• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interface engineering of transition metal dichalcogenide/GaN heterostructures: Modified broadband for photoelectronic performance

    2022-11-21 09:30:06YinluGao高寅露KaiCheng程開XueJiang蔣雪andJijunZhao趙紀(jì)軍
    Chinese Physics B 2022年11期

    Yinlu Gao(高寅露) Kai Cheng(程開) Xue Jiang(蔣雪) and Jijun Zhao(趙紀(jì)軍)

    1Key Laboratory of Materials Modification by Laser,Ion and Electron Beams(Dalian University of Technology),Ministry of Education,Dalian 116024,China

    2School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China

    The GaN-based heterostructures are widely used in optoelectronic devices, but the complex surface reconstructions and lattice mismatch greatly limit the applications. The stacking of two-dimensional transition metal dichalcogenide(TMD= MoS2, MoSSe and MoSe2) monolayers on reconstructed GaN surface not only effectively overcomes the larger mismatch,but also brings about novel electronic and optical properties.By adopting the reconstructed GaN(0001)surface with adatoms(N-ter GaN and Ga-ter GaN),the influences of complicated surface conditions on the electronic properties of heterostructures have been investigated. The passivated N-ter and Ga-ter GaN surfaces push the mid-gap states to the valence bands,giving rise to small bandgaps in heterostructures. The charge transfer between Ga-ter GaN surface and TMD monolayers occurs much easier than that across the TMD/N-ter GaN interfaces,which induces stronger interfacial interaction and larger valence band offset(VBO).The band alignment can be switched between type-I and type-II by assembling different TMD monolayers, that is, MoS2/N-ter GaN and MoS2/Ga-ter GaN are type-II, and the others are type-I. The absorption of visible light is enhanced in all considered TMD/reconstructed GaN heterostructures. Additionally,MoSe2/Ga-ter GaN and MoSSe/N-ter GaN have larger conductor band offset(CBO)of 1.32 eV and 1.29 eV,respectively,extending the range from deep ultraviolet to infrared regime. Our results revel that the TMD/reconstructed GaN heterostructures may be used for high-performance broadband photoelectronic devices.

    Keywords: GaN-based device, surface reconstructions, transition metal dichalcogenide (TMD), absorption spectra

    1. Introduction

    Group III nitrides are well-known wide-bandgap semiconductors with many applications in high-power, highvoltage and optoelectronic devices.The GaN-based blue lightemitting diodes (LED) realized the bright and energy-saving white light sources for the first time.[1]Moreover, the wide bandgap of GaN is suitable for deep ultraviolet (UV) optoelectronics. However, as the device application relies on the controlled heteroepitaxy of GaN thin film,which is essentially related to surface structure,deep knowledge about the atomic structure of GaN surface is highly desirable. Besides,a number of interfacial defects, mainly caused by the large lattice mismatch between GaN and the commonly used semiconductor materials(e.g.,Si and SiC),will heavily degrade the device performance.[2,3]During the same period, two-dimensional(2D)transition metal dichalcogenides(TMDs),such as MoX2(X= S, Se) with favorable mechanical properties, intrinsic direct bandgap of 1.1–1.9 eV and giant spin–orbit coupling(SOC), have attracted extensive attention in electronic and optoelectronic devices.[4,5]Most importantly, these 2D TMD monolayers and GaN have almost perfect lattice match of less than 1%.

    With dangling bond free surface and weak van der Waals(vdW) interlayer interaction among intrinsic TMD materials,random combinations of TMD and GaN can be chosen to stack in arbitrary sequence to create heterostructures. Not limited to the properties of individual component, the heterostructures can combine superior properties of both TMDs and GaN to achieve diverse functions. Heterostructures of 2D TMD sheet and GaN substrate hold great technological promise. Benefited from the excellent absorption capability,WSe2/GaN interface was constructed to better utilize the visible light wavelength range for photocatalytic water splitting.[6]Under solar illumination, GaN and MoS2monolayers acted as electron donor and electron acceptor, respectively. Additionally,MoS2/GaN vdW heterostructure exhibited great optical absorption in ultraviolet and visible light wavelengths.[7]To protect the GaN surface from contamination, nitridized MoS2/GaN was used as photocatalyst for hydrogen generation by water splitting. Compared with the heterostructure without nitridation interfacial layer, the band edges of MoS2moved upward by about 0.5 eV,which led to better electron accumulation capability at the GaN side.[8]In addition to photocatalysis,gate-tunable heterostructure diodes through 2D/GaN junction concurrently exhibited over 7 orders of magnitude modulation in rectification ratios and conductance.[9]WS2/GaN p–n junction fabricated by vdW rheotaxy showed superior performance with a small leakage current density of 29.6 μA/cm2at-1 V.[10]MoS2/GaN and MoS2/AlGaN heterointerfaces were also promising for photodetection because of their high electron mobility. However, their optical absorbance was limited within the UV range, which restrained their deployment in broadband photodetectors.[11]

    Despite the aforementioned advance,comprehensive understanding of the surface reconstruction at the interface of GaN-related heterostructures is still missing.In order to unveil the realistic surface condition of GaN, herein we address the most stable reconstructions of GaN (0001) surfaces, namely,N-ter GaN and Ga-ter GaN. The stability, electronic and optical properties of TMD/reconstructed GaN heterostructures have been investigated by using DFT calculations. The interaction between Ga-ter GaN surface and TMD monolayers are stronger due to the metallic character of Ga adatoms,resulting in larger valence band offset (VBO) than those of N-ter heterostructures. Both type-I and type-II band alignments can be attained by choosing TMD monolayer. In addition to the application in deep UV range, the larger CBO in MoSe2/Ga-ter GaN and MoSSe/N-ter GaN heterostructures provide opportunity for optoelectronic devices in short wavelength.

