• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting[Pt/Co/Ta]10 multilayer

    2022-11-21 09:30:06ZhenDongChen陳振東MeiYangMa馬眉揚(yáng)SenFuZhang張森富MangYuanMa馬莽原ZiZhaoPan潘咨兆XiXiangZhang張西祥XueZhongRuan阮學(xué)忠YongBingXu徐永兵andFuShengMa馬付勝
    Chinese Physics B 2022年11期
    關(guān)鍵詞:莽原

    Zhen-Dong Chen(陳振東) Mei-Yang Ma(馬眉揚(yáng)) Sen-Fu Zhang(張森富) Mang-Yuan Ma(馬莽原)Zi-Zhao Pan(潘咨兆) Xi-Xiang Zhang(張西祥) Xue-Zhong Ruan(阮學(xué)忠)Yong-Bing Xu(徐永兵) and Fu-Sheng Ma(馬付勝)

    1Jiangsu Key Laboratory of Opto-Electronic Technology,Center for Quantum Transport and Thermal Energy Science,School of Physics and Technology,Nanjing Normal University,Nanjing 210046,China

    2Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials,School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    3School of Physical Science and Technology,Lanzhou University,Lanzhou 730000,China

    4Physical Science and Engineering Division(PSE),King Abdullah University of Science and Technology(KAUST),Thuwal 23955-6900,Saudi Arabia

    An interlayer perpendicular standing spin wave mode is observed in the skyrmion-hosting [Pt/Co/Ta]10 multilayer by measuring the time-resolved magneto-optical Kerr effect. The observed interlayer mode depends on the interlayer spin-pumping and spin transfer torque among the neighboring Co layers. This mode shows monotonically increasing frequency-field dependence which is similar to the ferromagnetic resonance mode, but within higher frequency range.Besides, the damping of the interlayer mode is found to be a relatively low constant value of 0.027 which is independent of the external field. This work expounds the potential application of the[heavy-metal/ferromagnetic-metal]n multilayers to skyrmion-based magnonic devices which can provide multiple magnon modes, relatively low damping, and skyrmion states,simultaneously.

    Keywords: dynamic properties of magnetization,spin waves,domain structure,magnetic properties of interfaces

    1. Introduction

    With the development of conventional complementary metal–oxide–semiconductor (CMOS) devices approaching to the limit of the Moore’s law, people have paid much attention to beyond-CMOS devices which use other degrees of freedom to code information instead of electron charge.[1–5]Since the 1990s, magnonics has been identified to be particularly promising in all approaches to developing beyond-CMOS devices.[6–14]Magnonics is a new research field which focuses on the characteristics of spin waves, and they are used to carry and process information.[8,10,11]Magnonic devices are expected to possess significant advantages such as high speed, low energy dissipation, broad frequency ranges from gigahertz to terahertz,et al.[10,11]Because of such advantages, lots of magnonic devices have been designed, such as magnon based nano-oscillators, interferometers, logic gates,and transistors.[10,11,13,15–20]

    Further studies of magnonics and magnonic devices require a platform to be able to excite different spin wave modes. Thus, the concept of magnonic crystals (MCs) was put forward, in which spin waves can be modulated into magnon bands via artificial periodical structures of magnetic properties.[10,12,21–25]Among new magnetic media,skyrmionbased MCs (SMCs) have attracted much attention in which the periodical structures are constituted by skyrmions.[12,26–31]The SMCs show great potential applications in dynamic and functional magnonic devices due to their dynamical tunability.[26,28]And in recent years,the topological nontrivial magnon bands and the chiral edge magnon states were predicted to exist in SMCs, which provides a new kind of platform for topological physics study and application of the chiral edge magnon states with low energy dissipation.[29–31]In experimental studies, there are a variety of artificial thin-film skyrmion systems with interfacial Dzyaloshinskii–Moriya interactions (iDMI) which can be the candidates for building SMCs, such as Pt/CoFeB/MgO, Pt/Co/Ta, Ir/Fe/Co/Pt,etc.[32–37]Additionally, the artificial systems with iDMI can be providers of chiral spin waves,and show a potential application in functional chiral magnonics.[38–40]However, there are rare experimental researches of the dynamic properties of these skyrmion-hosting thin-film systems, and the SMCs based on these platforms remains unrealized. The most significant factor to limit the study of their dynamic properties and their applications in SMCs is the large damping value which is mostly above 0.1.[41,42]In recent years,the skyrmion-hosting thin-films in the form of [heavy-metal (HM)/ferromagneticmetal (FM)/heavy-metal (HM)]nmultilayers are reported to show relatively low damping of less than 0.05.[37,43]These findings provide a promising platform for studying the dynamic spin wave modes of the skyrmion-hosting thin-film systems,and promotes the experimental realization of SMCs.

