 国产高清激情床上av| 国内揄拍国产精品人妻在线| 少妇人妻一区二区三区视频| 一边摸一边抽搐一进一小说| 赤兔流量卡办理| 成人亚洲欧美一区二区av| 国产老妇女一区| 午夜福利高清视频| 国产精品福利在线免费观看| 久久精品国产亚洲av香蕉五月| 热99在线观看视频| 精品乱码久久久久久99久播| 麻豆久久精品国产亚洲av| 真人做人爱边吃奶动态| 18+在线观看网站| 精品国内亚洲2022精品成人| 18+在线观看网站| 成人一区二区视频在线观看| 欧美中文日本在线观看视频| 午夜爱爱视频在线播放| 乱系列少妇在线播放| 在现免费观看毛片| 成人av在线播放网站| 97热精品久久久久久| 久久99热6这里只有精品| 国产精品一二三区在线看| 亚洲精品国产av成人精品 | 亚洲欧美日韩卡通动漫| 超碰av人人做人人爽久久| 狠狠狠狠99中文字幕| 69av精品久久久久久| 国产精品久久视频播放| 观看美女的网站| 日本a在线网址| 久久久久久大精品| 91久久精品国产一区二区三区| 久久久久久久久久黄片| 国产三级在线视频| 成人国产麻豆网| 99久久精品热视频| 日韩欧美精品v在线| av中文乱码字幕在线| 亚洲一区二区三区色噜噜| 欧美bdsm另类| 国产免费男女视频| 国产在线精品亚洲第一网站| 真实男女啪啪啪动态图| 久久久久性生活片| 啦啦啦啦在线视频资源| 国产人妻一区二区三区在| 久久人人爽人人片av| 桃色一区二区三区在线观看| 国产亚洲精品久久久com| 国产欧美日韩一区二区精品| 久久久国产成人免费| 国产精品嫩草影院av在线观看| 日韩高清综合在线| 俺也久久电影网| 免费人成视频x8x8入口观看| 少妇猛男粗大的猛烈进出视频 | 日韩中字成人| 大型黄色视频在线免费观看| 精品人妻一区二区三区麻豆 | 又黄又爽又免费观看的视频| 97超碰精品成人国产| 成年版毛片免费区| 午夜福利18| 精华霜和精华液先用哪个| 日韩欧美国产在线观看| 搡老岳熟女国产| 国产亚洲精品久久久com| 两性午夜刺激爽爽歪歪视频在线观看| 九九热线精品视视频播放| 别揉我奶头 嗯啊视频| 一级a爱片免费观看的视频| 禁无遮挡网站| av专区在线播放| 深夜a级毛片| 国产69精品久久久久777片| 国产精品亚洲一级av第二区| 亚洲国产欧美人成| 直男gayav资源| 欧美bdsm另类| 少妇人妻精品综合一区二区 | 日本撒尿小便嘘嘘汇集6| 亚洲色图av天堂| 亚洲最大成人av| 国产亚洲精品综合一区在线观看| 午夜a级毛片| 亚洲欧美日韩高清专用| 在线播放无遮挡| 97超视频在线观看视频| 亚洲av电影不卡..在线观看| 一a级毛片在线观看| 97超级碰碰碰精品色视频在线观看| 又黄又爽又免费观看的视频| 99在线视频只有这里精品首页| 亚洲电影在线观看av| 中文字幕精品亚洲无线码一区| av中文乱码字幕在线| 亚洲国产精品国产精品| 国产伦精品一区二区三区视频9| 啦啦啦韩国在线观看视频| 长腿黑丝高跟| 少妇的逼水好多| 少妇猛男粗大的猛烈进出视频 | 99热这里只有是精品在线观看| 欧美又色又爽又黄视频| 国产av一区在线观看免费| 成人特级av手机在线观看| 国产精品不卡视频一区二区| 亚洲婷婷狠狠爱综合网| 亚洲电影在线观看av| 最新在线观看一区二区三区| av免费在线看不卡| 观看免费一级毛片| 乱人视频在线观看| 日韩成人伦理影院| 97热精品久久久久久| 国产伦精品一区二区三区四那| 国产黄a三级三级三级人| 天天一区二区日本电影三级| 嫩草影院入口| 亚洲精品日韩在线中文字幕 | 成年免费大片在线观看| 99久久中文字幕三级久久日本| 日本在线视频免费播放| 嫩草影视91久久| 久久人人爽人人片av| 日韩欧美精品v在线| 美女 人体艺术 gogo| 此物有八面人人有两片| 99久国产av精品| 一区福利在线观看| 亚洲天堂国产精品一区在线| 18禁在线播放成人免费| 欧美日韩一区二区视频在线观看视频在线 | 午夜免费男女啪啪视频观看 | 特级一级黄色大片| 黄色视频,在线免费观看| 变态另类成人亚洲欧美熟女| 女人十人毛片免费观看3o分钟| 久久精品91蜜桃| 日本欧美国产在线视频| www日本黄色视频网| 直男gayav资源| 中国国产av一级| 亚洲国产精品合色在线| 简卡轻食公司| 欧美日本亚洲视频在线播放| 中文在线观看免费www的网站| 在线免费观看的www视频| 在线播放国产精品三级| 久久久久久国产a免费观看| 国产探花在线观看一区二区| 狂野欧美激情性xxxx在线观看| 国产精品99久久久久久久久| 午夜福利在线观看吧| 2021天堂中文幕一二区在线观| 欧美极品一区二区三区四区| 成年女人永久免费观看视频| 91狼人影院| 精品欧美国产一区二区三| 日本黄色视频三级网站网址| 99久国产av精品| 亚洲国产欧美人成| 国产精品99久久久久久久久| 麻豆国产av国片精品| 免费在线观看影片大全网站| 一进一出抽搐动态| 久久人人精品亚洲av| 99热这里只有是精品50| 亚洲av成人av| 又黄又爽又免费观看的视频| 男人的好看免费观看在线视频| 91av网一区二区| 国产大屁股一区二区在线视频| 欧美性猛交╳xxx乱大交人| 搞女人的毛片| 99在线视频只有这里精品首页| 中文字幕av成人在线电影| 午夜久久久久精精品| 一夜夜www| 久久热精品热| 欧美3d第一页| 亚洲精品粉嫩美女一区| 小说图片视频综合网站| 乱系列少妇在线播放| 久久精品国产清高在天天线| 日日摸夜夜添夜夜添小说| 男女之事视频高清在线观看| 三级国产精品欧美在线观看| 人妻少妇偷人精品九色| 精品国产三级普通话版| 午夜精品一区二区三区免费看| 亚洲aⅴ乱码一区二区在线播放| 精品福利观看| 欧美3d第一页| 国产私拍福利视频在线观看| 少妇熟女aⅴ在线视频| 亚洲精品国产av成人精品 | 午夜激情欧美在线| 波多野结衣高清无吗| 天堂网av新在线| a级毛片a级免费在线| 国内精品美女久久久久久|