    2. Computational methods

    All calculations were implemented in Viennaab initiosimulation package (VASP) based on the density functional theory (DFT).[12]Within the generalized gradient approximation (GGA), PBE parameterization was selected for the exchange–correlation functional.[13]The electron–ion interactions were described by projector-augmented-wave potentials,and the electron wave functions were expanded in a plane wave basis with energy cutoff of 500 eV. For the Brillouin zone integration, a uniform spacing of 2π×0.03 ?A-1was used. The reconstructed GaN(0001)surface was modelled by a slab model with 4×4 lateral unit cells and five GaN bilayers.The underneath dangling bonds were saturated by pseudohydrogens with a valency of 0.75. Both GaN slab and TMD monolayers were relaxed until the force and energy was less than 0.01 eV/?A and 10-5eV,respectively,and the bottom layer of N atoms and pseudohydrogens were fixed. A 15 ?A vacuum layer was added to avoid the interaction due to periodic boundary condition. Our calculated lattice parameters for hexagonal GaN crystal and TMD(MoS2,MoSSe and MoSe2)monolayers are 3.24 ?A, 3.15 ?A, 3.22 ?A and 3.32 ?A, respectively, in good agreement with the experimental values(3.19 ?A,3.16 ?A,3.25 ?A,and 3.29 ?A).[14–16]

    The bandgaps of GaN crystal and TMD monolayers are given in Table S1,which are underestimated with regard to the experimental values due to well-known deficiency of the PBE functional.[17]In contrast, electronic structure calculations with the Heyd–Scuseria–Ernzerhof (HSE06) functional[18]overestimate the bandgaps of these systems, and the deviations for TMD monolayers by HSE06 are even larger than PBE values. Hence, HSE06 calculation with 0.31 fraction of Fock exchange was only used to obtain an accurate bandgap of GaN crystal and surfaces. Benefited from the little lattice mismatch (<1%) between 4×4 TMD monolayer and GaN(0001) surface, the TMD/reconstructed GaN heterostructures can be constructed by directly stacking TMD monolayers and GaN slab together and fully relaxing the heterostructures. The lattice parameters of TMD monolayers were adjusted to that of GaN surface. The Grimme DFT-D3 method was adopted to account for the long-range vdW interactions between TMD layer and GaN surfaces.[19]

    3. Results and discussion

    We firstly address the structural stability and electronic properties of GaN (0001) surface and TMD monolayers separately. The symmetry and local structure of GaN surface have been subject of recent investigations. For the most relevant Ga-polar GaN (0001) surface, several reconstructions,including Ga-adatom, N-adatom and Ga vacancy structures have been proven to be stable.[20–22]Herein, we deal with the N-adatom and Ga-adatom reconstructed models,which are most energetically favorable under N-and Ga-rich condition,respectively. As shown in Figs. 1(a)–1(b), for the N-adatom model(N-ter GaN),an N atom is located at theH3hollow site,while in the case of Ga-adatom(Ga-ter GaN),the Ga adatom sits at theT4site right above the second-layer N atom. Moreover, the stability dependence on the location of adlayer for different models are employed theoretically (Fig. S1). The commonly considered N(H3)and Ga(T4)locations are found to be the most stable, which agree with the experimental observation by scanning tunneling microscopy (STM).[23]The average separation between the Ga (N) adlayer and the host Ga layer is about 1.71 ?A (1.12 ?A). To obtain more accurate electronic structures of GaN surfaces,HSE functional is used.After the passivation, only a small amount of mid-gap states exists in the valence bands, which means all the dangling bonds are filled by the surface free electrons(Figs.S2(a)and S2(b)). In addition to MoS2and MoSe2monolayers,we also consider a Janus system, i.e., MoSSe, which has been synthesized in laboratory.[24]From PBE calculations, monolayer MoS2,MoSSe and MoSe2sheets exhibit a bandgap of 1.83 eV,1.47 eV and 1.26 eV,respectively,and both valence band minimum (VBM) and conduction band maximum (CBM) come from Mo atoms.

    Fig.1. Atom structures proposed for(a)N-adatom and(b)Ga-adatom GaN(0001)structures. The separation between the adlayer and host Gaterminated layer is 1.12 ?A and 1.71 ?A,respectively. (c)Structure of TMD(MoS2 or MoSe2)monolayer. (d)TMD/N-ter GaN heterostructure.

    Table 1. Vertical inter layer distance (Δd), binding energies (Eb), bandgap(Eg) and the valence band offset (VBO) of TMD/reconstructed GaN heterostructures.

