• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust and intrinsic type-III nodal points in a diamond-like lattice

    2022-11-21 09:29:42QingYaCheng程青亞YueXie謝月娥XiaoHongYan顏曉紅andYuanPingChen陳元平
    Chinese Physics B 2022年11期

    Qing-Ya Cheng(程青亞) Yue-E Xie(謝月娥) Xiao-Hong Yan(顏曉紅) and Yuan-Ping Chen(陳元平)

    1School of Physics and Electronic Engineering,Jiangsu University,Zhenjiang 212013,China

    2School of Physics and Optoelectronics,Xiangtan University,Xiangtan 411105,China

    An ideal type-III nodal point is generated by crossing a completely flat band and a dispersive band along a certain momentum direction. To date,the type-III nodal points found in two-dimensional(2D)materials have been mostly accidental and random rather than ideal cases, and no one mentions what kind of lattice can produce ideal nodal points. Here, we propose that ideal type-III nodal points can be obtained in a diamond-like lattice. The flat bands in the lattice originate from destructive interference of wavefunctions,and thus are intrinsic and robust. Moreover,the specific lattice can be realized in some 2D carbon networks,such as T-graphene and its derivatives. All the carbon structures possess type-III Dirac points.In two of the structures,consisting of triangular carbon rings,the type-III Dirac points are located just on the Fermi level and the Fermi surface is very clean. Our research not only opens a door to finding the ideal type-III Dirac points,but also provides 2D materials for exploring their physical properties experimentally.

    Keywords: diamond-like lattice,carbon materials,type-III Dirac points

    1. Introduction

    Graphene presents a standard model of type-I twodimensional (2D) Dirac point,[1–4]which is crossed by two linear energy bands with inverse slope signs. When the slope sign of one linear band changes from negative/positive to positive/negative along a certain momentum direction, the Dirac point transits from type-I to type-II.[5–7]Type-III Dirac or Weyl points[8–12]are critical topological phases between type-I and type-II points.It is crossed by a flat band,i.e.,its slope is zero,and a normal dispersive band. Thus,the Fermi surfaces of type-III nodal semimetals are all straight lines, exhibiting a diverging density of states.[13]The quasi-particles in this kind of material present highly anisotropic mass with localized states along one direction in the flat band coexisting with massless states moving ballistically.[14–16]While most of their electric and magnetic properties are yet to be unveiled, they have been predicted to greatly enhance the super-conducting gap in Weyl semimetals,[17,18]and they provide a new platform for the study of correlated phases with a flat band.[19–23]Moreover,the type-III nodal points would open a door to the study of analogue black holes in a solid-state environment.[16,24]

    Up to now,type-III nodal points have been found in some 2D materials.[25–29]such as SW40,[26]hr-sB,[27]andpenta-NiSb2.[29]However,the nodal points found in them are mostly accidental and random. An ideal type-III nodal points should be crossed by a completely flat band and a dispersive band along a certain momentum direction,and the flat band should be robust,i.e., its flatness is not affected by external perturbations, such as strain. In this sense, all the previous type-III nodal points found in the materials are not ideal cases.

    The key point of type-III nodal points is the flat band.As is well known, some special lattices, such as Kagome,[30]Lieb,[31]and coloring-triangle lattices,[32]can generate flat bands. However,these flat bands are actually flat planes filling fully the whole Brillouin zone(BZ)of the 2D materials.[33–37]The flat bands in the type-III nodal points are just flat lines along a certain momentum direction. Although one can obtain type-III nodal points by destroying symmetries of the fullplane flat-band systems,these systems are not good options for generating intrinsic type-III nodal points. Considering that the interesting physical properties and important applications of the critical nodal points,it is very anxious to find intrinsic and robust type-III nodal points in a lattice and relevant materials.

    In this paper, we propose a kind of new lattice hosting intrinsic and robust type-III nodal points. The lattice is comprised of one-dimensional (1D) diamond chains, and thus is named diamond-like lattice. By using a tight-binding model,type-III nodal points are produced in 1D diamond chain and 2D diamond-like lattice. The flat bands in the nodal points are induced by the destructive interference of wavefunctions,and thus the nodal points are intrinsic and robust because they are protected by the lattice’s geometry. Then,we demonstrate that the diamond-like lattice can be realized in 2D single-layer carbon networks, such as T-graphene and its derivatives (named T-graphene-1,2,3 here). All the carbon structures indeed possess intrinsic and robust type-III Dirac points. Finally,considering that T-graphene-1 have been synthesized successfully,we propose a routine to fabricate other 2D carbon networks with diamond-like lattice.