    In this work,we experimentally study the dynamic properties of the skyrmion-hosting[Pt/Co/Ta]10multilayer by measuring the time-resolved magneto-optical Kerr effect (TRMOKE). An interlayer perpendicular standing spin wave(PSSW)mode in the multilayers is observed. We declare that this interlayer PSSW mode depends on the spin pumping and spin transfer torque among the neighboring Co layers.Furthermore, by comparing the effective damping of the interlayer PSSW mode and the ferromagnetic resonance (FMR) mode,we find that the damping of the interlayer PSSW mode keeps a relatively low constant value of 0.027 and is independent of the external magnetic field. Our results point out prospect of obtaining multiple and tunable spin wave modes with specific frequency and relatively low damping in skyrmion-hosting[HM/FM/HM]nmultilayer structures,thus can make the multilayers a potential platform for SMCs.

    2. Experiments

    The multilayer stack, Ta(3 nm)/[Pt(1.5 nm)/Co(2.1 nm)/Ta(1 nm)]10, is deposited on thermally oxidized Si substrate by DC magnetron sputtering at room temperature. The pressure of the Ar gas is 0.4 Pa. The base pressure is lower than~2×10-5Pa. The in-plane and out-of-plane hysteresis loops of the multilayer film are measured at room temperature by vibrating sample magnetometry (VSM). And the anomalous Hall resistance is measured by a custom-built system for magnetoelectronic transport measurements at room temperature.In order to directly clarify the existence of the skyrmion state,the multilayer film is also deposited on the Si3N4membrane by the same method and structure. The Lorentz transmission electron microscopy (L-TEM) imaging is carried out by using an FEI Titan Cs image TEM in Lorentz mode(the Fresnel imaging mode)at 300 kV,and the out-of-plane field is set to be at a tilt angle ofθ=30°with respect to the normal direction of the film.[36,44]The dynamic characteristics of the multilayer stack are investigated via polar TR-MOKE measurements at room temperature. The sketch of the multilayer stack and the geometric configuration of the TR-MOKE measurements are shown in Fig.1(a). During the TR-MOKE measurements,the pump laser is vertically injected on the surface of the film,and the probe laser is nearly vertically injected at a small angle deviated from the normal direction. The wavelength,spot diameter focused onto the film surface,and the fluence of the pump(probe) laser are 800 nm (400 nm), 300 μm (180 μm), and 3.10 mJ/cm2(20.54 μJ/cm2),respectively. The pulse duration of the pump laser and the probe laser are both~50 fs. The external magnetic fields are set to be in thex–zplane with the azimuth angleθ=60°,70°,80°,and their magnitudes change from 429.4 mT to 992.0 mT.

    3. Results

    In order to obtain the saturation field and magnetization processes of the multilayer stack,VSM measurements are executed with the field along out-of-plane(θ=0°)and in-plane(θ=90°) direction as shown in Fig. 1(b). It obviously exhibits that the saturation fields are both~300 mT for the above two cases. The similar saturation fields along the in-plane direction and the out-of-plane direction imply the presence of a perpendicular magnetic anisotropy which has a magnitude similar to the demagnetization energy in the Co layer of the stack.[45]The saturated magnetization(Ms)of the Co layer is also obtained to be~378 kA/m (378 emu/cm3). This magnetization value is comparable to the values of Pt/Co/Ta multilayers in previous researches,but much lower than those of Co monolayers.[46,47]The low magnetization of the [Pt/Co/Ta]10multilayer stack is attributed to the intermixing at the interface of the Co layers and the Ta(Pt) layers. Furthermore,the minor loops can be found whileμ0His around 180 mT and-180 mT,whose irreversible characters can be attributed to the skyrmion texture.[36,44]The inset of Fig. 1(b) shows a zoom-in view of the minor loop withμ0Haround 180 mT,serving as an example.

    To directly observe the domain structures of the multilayer, the L-TEM measurements are executed for the same multilayer stack deposited on the Si3N4membrane withθ=30°. Figures 1(e)and 1(f)show the L-TEM image atμ0H=0 mT and the L-TEM image atμ0H=170 mT,respectively. It is exhibited obviously that whenμ0H=0 mT,the multilayer stack shows a stripe domain state; whenμ0H=170 mT, the disk patterns with dark–bright contrast demonstrate the presence of N′eel-type skyrmions.[44]The existence of the stripe domain state and the N′eel-type skyrmion state observed by LTEM conform to the suggestion of the out-of-plane magnetization hysteresis loop and the topological Hall effect,and are also in agreement with previous observations on the L-TEM image of[Pt/Co/Ta]nmultilayer stacks.[36,44]