    Taking MoS2/Ga-ter GaN as an example, six possible configurations of TMD/reconstructed GaN heterostructures with different atomic stacking orders are demonstrated in Fig.S3. As there are two sides in Janus MoSSe,two arrangements are possible for each heterostructure,which are referred to as MoSeS/GaN and MoSSe/GaN. According to the thermodynamic stability,all TMD/GaN heterostructures favor the C-type stacking configuration. For each heterostructure, the binding energy is calculated to characterize the TMD-GaN interaction as follows:

    whereEhetero,EGaNandETMDrepresent the energy of the whole system, reconstructed GaN surface and TMD monolayer,respectively.The smaller binding energy means stronger attraction between MoS2and GaN surface. The vertical interlayer distance, binding energy and bandgap of all TMD/GaN heterostructures with C-type stacking are summarized in Table 1. The interlayer distance is in the range of 2–3 ?A. The interfacial interaction is also analyzed by using charge difference. In general,the charge depletion and accumulation cause electron wavefunction polarization,resulting in the formation of interface dipoles. In turn,the band alignment will be modified by the dipoles, which will be discussed later. As shown in Fig.2,charge transfer apparently takes place between GaN and TMD monolayer, where the charge depletion mainly occurs in the GaN side(cyan color), and TMDs sides are accumulation regions (yellow color). Bader charge donated from N-adatom GaN(Ga-adatom GaN)to MoS2and MoSe2are calculated to be about 0.3321e(0.7192e)and 0.1494e(0.3377e),respectively, suggesting stronger interaction for MoS2due to larger electronegativity of S than Se. Although the interlayer spacings between TMD layers and Ga-ter GaN surface are larger than those of N-ter GaN cases,Ga-ter GaN surface exhibits stronger interaction with TMD monolayers. Accordingly,the charge transfer across the interfaces is enhanced by the metallic nature of additional Ga atoms.

    To shed further light on the underlying mechanism of orbital reconfiguration of TMD/GaN heterostructures, band structure and projected density of states (PDOSs) are calculated and presented in Fig. 3. For MoSe2/Ga-ter GaN heterostructure, both VBM and CBM are located at the highsymmetryΓpoint. While other TMD/GaN heterostructures are all indirect bandgap semiconductors. With PBE functional,the calculated bandgaps for MoS2/Ga-ter(N-ter)GaN,MoSeS/Ga-ter GaN, MoSSe/Ga-ter GaN and MoSe2/Ga-ter GaN are 0.38 eV (0.43 eV), 0.53 eV (0.46 eV), 0.59 eV(0.44 eV)and 0.44 eV(0.49 eV),respectively. Compared with those of GaN crystal(1.70 eV)and MoS2,MoSSe and MoSe2monolayers (1.83 eV, 1.47 eV and 1.26 eV), the bandgaps of TMD/GaN heterostructures are reduced due to the orbital reorganization. The mid-gap states come from the constructed GaN surface still exist, irrelevant to the stacking pattern of TMD monolayer. It is noteworthy that metallic states emerge at the interface when the interlayer distances are less than 2 ?A for the stacking configuration other than stack-C. Intuitively,for a given TMD/GaN heterostructure,the stacking configuration with semiconducting behavior should be more stable than those showing metallic behavior,as proven by our DFT calculations. In all TMD/N-ter GaN systems, strong hybridization occurs between 4d orbitals of Mo and N 2p orbitals,especially in MoSSe/N-ter GaN and MoSe2/N-ter GaN heterostructures.What is more, N 2p orbitals contribute mainly to the CBM,while the valance bands exhibit great orbital reorganization of TMD and N-ter GaN.The reorganization in TMD/Ga-ter GaN is much weaker than that in TMD/N-ter GaN heterostructures.

    Fig.2.The differential electronic charge density for MoS2/N-ter GaN,MoSeS/N-ter GaN,MoSSe/N-ter GaN,MoSe2/N-ter GaN,MoS2/Ga-ter GaN,MoSeS/Ga-ter GaN,MoSSe/Ga-ter GaN and MoSe2/Ga-ter GaN heterostructures. The isosurface value is set be to 3×10-4 eV/Bohr3.Yellow and cyan colors represent the charge accumulation and depletion regions,respectively. The purple balls are N atoms,cyan balls are Ga atoms,yellow balls are S atoms,beige balls are Se atoms,green balls are Mo atoms and white balls are H atoms.

    The band alignment at the interface of a heterostructure is of great importance for device applications. The charge transport behavior and optoelectronic response can be accurately controlled by forming different band alignments.In type-I heterostructure,both electrons and holes are restricted in the same domain with narrower bandgap,leading to quick electron–hole recombination. In consequence, type-I alignment is imperative for good performance in light emitting devices.In the case of type-II band alignment,either electrons or holes would migrate across the junction to reduce the system energy. Hence,electrons and holes could be well separated at different sides of a heterojunction, which is suited for optoelectronics and solar energy conversion. Herein, VBO against reconstructed GaN was calculated by using Wei’s core level method with the following equation:[25,26]