    2. Type-III nodal points in 1D and 2D diamondlike lattices

    The flat bands in type-III nodal points only exist along a certain momentum direction, which means that the flat band has 1D feature. So, we can first consider a 1D lattice with a flat band. Previous studies have indicated that the band structure of a 1D diamond chain,as shown in Fig.1(a),has crossing point of a flat band and a dispersive band.[38,39]One can use a tight-binding(TB)model to describe the electron properties of the 1D chain. If each lattice has only one type of electron orbital,saypz,the Hamiltonian can be expressed as

    wherecrepresents the length of primitive cell of the diamondlike lattice. Obviously,a flat band corresponding to the eigenvalueE1is generated. The band structure witht1=1.6 eV andt2=1.2 eV is given in Fig. 1(b). A type-III nodal point appears. The flat band usually originates from the destructive interference of wavefunctions. The inset in Fig. 1(b) shows the charge densities of the quantum states in the flat band.One can find that the electrons are localized on the two sides of the chain, but the middle lattices are empty. This is because the two waves propagating along the chain interfere destructively at the middle lattices[see the positive sign and minus sign of the wavefunction in the inset of Fig.1(b)].[40]

    If one extends periodically the 1D diamond chain along the horizontal direction, a 2D lattice can be obtained [see Fig.1(c)]. Because it is comprised of 1D diamond chains,we name the 2D lattice a diamond-like lattice. One can also use Eq. (1) to describe its electronic properties when more hopping energy in the 2D lattice is added,for example,a hoppingt3between the 1D diamond chains. In the 2D case,the expressions of the eigenvalues for Eq.(1)are complicated. However,one can get its specific eigenvalues under some conditions.For example,ifkx=0,the three eigenvalues can be expressed as

    whereaandbrepresent the lattice parameters of the lattice. Ifkx=π/a,the three eigenvalues can be expressed as

    Fig. 1. (a) A 1D diamond lattice, with dashed line representing primitive cells. (b) Band structure of 1D diamond lattice based on Eq. (1) with t1 =1.6 eV and t2 =1.2 eV, with inset showing charge density of quantum state on the flat band(“+”and“-”represent signs of wavefunctions).(c) The 2D diamond-like lattice, with dashed line representing primitive cells. (d) Band structure of 2D diamond-like lattice based on Eq. (1) with t1=1.6 eV,t2=1.2 eV,and t3=1.8 eV,with inset exhibiting charge densities of three quantum states F1,F2,and F3 on the three flat bands.

    The band structure of the 2D diamond-like lattice changes with the parameters.Because the flat bands always exist on the three high-symmetry paths mentioned above,one can usually observe type-III nodal points on the three paths. Beside the type-III nodal points, some other topological phases can also be found in the diamond-like lattice.For example,whent2=t3(ort2=-t3), one can obtainE′′1=E′′′1according to Eqs. (4)and (5) (orE′1=E′′′1according to Eqs. (3) and (5)). Then, a triple degeneracy point, crossed by a cone and a flat plane, is formed in the first BZ[the detail can be found in Fig.S1 in the supplementary information(SI)].The triple degeneracy point is located at the high-symmetry pointSorY.

    3. Diamond-like lattice in 2D carbon networks and type-III Dirac points in them

    The diamond-like lattice in Fig. 1(c) can be realized in 2D carbon networks by utilizing the strong ability to form the bonds between carbon atoms. The simplest carbon structure like diamond-like lattice is T-graphene as shown in Fig.2(a).When a carbon dimmer in the green ellipse in Fig.2(a)along the perpendicular direction shrinks to one site, T-graphene changes into a standard diamond-like lattice. This simple carbon network can evolve into some other structures with diamond-like lattice. For example, when one of the carbon atoms in the horizontal dimmer extends to two atoms along the perpendicular direction, T-graphene evolves into a structure as indicated in Fig.2(b)and is named T-graphene-1 hereafter;when each atom in the green ellipse in T-graphene is replaced by a triangular ring,T-graphene changes into the structure in Fig.2(c)and is termed T-graphene-2; when the atoms in the perpendicular dimers in T-graphene-1 are replaced by two triangular rings,a carbon network called T-graphene-3 is obtained as shown in Fig.2(d).

    To deal with the electronic properties of the carbon networks, we perform first-principles calculations within the density functional theory (DFT) formalism as implemented in VASP.[41]The electron–electron interactions were treated within a generalized gradient approximation (GGA) in the form of Perdew–Burke–Ernzerhof (PBE) for the exchange–correlation functional.[42]Electronic wave functions are expanded by using a plane-wave basis set with cut-off energy of 600 eV. The atomic positions are fully optimized by the conjugate gradient method,[43]and the energy and force convergence criteria are set to be 10-6eV and 10-3eV/?A, respectively. Periodic boundary conditions are used with a 20 ?A vacuum layer in the direction perpendicular to the plane (zdirection),which ensures that the interaction between the periodic images of the sheet is negligible.The phonon calculations are carried out by using the Phonopy package with the forces calculated by the VASP code.[44]The edge states are calculated by the open-source software Wannier-tools package.[45]

    Fig. 2. Atomic structures of (a) T-graphene, (b) T-graphene-1, (c) Tgraphene-2,and(d)T-graphene-3,with dashed lines showing primitive cells of all structures.