    Fig.1. (a)Illustration of Ta/[Pt/Co/Ta]10 multilayer stack,and geometric configuration of TR-MOKE measurements,where external field H (yellow arrow)is set to be in x–z plane,θ is angle between H and z axis.Red wavy line and blue wavy lines represent pump laser and probe laser,respectively.(b)Magnetization hysteresis loop of multilayer with θ =0° and 90°,with inset showing zoom-in view of loop with θ =0° and μ0H around 180 mT.(c)ρTH/ρsatH and M–H curve with μ0H scanning from 400 mT to -400 mT. (d) ρTH/ρsatH curve with H scanning from 400 mT to -400 mT. L-TEM images with a tilt angel θ =30°,μ0H=0 mT(e)and 170 mT(f),respectively. The unit“a.u.” in the inset of Fig.1(b)is short for arb. units.

    In order to investigate the dynamic processes of the stack,TR-MOKE measurements are performed under the externally applied fields atθ=60°, 70°, and 80°; as well as the magnitudes ofμ0Hchanging from 429.4 mT to 992.0 mT. It should be noticed that the TR-MOKE measurements are performed under the condition of saturated magnetization with the external fields larger than 300 mT. Figure 2(a) shows a representative result of the TR-MOKE measurements withH=752.3 mT andθ=80°. The obvious nodes and antinodes of the damped oscillation curve demonstrate that there are multiple dynamic modes in the multilayer stack which are excited simultaneously by the pump laser. The frequency spectrum obtained from the fast Fourier transform (FFT) result of this curve [Fig. 2(b)] shows that there are two precession modes in the multilayer stack with frequencies of 24.48 GHz and 30.15 GHz,respectively. Figures 3(a)–3(c)show the TRMOKE curves with eachθunder different external fields and Figs. 3(d)–3(f) display the corresponding frequency spectra obtained from the FFT results. Like Figs.2(a)and 2(b),it can also be identified in Figs.3 that there are two dynamic modes under each external field withθ=60°, 70°, and 80°. From the frequency spectra,it can also be found that for eachθ,the frequency–field (f–H) dependence of both the two dynamic modes show similar monotonically increasing trends, which conform to the Kittel model.[49]

    Fig. 2. (a) TR-MOKE curve with H =7.523 kOe (1 Oe=79.5775 A·m-1)and θ =80°,and(b)corresponding frequency spectrum obtained from FFT result,respectively.

    4. Discussion

    Since the[Pt/Co/Ta]10multilayer stack is an in-plane uniform medium, and the probe laser spot focused on the multilayer is overlapped with the pump laser spot with smaller diameter, the probe laser cannot detect multiple in-plane spin wave modes in the multilayer.[50–52]Considering the similar monotonically increasingf–Hrelations, the two dynamic modes can be recognized as the FMR mode and the PSSW mode.[49,53,54]However, the PSSW mode in the single Co layer cannot arise in the measurements due to its high frequency which should be hundreds of gigahertz or near terahertz. This high frequency is induced by the ultrathin film with a thickness of 2.1 nm and the strong Heisenberg exchange coupling.[55,56]Thus,it can be expected that the multilayer structures can provide interlayer PSSW modes depending on interlayer coupling. In previous researches, researchers have investigated several interlayer couplings which have an effect on spin wave propagation in a multilayer structure,such as dipolar coupling,[57–60]interlayer exchange coupling,[56,61,62]Ruderman–Kittel–Kasuya–Yosida (RKKY)coupling,[63,64]spin pumping, and spin transfer torque.[65]However, the first three factors can be excluded from the[Pt/Co/Ta]10multilayer stack: the interlayer spin waves propagating via interlayer dipolar coupling are demonstrated to be degenerated with the FMR mode;[57]the interlayer exchange coupling and the RKKY coupling among the Co layers can be blocked by the Pt and Ta layers which possess a total thickness of 2.5 nm. Thus,we declare that the two dynamic modes excited in the [Pt/Co/Ta]10stack are the FMR mode and the interlayer PSSW mode, which depend on spin pumping and spin transfer torque,respectively.[65]Figures 4(a)and 4(b)illustrate the moment precession of the FMR mode and the interlayer PSSW mode,as well as the effect of the spin pumping and spin transfer torque. While the moments of a single Co layer are precessing,the layer will inject two spin currents into neighboring nonmagnetic metal layers. The two spin currents are attributed to spin pumping effect and spin accumulation effect,respectively. And they will propagate through the nonmagnetic metal layer,and result in a damping-like torque(τSP)and a field-like torque(τST)at the interface between the nonmagnetic metal layer and the nearest two Co layers. Owing to the torques,spin waves can propagate through different Co layers, resulting in the generation of interlayer PSSW modes in the [Pt/Co/Ta]10multilayers. Thef–Hdependence of the interlayer PSSWs in such ferromagnetic/nonmagnetic multilayers can be written as follows:[65]