    where the first term is the core level energy of Mo-3d with respect to the VBM of monolayer TMD,the second term represents the core level energy Ga-2p of GaN relative to its VBM,and the last term is the energy difference between the core level energy of Mo-3d and Ga-2p from TMD/GaN heterostructures. Since standard DFT methods are able to predict accurate ground-state energies, the PBE functional could be used to obtain the core level energy and offer a reference to align the VBM of the two systems. The band edges and VBO values of all considered heterostructures from PBE calculations are plotted in Fig.4. At the DFT-PBE level of theory,we have obtained VBOs of 1.40 eV and 1.80 eV for MoS2/N-ter GaN and MoS2/Ga-ter GaN, respectively, in good agreement with the reported theoretical and experimental values (1.32 eV–1.86 eV).[8,27,28]Both type-I and type-II band alignments have been formed by interface engineering of TMD layer and reconstructed GaN surface,that is,only MoS2/GaN heterostructure forms type-II alignment,while the others belong to type-I. Once the GaN surface is passivated with Ga adatoms, the energy band would bend more seriously, which lead to a larger VBO.Compared with N adatoms,the metallicity of Ga adatoms makes it easier for charge transfer to TMD materials, which are directly reflected by the Bader charge analysis and the differential charge density(Fig.2). The reconstructed model considered here can strongly affect the charge transfer across the interface, which directly determines the interfacial dipole. As a result, the VBO values for TMD/Ga-ter GaN are systematically larger than those of TMD/N-ter GaN by 0.6–0.3 eV. Due to the severely underestimated bandgaps from PBE,the experimental values are adopted(GaN:3.40 eV,MoS2:1.90 eV,MoSSe:1.68 eV and MoSe2:1.58 eV)to evaluate the CBO for TMD/reconstructed GaN heterostructure The calculated CBO values for MoS2/Ga-ter GaN (Nter GaN), MoSeS/Ga-ter GaN, MoSSe/Ga-ter GaN and MoSe2/Ga-ter GaN heterostructures are 0.30 eV (0.10 eV),0.28 eV(0.72 eV),0.68 eV(1.29 eV)and 1.03 eV(1.32 eV),respectively. From MoS2to MoSSe and finally to MoSe2,the CBO value gradually increases,which allow inter-subband energy spacing in the near-infrared range (CBO>1 eV).[29]These heterostructures are more desirable for considering the requirement of extended short wavelength devices. Compared with well-established three-dimensional AlGaN/GaN heterojunction for deep UV optoelectronic applications,[30,31]TMD/GaN heterostructures effectively extend the absorption range to short-wave infrared region by regulating the component chalcogen element in TMD.Currently, GaAs-based heterostructures are the commercially available extended short wavelength devices. The CBO values in MoSSe/N-ter GaN,MoSe2/Ga-ter GaN and MoSe2/N-ter GaN is comparable to and even larger than that in InGaAs/AlGaAs(~1 eV).[32]

    Fig.3. The electron band structure and projected density of states(PDOS)for(a)MoS2/N-ter GaN,(b)MoSeS/N-ter GaN,(c)MoSSe/N-ter GaN,(d)MoSe2/N-ter GaN,(e)MoS2/Ga-ter GaN,(f)MoSeS/Ga-ter GaN,(g)MoSSe/Ga-ter GaN and(h)MoSe2/Ga-ter GaN heterostructures.For each panel,the black dotted curves are the positions of VBM and CBM and the dashed line corresponds to the Fermi level.

    Fig. 4. Band edge positions of (a) MoS2/N-ter GaN, (b) MoSeS/N-ter GaN, (c) MoSSe/N-ter GaN, (d) MoSe2/N-ter GaN, (e) MoS2/Ga-ter GaN,(f)MoSeS/Ga-ter GaN,(g)MoSSe/Ga-ter GaN and(h)MoSe2/Ga-ter GaN heterostructures with respect to the core levels. The bandgap of GaN crystal and monolayer MoS2,MoSSe and MoSe2 are adopted as the experimental values of 3.40 eV,1.90 eV,1.68 eV and 1.58 eV to determine the CBM positions. (i)The VBO values as function of TMD components.

    Furthermore,the absorption spectra of TMD/reconstructed GaN heterostructures are simulated by computing the complex dielectric functionε(ω)=ε1(ω)+iε2(ω), where the imaginary partε2is related to the absorption at a given frequencyωand the real partε1is obtained fromε2by using the Kramers–Kronig relation. The absorption coefficient can be calculated by

    wherecrepresents the speed of light in vacuum.[33]Figure 5 depicts the optical absorption spectra of our TMD/reconstructed GaN heterostructures (up) and the individual GaN and TMD monolayers(bottom). Due to the wide bandgap, pristine GaN crystal hardly absorb the visible light.Both the additional atoms (Ga-ter and N-ter) and the interface engineering with TMD monolayers narrow the bandgap,which strongly enhance the absorption in visible regime. Nevertheless,the heterostructures with Ga-ter GaN surface absorb light more efficiently than N-ter structures. The threshold values for absorption of photon energy in MoSe2/Ga-ter GaN and MoSSe/N-ter GaN are near 0.9 eV, which correspond to the electronic transition from the VBM of MoSe2(MoSSe)to that of Ga-ter GaN(N-ter GaN).The pronounced absorption edges for the other heterostructures are between 1 eV and 1.2 eV.The optical absorption spectra confirm the possibility of short wavelength devices application, especially in MoSe2/Ga-ter GaN and MoSSe/N-ter GaN heterostructures,which coincide with the band alignment analysis.

    Fig. 5. Calculated optical absorption spectra for TMD/reconstructed GaN heterostructures(up)and the intrinsic GaN and TMD monolayers.The shaded area indicates the visible light range.

    4. Conclusion

    In summary,we have investigated the stability,electronic and optical properties of TMD/reconstructed GaN heterostructures based on DFT calculations. According to previous experimental evidences and our calculations,both the N-adatom and Ga-adatom reconstructed GaN(0001)surfaces are chosen as substrate of TMD monolayers(MoS2,MoSSe and MoSe2).The calculated binding energies reveal that, the larger electronegativity of S atoms induces stronger attraction between MoS2and GaN surface. The mid-gap states originated from the reconstructed GaN surface are retained after forming the heterostructures, which effectively narrow the bandgap. The interaction between Ga-ter GaN and TMD monolayers are stronger due to the metallic character of the additional Ga atoms, which also bring about larger VBO values than Nter heterostructures. Type-II band alignment is realized in MoS2/N-ter GaN and MoS2/Ga-ter GaN,while the others are type-I band alignment. Therefore, the band alignment can be switched between type-I and type-II by experimentally assembling different TMD monolayers. What is more, the capability of visible light absorption is enhanced in all heterostructures. Besides the application in the deep UV rage, the large CBO in selected TMD/reconstructed GaN heterostructures offer new opportunity for the extended short wavelength devices,especially in MoSe2/Ga-ter GaN and MoSSe/N-ter GaN heterostructures. The excellent broadband performances of TMD/reconstructed GaN heterostructures shed light on new photoelectronic devices using heterojunctions.