    Table 1 presents optimized structural parameters,including lattice constants,bond lengths,space groups,and cohesive energy of the carbon networks from T-graphene to T-graphene-1, 2, 3. For comparison, the structural parameters of some other 2D carbon networks, such as Kagome graphene,[46]Tilene[47]are also given. To assess the stabilities of all structures,we calculate phonon spectra of the carbon allotropes as shown in Fig. S2. No soft phonon mode is found throughout the BZ,which indicates that all the structures are dynamic stable and they are all metastable structures.

    Table 1. Space groups,lattice parameters,bond lengths,and cohesive energy(Ec)of carbon networks in Fig.2,and bond lengths between the atoms in triangular rings listed in brackets.

    Next,the electronic properties of the carbon networks are explored. The calculation results indicate that all the structures possess flat bands and type-III Dirac points[see Figs.S3 in SI].It is noted that the type-III Dirac points in T-graphene-1,2,3 are located just around the Fermi level. Moreover,the Fermi surfaces of T-graphene-2, 3 are very clear, where only the energy bands related to the type-III Dirac points appear around the Fermi level[see Figs.4(a)and 4(c)]. Here,we use T-graphene-1, 2, 3 as example to explain the band structures of the carbon networks with diamond-like lattice.

    The band structure of T-graphene-1 is given in Fig.3(a),

    where a flat band crosses a dispersion band around the Fermi level along theΓ–Ypath, resulting in a type-III Dirac point.To clearly show the Dirac point, a 3D band structure around the Dirac point is given in the inset of Fig. 3(a), where the Dirac cone exhibits great anisotropy. To reveal the origination of the type-III Dirac point,in Fig.3(b)we plot charge densities of the quantum states corresponding to the points P1 and P2 in Fig. 3(a). One can find that the electrons on the state P1 are not localized while those on the P2 are localized on the carbon dimers. The localized quantum states are similar to the case of the flat-band state F1in Fig. 1(d). It means that the localized states in T-graphene-1 are also induced by the destructive interference.

    Fig. 3. (a) Band structure of T-graphene-1, with inset showing 3D band structure around Dirac point denoted by dashed circle. (b)Charge densities for quantum states at points P1 and P2 in panel(a).

    The band structures of T-graphene-2 and 3 are given in Figs. 4(a) and 4(c), respectively. There are flat bands and type-III Dirac points appearing around the Fermi level. Because there are no other bands crossing the Fermi level, the Fermi surfaces of the two structures are very clear. Moreover,there exist edge states between the type-III Dirac points in both structures [see Fig. S4]. Beside these type-III Dirac points,there is another type-III Dirac point at-2.0 eV along theΓ–Ypath in Fig. 4(a). The insets in Fig. 4(a) exhibit the 3D band structures of the two type-III Dirac points in T-graphene-2. To distinguish the two type-III Dirac points,the charge densities of the two quantum states at points P3 and P4 on the two flat bands are shown in Fig. 4(b). Comparing Fig. 4(b) with the insets in Fig.1(d),one can find that the localized states on the two flat bands in T-graphene-2 are corresponding to the quantum states F1and F2in Fig.1(d),respectively. Therefore,the two flat bands in Fig.4(a)are induced by different destructive interferences of wavefunctions. The type-III Dirac points in the carbon networks are very robust,whether a large uniaxial strain or a tensile/compressive strain cannot affect the flatness of the flat bands[see Fig.S5].

    It is noted that there are also some other crossings at-0.5 eV between a flat band and other dispersive bands in Fig. 4(c). However, these crossings are not type-III Dirac points, instead they link together and form a nodal ring as shown in Fig. 4(d). The flat band at-0.5 eV is actually a flat plane,which originates from a localized state on a closed carbon ring[see the inset in Fig.4(c)].

    In the 2D carbon networks in Fig. 2, T-graphene-1 has been synthesized experimentally.[48]Motivated by the successful synthesis, we propose that T-graphene-2 and Tgraphene-3 can also be synthesized by dehydrogenation chemical reactions of small molecules. For T-graphene-2, a 1-methylcyclopropane molecule[49]can serve as basic units as shown in Fig. 5(a), and two 1-methylcyclopropane molecules can be connected to a big molecule after dehydrogenation. Then, more big molecules form T-graphene-2 by self-assembly process. Similarly, one can usecis-1,2-dicyclopropylethene molecule[50]as a unit to construct unit cells of T-graphene-3,and then to obtain 2D carbon networks by self-assembly molecules[see Fig.5(b)].