    Acknowledgements

    Project supported by the Science Challenge Project(Grant No. TZ2018004), the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2021JQ-697), the National Natural Science Foundation of China (Grant Nos. 11874097, 91961204, and 12004303), XinLiaoYingCai Project of Liaoning Province,China (Grant No. XLYC1905014), and Key Research and Development Project of Liaoning Province, China (Grant No. 2020JH2/10500003). We thank Supercomputing Center of Dalian University of Technology.

    在现免费观看毛片| 女的被弄到高潮叫床怎么办| 人妻系列 视频| 国产在线一区二区三区精 | 丰满少妇做爰视频| 亚洲乱码一区二区免费版| av播播在线观看一区| 搞女人的毛片| 高清在线视频一区二区三区 | 欧美色视频一区免费| 欧美成人一区二区免费高清观看| 亚洲aⅴ乱码一区二区在线播放| 两个人视频免费观看高清| 国产黄色小视频在线观看| 亚洲成人精品中文字幕电影| 久久久久久伊人网av| 国产亚洲5aaaaa淫片| 亚洲精品亚洲一区二区| 插逼视频在线观看| 两个人的视频大全免费| 婷婷色麻豆天堂久久 | 国产男人的电影天堂91| 天堂√8在线中文| 99九九线精品视频在线观看视频| 乱人视频在线观看| 国产午夜精品久久久久久一区二区三区| 韩国av在线不卡| 国产精品熟女久久久久浪| 最近手机中文字幕大全| 色哟哟·www| 日韩大片免费观看网站 | 免费观看a级毛片全部| 亚洲欧美日韩无卡精品| 精品人妻偷拍中文字幕| 午夜福利高清视频| 日韩人妻高清精品专区| 久久久久久九九精品二区国产| av免费观看日本| 国产成年人精品一区二区| 久久亚洲精品不卡| 亚洲欧美日韩无卡精品| 日韩一本色道免费dvd| 国产精品国产三级国产av玫瑰| av播播在线观看一区| 免费观看a级毛片全部| 亚洲欧美精品专区久久| 日韩中字成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费av不卡在线播放| 成人高潮视频无遮挡免费网站| 亚洲三级黄色毛片| 伦精品一区二区三区| 欧美日韩综合久久久久久| 纵有疾风起免费观看全集完整版 | 国产精品av视频在线免费观看| 两个人的视频大全免费| 麻豆国产97在线/欧美| 亚洲精品日韩在线中文字幕| 久久久亚洲精品成人影院| 亚洲乱码一区二区免费版| 99久久精品热视频| 午夜a级毛片| 嫩草影院精品99| 欧美成人一区二区免费高清观看| 日韩欧美精品免费久久| 久久精品夜色国产| 亚洲不卡免费看| 91狼人影院| 两个人的视频大全免费| 国产免费福利视频在线观看| 日本色播在线视频| 国产av不卡久久| 亚洲最大成人手机在线| 欧美高清性xxxxhd video| 麻豆成人av视频| 午夜福利在线观看免费完整高清在| 男女啪啪激烈高潮av片| 色吧在线观看| 淫秽高清视频在线观看| 青青草视频在线视频观看| 99久国产av精品国产电影| 午夜激情欧美在线| 久久精品国产99精品国产亚洲性色| 中文字幕人妻熟人妻熟丝袜美| 天堂av国产一区二区熟女人妻| 中国美白少妇内射xxxbb| 黄色一级大片看看| 国产极品精品免费视频能看的| 男女啪啪激烈高潮av片| 日韩欧美精品v在线| 国产精品国产三级国产av玫瑰| 男女边吃奶边做爰视频| 欧美性感艳星| 亚洲综合精品二区| 在线免费观看不下载黄p国产| 男人狂女人下面高潮的视频| 中国国产av一级| 一本一本综合久久| 成人鲁丝片一二三区免费| 久久精品国产鲁丝片午夜精品| 国产黄片美女视频| 亚洲美女视频黄频| 99国产精品一区二区蜜桃av| 亚洲成人久久爱视频| 国产乱人偷精品视频| 成人欧美大片| 内射极品少妇av片p| 免费黄色在线免费观看| 国产成人精品婷婷| 日日摸夜夜添夜夜爱| 水蜜桃什么品种好| 日韩一区二区三区影片| 真实男女啪啪啪动态图| 在线观看66精品国产| 日韩一本色道免费dvd| 免费观看a级毛片全部| 日产精品乱码卡一卡2卡三| 婷婷色综合大香蕉| 少妇被粗大猛烈的视频| 国产高清视频在线观看网站| a级毛片免费高清观看在线播放| 久久韩国三级中文字幕| 亚洲av免费高清在线观看| 成人二区视频| 亚洲av不卡在线观看| 久久久久久久久久久丰满| 成人欧美大片| .国产精品久久| 国内精品美女久久久久久| 久久久久久伊人网av| 免费观看性生交大片5| 一本一本综合久久| 女的被弄到高潮叫床怎么办| 国产视频首页在线观看| 亚洲第一区二区三区不卡| 在线观看av片永久免费下载| 日韩av在线免费看完整版不卡| 在线免费观看的www视频| 午夜老司机福利剧场| 99热全是精品| 夜夜爽夜夜爽视频| 国产精品.久久久| 色网站视频免费| 熟女电影av网| 国产一级毛片七仙女欲春2| 日本五十路高清| 精品久久久久久久久av| 亚洲aⅴ乱码一区二区在线播放| 免费观看的影片在线观看| 国产精品伦人一区二区| 国产大屁股一区二区在线视频| 色5月婷婷丁香| .国产精品久久| 久久精品国产自在天天线| 日韩三级伦理在线观看| 精品免费久久久久久久清纯| 伦理电影大哥的女人| 亚洲精品亚洲一区二区| 美女内射精品一级片tv| 欧美高清成人免费视频www| 日本午夜av视频| 能在线免费看毛片的网站| 国产综合懂色| 精品国产一区二区三区久久久樱花 | 精品午夜福利在线看| 日韩 亚洲 欧美在线| 国产精品99久久久久久久久| 日韩三级伦理在线观看| 99热6这里只有精品| 精品少妇黑人巨大在线播放 | 久久精品熟女亚洲av麻豆精品 | 亚洲国产精品专区欧美| 亚洲精品一区蜜桃| 一级爰片在线观看| 一区二区三区四区激情视频| 丰满少妇做爰视频| 成人美女网站在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 长腿黑丝高跟| 最近的中文字幕免费完整| 日韩在线高清观看一区二区三区| 成人三级黄色视频| 一区二区三区四区激情视频| 又爽又黄无遮挡网站| 尾随美女入室| 中文欧美无线码| 国产高清国产精品国产三级 | 精品一区二区三区人妻视频| 日本猛色少妇xxxxx猛交久久| 日韩 亚洲 欧美在线| 国产伦在线观看视频一区| 国产精品福利在线免费观看| 久久99热这里只频精品6学生 | 免费无遮挡裸体视频| 深夜a级毛片| 岛国在线免费视频观看| 特大巨黑吊av在线直播| av天堂中文字幕网| www.色视频.com| 午夜福利视频1000在线观看| 国产在线一区二区三区精 | 久久人人爽人人爽人人片va| 亚洲国产色片| 麻豆一二三区av精品| 天天躁夜夜躁狠狠久久av| 亚洲欧洲国产日韩| 久久久久久国产a免费观看| 卡戴珊不雅视频在线播放| 99热全是精品| 亚洲欧美日韩东京热| 精华霜和精华液先用哪个| 亚洲av一区综合| 亚洲精品成人久久久久久| 免费不卡的大黄色大毛片视频在线观看 | 欧美+日韩+精品| 国产免费福利视频在线观看| 国产精品av视频在线免费观看| 国产高清有码在线观看视频| 亚洲欧美中文字幕日韩二区| 国产在线一区二区三区精 | 日韩中字成人| 久久久久久大精品| 国内精品宾馆在线| 精品久久久久久成人av| 波多野结衣巨乳人妻| 亚洲精品aⅴ在线观看| 亚洲18禁久久av| 69人妻影院| 中文字幕免费在线视频6| h日本视频在线播放| 成人毛片60女人毛片免费| 色综合色国产| 美女国产视频在线观看| 美女cb高潮喷水在线观看| 亚洲三级黄色毛片| 只有这里有精品99| 嫩草影院入口| 欧美潮喷喷水| 日产精品乱码卡一卡2卡三| 久久6这里有精品| 久久人妻av系列| 国产精品综合久久久久久久免费| 一级毛片电影观看 | 十八禁国产超污无遮挡网站| 久久热精品热| 午夜亚洲福利在线播放| 午夜精品国产一区二区电影 | 免费看美女性在线毛片视频| 国产91av在线免费观看| 欧美三级亚洲精品| 九九热线精品视视频播放| 久久99热6这里只有精品| 美女被艹到高潮喷水动态| 国产av码专区亚洲av| 久久久久久久久大av| 好男人视频免费观看在线| 久久久久久久国产电影| 内射极品少妇av片p| 亚洲欧美精品专区久久| 一级二级三级毛片免费看| 日本黄色片子视频| 少妇熟女aⅴ在线视频| 欧美日韩在线观看h| 少妇裸体淫交视频免费看高清| 男人狂女人下面高潮的视频| 亚洲国产精品合色在线| 美女大奶头视频| 国产黄色小视频在线观看| 日本三级黄在线观看| 在线天堂最新版资源| 亚洲av电影在线观看一区二区三区 | 一个人观看的视频www高清免费观看| 亚洲av中文字字幕乱码综合| 五月玫瑰六月丁香| 国产色爽女视频免费观看| 少妇丰满av| 人妻系列 视频| 永久网站在线| 日本三级黄在线观看| 村上凉子中文字幕在线| 国产视频内射| 国产精品综合久久久久久久免费| 18禁在线无遮挡免费观看视频| 欧美日韩国产亚洲二区| 国产高清视频在线观看网站| 国产久久久一区二区三区| 日韩欧美精品v在线| 成人性生交大片免费视频hd| 国产一级毛片七仙女欲春2| 