    Fig.4.(a)Band structure of T-graphene-2 with inset showing 3D band structures around the Dirac points denoted by dashed circles.(b)Charge densities for quantum states at points P3 and P4 in panel (a). (c) Band structure of T-graphene-3, with left inset showing 3D band structure around the Dirac point denoted by dashed circles, and right inset referring to charge density of the quantum state on the flat band below the Fermi levels. (d) 3D band structure around high-symmetry point X in panel(c),with a red dotted circle denoting nodal ring.

    Fig.5. Possible routines to synthesize(a)T-graphene-2 and(b)T-graphene-3.

    4. Discussion and conclusion

    In this work, we proposed a kind of new lattice, named diamond-like lattice, which can produce intrinsic and robust type-III nodal points. The diamond-like lattice is a 2D version of diamond chain. A simulation based on a TB model indicates that three flat bands along high-symmetry lines appear on the band structure of the 2D lattice. When dispersive bands cross the flat bands, type-III nodal points form.Because the flat bands originate from localized states of destructive interference,they are protected by the lattice geometry. Thus,the flat bands and the corresponding type-III nodal points are very robust. A series of 2D single-layer carbon networks with diamond-like lattice are found,such as T-graphene and T-graphene-1,2,3. All the carbon structures possess type-III Dirac points. Especially, the type-III Dirac points in Tgraphene-2,3 are located just on the Fermi level,and the Fermi surfaces are very clear because no other energy bands crossing the Fermi level. The Dirac points are very robust against external strains. Besides the carbon networks mentioned above,we can find more 2D carbon networks possessing diamondlike lattices,and there are type-III Dirac points existing in the structure[see Fig.S6]. Considering that T-graphene-1 is synthesized successfully, we propose some possible experimental routines to synthesize T-graphene-2,3. These 2D carbon networks provide a good platform for studying the diamondlike lattice and corresponding type-III Dirac points. Our research not only opens the door to finding the ideal type-III Dirac points, but also provides materials for exploring their physical properties experimentally.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China (Grant Nos. 12174157, 12074150, and 11874314).