久久精品久久精品一区二区三区| 18+在线观看网站| АⅤ资源中文在线天堂| 十八禁国产超污无遮挡网站| 九九久久精品国产亚洲av麻豆| 最近的中文字幕免费完整| 精品熟女少妇av免费看| 一本久久精品| 最近中文字幕2019免费版| 久久精品久久精品一区二区三区| 精品少妇黑人巨大在线播放 | 亚洲最大成人中文| 国产视频首页在线观看| 午夜免费男女啪啪视频观看| 色综合站精品国产| 国产探花在线观看一区二区| 久久精品影院6| 久久人妻av系列| 婷婷六月久久综合丁香| 日本三级黄在线观看| 日本午夜av视频| 青春草国产在线视频| 边亲边吃奶的免费视频| 久久久国产成人免费| 你懂的网址亚洲精品在线观看 | 成人毛片a级毛片在线播放| 久久久久九九精品影院| av福利片在线观看| videossex国产| 国产精品一区二区三区四区免费观看| 免费观看性生交大片5| 国产午夜精品论理片| 男女国产视频网站| 18+在线观看网站| 国产亚洲午夜精品一区二区久久 | 晚上一个人看的免费电影| 亚洲精品,欧美精品| 一区二区三区免费毛片| 国产精品99久久久久久久久| 嫩草影院精品99| 99热这里只有精品一区| 人妻夜夜爽99麻豆av| 午夜免费激情av| 亚洲成色77777| 国产高清国产精品国产三级 | 少妇人妻一区二区三区视频| 秋霞在线观看毛片| 国产精品国产三级专区第一集| 午夜精品在线福利| 纵有疾风起免费观看全集完整版 | 国产黄色小视频在线观看| 久久亚洲国产成人精品v| 国产一区亚洲一区在线观看| 日本一本二区三区精品| 亚洲怡红院男人天堂| 欧美高清性xxxxhd video| 欧美又色又爽又黄视频| 三级国产精品片| 国产午夜福利久久久久久| 97热精品久久久久久| 熟妇人妻久久中文字幕3abv| 嫩草影院新地址| a级一级毛片免费在线观看| 少妇的逼好多水| 欧美成人午夜免费资源| 九九久久精品国产亚洲av麻豆| 亚洲人与动物交配视频| 国产精品国产三级专区第一集| 大香蕉97超碰在线| 国产免费福利视频在线观看| 性色avwww在线观看| 亚洲色图av天堂| a级毛片免费高清观看在线播放| 看片在线看免费视频| 欧美日韩精品成人综合77777| 亚洲精品456在线播放app| 欧美精品一区二区大全| 中文字幕精品亚洲无线码一区| 国内少妇人妻偷人精品xxx网站| 国产高清有码在线观看视频| 亚洲最大成人中文| 一个人免费在线观看电影| 亚洲精华国产精华液的使用体验| 精品久久国产蜜桃| 天堂av国产一区二区熟女人妻| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲一级一片aⅴ在线观看| 国产在线一区二区三区精 | 国产精品嫩草影院av在线观看| 日韩,欧美,国产一区二区三区 | 成人综合一区亚洲| 国产精品日韩av在线免费观看| 欧美成人午夜免费资源| 免费电影在线观看免费观看| 91精品国产九色| av免费观看日本| 国产美女午夜福利| 久久99蜜桃精品久久| 美女内射精品一级片tv| 伦理电影大哥的女人| 性插视频无遮挡在线免费观看| 国产伦一二天堂av在线观看| 日日干狠狠操夜夜爽| 亚洲国产日韩欧美精品在线观看| 亚洲av一区综合| 免费av观看视频| 深爱激情五月婷婷| 97超碰精品成人国产| 深爱激情五月婷婷| 日日摸夜夜添夜夜添av毛片| 日日干狠狠操夜夜爽| 日韩一区二区视频免费看| 日韩av在线免费看完整版不卡| 美女xxoo啪啪120秒动态图| 日韩成人伦理影院| 最近视频中文字幕2019在线8| 97超碰精品成人国产| 亚洲国产欧洲综合997久久,| 少妇的逼水好多| 久久精品国产自在天天线| 高清毛片免费看| 亚洲自拍偷在线| 热99re8久久精品国产| 亚洲精品日韩在线中文字幕| 非洲黑人性xxxx精品又粗又长| 2021天堂中文幕一二区在线观| 最近的中文字幕免费完整| 日本五十路高清| 最近2019中文字幕mv第一页| 欧美日本亚洲视频在线播放| 国产中年淑女户外野战色| 国产精品一区二区性色av| 99久久精品国产国产毛片| 熟女电影av网| 精品久久久久久久末码| 成人亚洲欧美一区二区av| 美女cb高潮喷水在线观看| 日韩成人伦理影院| 色播亚洲综合网| 国产白丝娇喘喷水9色精品| 两个人视频免费观看高清| .