    18禁美女被吸乳视频| 日韩高清综合在线| 岛国视频午夜一区免费看| 极品教师在线免费播放| 免费在线观看亚洲国产| 欧美乱码精品一区二区三区| 国产真实伦视频高清在线观看 | 此物有八面人人有两片| 有码 亚洲区| 午夜福利视频1000在线观看| 亚洲人成网站高清观看| 欧美三级亚洲精品| 久久精品影院6| 国产亚洲av嫩草精品影院| svipshipincom国产片| 欧美日韩瑟瑟在线播放| 精华霜和精华液先用哪个| 一个人免费在线观看的高清视频| 亚洲欧美激情综合另类| 熟妇人妻久久中文字幕3abv| 亚洲精品一区av在线观看| 欧美一区二区国产精品久久精品| 中文字幕精品亚洲无线码一区| 精品一区二区三区av网在线观看| 麻豆久久精品国产亚洲av| 午夜a级毛片| 欧美性感艳星| 久久午夜亚洲精品久久| 级片在线观看| 国产精品亚洲一级av第二区| 欧美bdsm另类| 久久精品91无色码中文字幕| 国产色爽女视频免费观看| 又紧又爽又黄一区二区| 午夜亚洲福利在线播放| 十八禁人妻一区二区| 亚洲avbb在线观看| 免费无遮挡裸体视频| 国产男靠女视频免费网站| 成人特级av手机在线观看| 最后的刺客免费高清国语| 非洲黑人性xxxx精品又粗又长| 女人被狂操c到高潮| 国产精品一区二区免费欧美| 亚洲av五月六月丁香网| 男女下面进入的视频免费午夜| 成人特级av手机在线观看| 一个人免费在线观看电影| 国产精品美女特级片免费视频播放器| 久久久精品大字幕| 国产精品国产高清国产av| 欧美三级亚洲精品| av中文乱码字幕在线| 一二三四社区在线视频社区8| 18美女黄网站色大片免费观看| 精品久久久久久久毛片微露脸| av欧美777| 国产精品,欧美在线| 国产野战对白在线观看| 国产精品免费一区二区三区在线| av女优亚洲男人天堂| 精品一区二区三区av网在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产精品免费一区二区三区在线| 亚洲国产精品999在线| 男女床上黄色一级片免费看| 免费观看的影片在线观看| 国产美女午夜福利| 中文在线观看免费www的网站| 麻豆成人av在线观看| 国产伦精品一区二区三区视频9 | 性色av乱码一区二区三区2| 18禁美女被吸乳视频| 97超级碰碰碰精品色视频在线观看| 日本在线视频免费播放| 男人的好看免费观看在线视频| 成人性生交大片免费视频hd| 亚洲精品国产精品久久久不卡| 午夜福利在线观看吧| 久久久久久九九精品二区国产| 亚洲国产中文字幕在线视频| 极品教师在线免费播放| 日韩欧美免费精品| 亚洲五月天丁香| 久久久国产成人免费| 日本免费a在线| 国产一区二区在线观看日韩 | 3wmmmm亚洲av在线观看| 3wmmmm亚洲av在线观看| 男女视频在线观看网站免费| 亚洲国产中文字幕在线视频| 亚洲最大成人中文| 亚洲乱码一区二区免费版| 国产主播在线观看一区二区| 一区二区三区国产精品乱码| eeuss影院久久| 亚洲欧美日韩东京热| 国产成+人综合+亚洲专区| 日韩欧美国产一区二区入口| 亚洲av二区三区四区| 亚洲精品一卡2卡三卡4卡5卡| 婷婷六月久久综合丁香| 国产精品爽爽va在线观看网站| 日本一二三区视频观看| 国产 一区 欧美 日韩| 日韩欧美在线乱码| 久久精品国产自在天天线| 午夜福利免费观看在线| av片东京热男人的天堂| 国产亚洲精品av在线| 日韩欧美国产一区二区入口| 欧美性猛交黑人性爽| 国产av不卡久久| tocl精华| 精品久久久久久久久久免费视频| 女同久久另类99精品国产91| 九九在线视频观看精品| 日本黄色片子视频| 欧美激情久久久久久爽电影| www日本黄色视频网| 波多野结衣高清作品| 亚洲精华国产精华精| 国产v大片淫在线免费观看| 亚洲av不卡在线观看| 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 国产精品一区二区三区四区久久| 午夜精品在线福利| 日本在线视频免费播放| 一个人看的www免费观看视频| eeuss影院久久| 精品久久久久久久毛片微露脸| 久久久久久久亚洲中文字幕 | 黄色片一级片一级黄色片| 日韩大尺度精品在线看网址| 亚洲精品亚洲一区二区| 露出奶头的视频| 日本 欧美在线| 可以在线观看的亚洲视频| 亚洲avbb在线观看| 久久久久国产精品人妻aⅴ院| 亚洲一区二区三区色噜噜| 国产黄a三级三级三级人| 久99久视频精品免费| 99热精品在线国产| 国产野战对白在线观看| 久久精品国产亚洲av涩爱 | 欧美激情在线99| 亚洲人成网站在线播| 九色国产91popny在线| 动漫黄色视频在线观看| 午夜a级毛片| 日本 av在线| 亚洲精品一区av在线观看| 99久国产av精品| 精品无人区乱码1区二区| 欧洲精品卡2卡3卡4卡5卡区| 夜夜躁狠狠躁天天躁| 亚洲无线观看免费| 久久久精品大字幕| 国产探花极品一区二区| 亚洲 欧美 日韩 在线 免费| 好男人电影高清在线观看| 男女床上黄色一级片免费看| 亚洲aⅴ乱码一区二区在线播放| 麻豆成人午夜福利视频| 亚洲av电影不卡..在线观看| 国产成人av激情在线播放| 成年版毛片免费区| 亚洲午夜理论影院| 久久精品91蜜桃| 色在线成人网| 久久久久亚洲av毛片大全| eeuss影院久久| 90打野战视频偷拍视频| 亚洲欧美精品综合久久99| 搡老熟女国产l中国老女人| 欧美区成人在线视频| 国产免费一级a男人的天堂| АⅤ资源中文在线天堂| 日本与韩国留学比较| 丁香欧美五月| 国产精品三级大全| 久久精品影院6| 精品人妻一区二区三区麻豆 | 亚洲欧美日韩高清在线视频| 久久久久免费精品人妻一区二区| 日本熟妇午夜| 两性午夜刺激爽爽歪歪视频在线观看| 人人妻人人看人人澡| 一级黄色大片毛片| 国产69精品久久久久777片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av女优亚洲男人天堂| 亚洲久久久久久中文字幕| 欧美高清成人免费视频www| 小说图片视频综合网站| 在线观看av片永久免费下载| 91字幕亚洲| 欧美黄色片欧美黄色片| www.www免费av| 国产精品亚洲av一区麻豆| 99热精品在线国产| 九九在线视频观看精品| 一区福利在线观看| 国产精品 国内视频| 老司机午夜十八禁免费视频| 久久久久久久亚洲中文字幕 | 内射极品少妇av片p| 精品久久久久久久久久免费视频| 蜜桃久久精品国产亚洲av| xxxwww97欧美| 最新美女视频免费是黄的| 内射极品少妇av片p| 亚洲午夜理论影院| 欧美日韩一级在线毛片| 在线观看免费午夜福利视频| 两人在一起打扑克的视频| 性欧美人与动物交配| 舔av片在线| 精品免费久久久久久久清纯| 此物有八面人人有两片| 99视频精品全部免费 在线| 毛片女人毛片| 亚洲成人久久爱视频| 法律面前人人平等表现在哪些方面| 尤物成人国产欧美一区二区三区| 亚洲熟妇熟女久久| 无遮挡黄片免费观看| 热99在线观看视频| 男女床上黄色一级片免费看| a级毛片a级免费在线| 国产高清激情床上av| 亚洲最大成人中文| 欧美三级亚洲精品| 少妇人妻一区二区三区视频| 99在线人妻在线中文字幕| 美女cb高潮喷水在线观看| 亚洲国产精品久久男人天堂| 国产伦精品一区二区三区四那| 丰满乱子伦码专区| 午夜日韩欧美国产| 亚洲avbb在线观看| www.999成人在线观看| 一夜夜www| АⅤ资源中文在线天堂| 一区二区三区高清视频在线| 日韩免费av在线播放| 麻豆一二三区av精品| 婷婷丁香在线五月| 人人妻人人看人人澡| 欧美日韩黄片免| 丰满人妻一区二区三区视频av | 国产伦精品一区二区三区视频9 | 国内揄拍国产精品人妻在线| 午夜免费激情av| 中文资源天堂在线| 国产精品久久久人人做人人爽| 国产97色在线日韩免费| 亚洲电影在线观看av| 乱人视频在线观看| 亚洲国产中文字幕在线视频| 日本a在线网址| 高清日韩中文字幕在线| 久久久成人免费电影| 国产精品久久久人人做人人爽| 成年女人看的毛片在线观看| 婷婷精品国产亚洲av在线| 精品乱码久久久久久99久播| 老鸭窝网址在线观看| 亚洲av成人av| 成人无遮挡网站| 嫩草影院精品99| 亚洲五月天丁香| 床上黄色一级片| 三级国产精品欧美在线观看| 久久精品国产清高在天天线| 99国产精品一区二区蜜桃av| 精品久久久久久成人av| 在线天堂最新版资源| 欧美在线黄色| 欧美午夜高清在线| 久久精品夜夜夜夜夜久久蜜豆| 最近最新中文字幕大全免费视频| 最新在线观看一区二区三区| 一本一本综合久久| 美女高潮的动态| 两个人视频免费观看高清| xxx96com| 成年女人看的毛片在线观看| 免费人成视频x8x8入口观看| 亚洲一区二区三区不卡视频| 免费电影在线观看免费观看| 在线看三级毛片| 亚洲国产中文字幕在线视频| 久久国产精品影院| 色精品久久人妻99蜜桃| netflix在线观看网站| 色吧在线观看| 国产精品久久久久久久久免 | 最近视频中文字幕2019在线8| 欧美日韩一级在线毛片| 色老头精品视频在线观看| 久久精品91蜜桃| 噜噜噜噜噜久久久久久91| 亚洲av不卡在线观看| 国产毛片a区久久久久| 日韩人妻高清精品专区| av天堂中文字幕网| 99久久无色码亚洲精品果冻| 