国产精品久久| 天天躁日日操中文字幕| 国产av码专区亚洲av| 日韩欧美精品免费久久| ponron亚洲| 亚洲国产色片| 国产精品无大码| 欧美成人精品欧美一级黄| 村上凉子中文字幕在线| 别揉我奶头 嗯啊视频| 亚洲欧美成人综合另类久久久 | 亚洲欧美日韩高清专用| 成人亚洲欧美一区二区av| 久久久色成人| 久久久久久九九精品二区国产| a级毛色黄片| 国产精品国产三级专区第一集| 久热久热在线精品观看| 日产精品乱码卡一卡2卡三| 久久精品国产亚洲网站| 日韩精品青青久久久久久| 在线免费观看不下载黄p国产| 伦理电影大哥的女人| 亚洲精品国产成人久久av| 亚洲国产精品国产精品| 国产亚洲5aaaaa淫片| 亚洲国产精品sss在线观看| 亚洲av电影在线观看一区二区三区 | 久久久国产成人精品二区| 成人亚洲欧美一区二区av| 国产成人a∨麻豆精品| 91精品一卡2卡3卡4卡| 精品久久久久久久久亚洲| 国产69精品久久久久777片| 日韩av不卡免费在线播放| 久久久久九九精品影院| 午夜福利在线观看免费完整高清在| 成人漫画全彩无遮挡| 国产色婷婷99| 国产黄a三级三级三级人| 中文字幕制服av| 亚洲精品亚洲一区二区| videossex国产| 日韩,欧美,国产一区二区三区 | 欧美性感艳星| 内射极品少妇av片p| 一边亲一边摸免费视频| 久久久久久久久久久丰满| 纵有疾风起免费观看全集完整版 | 国产精品一区二区在线观看99 | 久久久国产成人精品二区| 国产精品无大码| 99热全是精品| 亚洲精品自拍成人| 欧美成人a在线观看| 伦理电影大哥的女人| 久久久精品欧美日韩精品| 午夜免费男女啪啪视频观看| 我的女老师完整版在线观看| 熟女人妻精品中文字幕| 亚洲精品久久久久久婷婷小说 | 人人妻人人看人人澡| 精品久久久久久电影网 | ponron亚洲| av国产久精品久网站免费入址| 黄色配什么色好看| 中文字幕熟女人妻在线| 日韩国内少妇激情av| 国产精品一区二区三区四区久久| 久久99热6这里只有精品| 久久欧美精品欧美久久欧美| 插阴视频在线观看视频| 人体艺术视频欧美日本| 午夜福利在线观看免费完整高清在| 亚洲av熟女| 日日摸夜夜添夜夜添av毛片| 91久久精品国产一区二区三区| 91狼人影院| 乱人视频在线观看| 国产伦一二天堂av在线观看| АⅤ资源中文在线天堂| 夜夜爽夜夜爽视频| 国产精品一及| 国产高清国产精品国产三级 | 成人欧美大片| 国产三级在线视频| 老司机福利观看| 亚洲成人精品中文字幕电影| 国产精品一二三区在线看| 日本黄大片高清| 久久精品久久精品一区二区三区| 国产成人freesex在线| 美女xxoo啪啪120秒动态图| 亚洲性久久影院| 3wmmmm亚洲av在线观看| 日韩亚洲欧美综合| 一个人看的www免费观看视频| 国产高清有码在线观看视频| 国产精品一区二区在线观看99 | 国产免费一级a男人的天堂| 日日干狠狠操夜夜爽| 亚洲欧美日韩东京热| 激情 狠狠 欧美| 久久亚洲国产成人精品v| 久久精品影院6| 亚洲丝袜综合中文字幕| 亚洲av男天堂| 乱码一卡2卡4卡精品| www.色视频.com| 久久久久久久亚洲中文字幕| 久久亚洲精品不卡| 久久久精品大字幕| 久久久久久久久久黄片| 夜夜爽夜夜爽视频| 七月丁香在线播放| 国产成人精品一,二区| 国产伦精品一区二区三区视频9| 又爽又黄a免费视频| 91av网一区二区| 日本一二三区视频观看| 女人久久www免费人成看片 | 人人妻人人看人人澡| 亚洲内射少妇av| kizo精华| 一级毛片电影观看 | ponron亚洲| 禁无遮挡网站| 人人妻人人澡人人爽人人夜夜 | 中文字幕av成人在线电影| 日本欧美国产在线视频| 色综合色国产| 久久6这里有精品| 欧美潮喷喷水| 又粗又硬又长又爽又黄的视频| 内地一区二区视频在线| 国产三级中文精品| 精品免费久久久久久久清纯| 中文字幕av在线有码专区| 精品久久久久久久久av| 99久久精品一区二区三区| 国产亚洲91精品色在线| 免费人成在线观看视频色| 国产成年人精品一区二区| 啦啦啦观看免费观看视频高清| 美女黄网站色视频| 国产伦精品一区二区三区四那| 床上黄色一级片| 亚洲精华国产精华液的使用体验| 国产精品日韩av在线免费观看| 国产 一区 欧美 日韩| 久久亚洲精品不卡| 亚洲国产成人一精品久久久| 九九久久精品国产亚洲av麻豆| 久久久久久久国产电影| 久久久久久伊人网av| videos熟女内射| 有码 亚洲区| 免费一级毛片在线播放高清视频| 日韩强制内射视频| 欧美高清成人免费视频www| 国产高清有码在线观看视频| 国内精品一区二区在线观看| 男人的好看免费观看在线视频| 国产免费福利视频在线观看| 最近的中文字幕免费完整| 免费看a级黄色片| 日韩视频在线欧美| 亚洲aⅴ乱码一区二区在线播放| 麻豆久久精品国产亚洲av| 别揉我奶头 嗯啊视频| 床上黄色一级片| 国产精品一区二区在线观看99 | 好男人视频免费观看在线| 亚洲精品久久久久久婷婷小说 | 永久网站在线| 欧美xxxx性猛交bbbb| av免费在线看不卡| 国产免费男女视频| 丰满少妇做爰视频| 国产 一区精品| 美女被艹到高潮喷水动态| 岛国在线免费视频观看| 亚洲精品亚洲一区二区| 中文字幕制服av| 成人漫画全彩无遮挡|