一级毛片高清免费大全| 宅男免费午夜| 国产aⅴ精品一区二区三区波| 91久久精品电影网| 久久精品国产亚洲av香蕉五月| 国产精品久久久人人做人人爽| 99热只有精品国产| 色av中文字幕| 91久久精品电影网| 69av精品久久久久久| 国产伦精品一区二区三区四那| 亚洲精品一区av在线观看| 18禁黄网站禁片午夜丰满| 亚洲精品一卡2卡三卡4卡5卡| 久久久久久九九精品二区国产| 啦啦啦韩国在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲午夜理论影院| 亚洲精品国产精品久久久不卡| 天美传媒精品一区二区| 国产精品av视频在线免费观看| 午夜福利欧美成人| 3wmmmm亚洲av在线观看| 18禁美女被吸乳视频| 中文字幕精品亚洲无线码一区| 久久人妻av系列| 国产 一区 欧美 日韩| 久久久久免费精品人妻一区二区| 最近视频中文字幕2019在线8| 国产欧美日韩一区二区精品| 午夜福利成人在线免费观看| 亚洲 欧美 日韩 在线 免费| 国产精品日韩av在线免费观看| 麻豆国产av国片精品| 亚洲人成网站高清观看| 午夜两性在线视频| 中文字幕av成人在线电影| 有码 亚洲区| 欧美一区二区亚洲| 我的老师免费观看完整版| 狂野欧美激情性xxxx| 精品久久久久久久久久免费视频| 黄色日韩在线| 在线免费观看的www视频| 亚洲国产精品999在线| 免费av不卡在线播放| 亚洲精品色激情综合| 51国产日韩欧美| 亚洲中文日韩欧美视频| 天天一区二区日本电影三级| 美女高潮的动态| 中文字幕av在线有码专区| 窝窝影院91人妻| 手机成人av网站| 色老头精品视频在线观看| 哪里可以看免费的av片| 99久久精品一区二区三区| 中文资源天堂在线| 看免费av毛片| 波多野结衣高清作品| 蜜桃亚洲精品一区二区三区| 亚洲av五月六月丁香网| 成人午夜高清在线视频| 中亚洲国语对白在线视频| АⅤ资源中文在线天堂| 国产伦人伦偷精品视频| av在线天堂中文字幕| 99热6这里只有精品| 99久久99久久久精品蜜桃| 91麻豆精品激情在线观看国产| 桃红色精品国产亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 亚洲性夜色夜夜综合| 深爱激情五月婷婷| 国内毛片毛片毛片毛片毛片| 桃色一区二区三区在线观看| a级一级毛片免费在线观看| 久久亚洲精品不卡| 国产高清有码在线观看视频| 香蕉久久夜色| 少妇人妻一区二区三区视频| 亚洲18禁久久av| 久久九九热精品免费| 99久久九九国产精品国产免费| 十八禁网站免费在线| 三级毛片av免费| 精品国产亚洲在线| 久久精品影院6| 精品久久久久久成人av| 女同久久另类99精品国产91| 最近视频中文字幕2019在线8| 免费观看精品视频网站| 在线观看av片永久免费下载| www.www免费av| 久久国产精品人妻蜜桃| 18禁国产床啪视频网站| 丰满乱子伦码专区| 国产精品自产拍在线观看55亚洲| 国内久久婷婷六月综合欲色啪| 搡老岳熟女国产| 欧美黄色淫秽网站| 欧美一级a爱片免费观看看| 日日摸夜夜添夜夜添小说| 国产99白浆流出| av欧美777| tocl精华| 日韩欧美在线二视频| 一进一出好大好爽视频| 欧洲精品卡2卡3卡4卡5卡区| 欧美日韩瑟瑟在线播放| 亚洲精品粉嫩美女一区| 国产一区二区亚洲精品在线观看| 国产一区二区三区在线臀色熟女| 亚洲第一电影网av| 精品久久久久久,| 国产91精品成人一区二区三区| 亚洲成av人片免费观看| 一个人看视频在线观看www免费 | 97超视频在线观看视频| 国内精品久久久久精免费| 欧美黄色片欧美黄色片| 床上黄色一级片| 亚洲第一电影网av| 国产高潮美女av| av女优亚洲男人天堂| 日韩欧美国产一区二区入口| 一本一本综合久久| 亚洲 欧美 日韩 在线 免费| 久久久久久大精品| 99久久99久久久精品蜜桃| 亚洲av电影在线进入| 精品久久久久久久久久免费视频| 大型黄色视频在线免费观看| 黄片大片在线免费观看| 精品不卡国产一区二区三区| 国模一区二区三区四区视频| 757午夜福利合集在线观看| 天天添夜夜摸| av片东京热男人的天堂| 欧美不卡视频在线免费观看| 99久久精品一区二区三区| 午夜久久久久精精品| 亚洲欧美日韩高清在线视频| 欧美三级亚洲精品| 床上黄色一级片| 夜夜夜夜夜久久久久| 欧美绝顶高潮抽搐喷水| www日本在线高清视频| 国产一区二区在线av高清观看| 国产av在哪里看| 久久久久久大精品| 国产亚洲精品久久久com| 欧美极品一区二区三区四区| 成人国产一区最新在线观看| 午夜老司机福利剧场| 国产精品一区二区免费欧美| 精品久久久久久成人av| 天天一区二区日本电影三级| 久久99热这里只有精品18| a在线观看视频网站| 中文字幕高清在线视频| 高清日韩中文字幕在线| 国产av不卡久久| 99精品久久久久人妻精品| 国产久久久一区二区三区| 欧美不卡视频在线免费观看| 久久中文看片网| 性色avwww在线观看| 成人永久免费在线观看视频| 国产精品一及| 中出人妻视频一区二区| 老汉色∧v一级毛片| 久久久久久久精品吃奶| 久久精品国产99精品国产亚洲性色| 夜夜看夜夜爽夜夜摸| 我要搜黄色片| 国产成人av激情在线播放| 18禁黄网站禁片免费观看直播| 国产亚洲欧美在线一区二区| 成年免费大片在线观看| 亚洲中文字幕日韩| 亚洲性夜色夜夜综合| 日日摸夜夜添夜夜添小说| 国产精品av视频在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 久久亚洲精品不卡| 国产精品 欧美亚洲| 国产主播在线观看一区二区| 99热这里只有精品一区| 亚洲片人在线观看| 亚洲男人的天堂狠狠| 少妇丰满av| 日韩大尺度精品在线看网址| 国产伦人伦偷精品视频| 午夜福利在线观看免费完整高清在 | 日韩成人在线观看一区二区三区| 最新美女视频免费是黄的| 精品久久久久久久毛片微露脸| 精品福利观看| 18禁黄网站禁片午夜丰满| 久久精品国产自在天天线| 好男人在线观看高清免费视频| 国内少妇人妻偷人精品xxx网站| 一级黄片播放器| 村上凉子中文字幕在线| 女人被狂操c到高潮| 国产一区二区在线观看日韩 | 内射极品少妇av片p| 国产三级在线视频| 日本一二三区视频观看| 又紧又爽又黄一区二区| 99国产综合亚洲精品| 老司机深夜福利视频在线观看| 欧美激情在线99| 亚洲人成网站在线播| 国产精品亚洲美女久久久| 国产精品女同一区二区软件 | 亚洲av免费在线观看| 88av欧美| 午夜福利18| 日本与韩国留学比较| 精品国产三级普通话版| 久久草成人影院| 精品国内亚洲2022精品成人| 亚洲av二区三区四区| 在线观看一区二区三区| 国产麻豆成人av免费视频| 国产视频一区二区在线看| 两个人视频免费观看高清| 性色avwww在线观看| 成人精品一区二区免费| 亚洲av成人精品一区久久| 日本免费一区二区三区高清不卡| 性色av乱码一区二区三区2| 欧美zozozo另类| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品国产高清国产av| 老司机在亚洲福利影院| 人妻夜夜爽99麻豆av| 欧美性感艳星| 在线播放国产精品三级| 国产99白浆流出| 五月伊人婷婷丁香| 丰满乱子伦码专区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 嫩草影视91久久| 听说在线观看完整版免费高清| 成年女人毛片免费观看观看9| 国产精品一区二区三区四区免费观看 | 夜夜看夜夜爽夜夜摸| 精品久久久久久久毛片微露脸| 精品久久久久久久久久免费视频| 精品电影一区二区在线| 亚洲欧美一区二区三区黑人| 午夜免费男女啪啪视频观看 | 亚洲国产欧美网| 国产精品一区二区三区四区免费观看 | 男女做爰动态图高潮gif福利片| 日本撒尿小便嘘嘘汇集6| 法律面前人人平等表现在哪些方面| 老汉色∧v一级毛片| www.www免费av| 两个人看的免费小视频| 国产精品综合久久久久久久免费| 两个人的视频大全免费| 亚洲,欧美精品.| a在线观看视频网站| 日本熟妇午夜| 少妇裸体淫交视频免费看高清| 午夜激情欧美在线| 日本黄大片高清| 男女之事视频高清在线观看| 精品一区二区三区视频在线 | tocl精华| 色老头精品视频在线观看| 丰满乱子伦码专区| 最近视频中文字幕2019在线8| 欧美黑人欧美精品刺激| 久久精品影院6| 老鸭窝网址在线观看| 在线观看免费午夜福利视频| 亚洲av成人不卡在线观看播放网| 日韩欧美免费精品| 欧美中文综合在线视频| 国产精品免费一区二区三区在线| 性欧美人与动物交配| 偷拍熟女少妇极品色| 国产av麻豆久久久久久久| 精品国产三级普通话版| 欧美丝袜亚洲另类 | 精品久久久久久久人妻蜜臀av| 国语自产精品视频在线第100页| 制服丝袜大香蕉在线| 色老头精品视频在线观看| 欧美在线一区亚洲| 国产成人欧美在线观看| 91av网一区二区| aaaaa片日本免费| 国产精品久久久久久亚洲av鲁大| 亚洲自拍偷在线| 俺也久久电影网| 亚洲国产日韩欧美精品在线观看 | 日本免费一区二区三区高清不卡| 深爱激情五月婷婷| 首页视频小说图片口味搜索|