    wherefis the frequency of the spin wave,γis the gyromagnetic ratio,His the magnitude of the external fields,Msis the saturation magnetization of the Co layers,Aexis the exchange coupling constant,K⊥is the perpendicular magnetic anisotropy constant, andkis the wave vector of the PSSWs. Whenk=0, equation (1) will reduce to the FMR form; and whenk/=0, equation (1) can describe the characteristics of PSSWs. For PSSWs in single ferromagnetic films,k=2π/λ=pπ/dwhereλis the wavelength of the PSSW,pis an integer number, anddis the thickness of the ferromagnetic films. Owing to the positive value ofAexin Co layers,it can be noticed that under the same external fieldH,the frequency of perpendicular spin waves is higher than that of the FMR mode. Thus, the two dynamic modes observed in the [Pt/Co/Ta]10multilayer stack can be identified to be that the low frequency mode is FMR mode and the high frequency mode is PSSW mode. The experimentally observedf–Hrelations withθ=60°,70°,and 80°are shown in Figs.4(c)–4(e).By fitting thef–Hrelations of the FMR mode and the PSSW mode via Eq.(1)withk=0 andk/=0 respectively, it can be obtained thatγ/2π=28.3 GHz/T,K⊥=3.68×104J/m3,and 2Aexk2/μ0Ms=143 mT. While we setAex=10 pJ/m,[66,67]then we can obtain the wavelengthλ=2π/k=130 nm;while we setAex=5 pJ/m,we can obtainλ=82 nm. Theseλvalues are much larger than the thickness of the single Co layer(2.1 nm), and are comparable to the doubled total thickness of the[Pt/Co/Ta]10multilayer stack,which also confirms that the high-frequency mode is the interlayer PSSW mode. In the above analysis, the effect of iDMI is not taken into account.Since it has been demonstrated that if the in-plane wave vector of the spin wave is zero, the iDMI will not affect the characteristics of the spin waves.[40,47,68,69]

    Furthermore, we compare the effective damping of the FMR mode and the interlayer PSSW mode. The effective damping can be obtained by the following equations:[70,71]

    Fig. 4. Illustrations of the moment precession for (a) FMR mode and (b) interlayer PSSW mode in multilayers, respectively, with blue arrows with double ends representing effect of spin pumping and spin transfer torque, and for [(c)–(e)] f–H dependence of FMR mode and PSSW mode with θ =60°,70°,and 80°,with pink lines denoting fitting results with Eq.(1).

    whereαFMR(αPSSW),fFMR(fPSSW),andτFMR(τPSSW)are the effective damping,frequency,relaxation time of the FMR(interlayer PSSW)mode,respectively. The relaxation timeτFMRandτPSSWcan be obtained by fitting the TR-MOKE data via the equation:

    whereθKerris the Kerr rotation,AFMR(APSSW) andφFMR(φPSSW) are the amplitude and phase of the FMR (interlayer PSSW) mode, respectively, andA1e-t/τ0is the exponential decay background. The first term on the right-hand side of Eq. (3) corresponds to the precession of the FMR mode, and the second term corresponds to the interlayer PSSW mode.Figures 5(a)–5(c)show the curves of effective damping versus external field withθ=60°, 70°, and 80°. It can be clearly seen thatαFMRreduces and approaches to 0.03 with external field increasing. It is a normal rule forαFMRbecauseαFMRis mainly determined by the extrinsic factors such as the inhomogeneous magnetization which is attributed to the inhomogeneous magnetic anisotropic field. The increasingHwill suppress the contribution of the inhomogeneous magnetization,and makesαFMRapproach to the intrinsic Gilbert damping value.[70,71]However, it can be found thatαPSSWalways maintains a relatively low value around 0.027 which is independent of the magnitudes and the directions of the external fields. The stableαPSSWwith a relatively low value can be attributed to the weak inhomogeneity of the exchange field.UnlikeαFMR,theαPSSWis mainly determined by the inhomogeneity of the exchange field which is generally weaker than the inhomogeneity of the magnetic anisotropic field. Thus,theαPSSWis lower thanαFMRand closer to the intrinsic value of the Gilbert damping of the magnetic films.[72]And more importantly, it suggests that the[Pt/Co/Ta]10multilayer stack possesses a relatively low intrinsic damping, which is much lower than the intrinsic damping of most of skyrmion-hosting thin-film systems(mostly above 0.1).[38,39]This low damping means that the [Pt/Co/Ta]10multilayers are also the potential platforms for studying the dynamic properties of the thin-film skyrmion systems and experimentally realizing SMCs.

    Fig.5. Effective damping of the FMR mode and the PSSW mode with θ =60° (a),70° (b),and 80° (c).

    5. Conclusions

    In this work, we have experimentally studied the dynamic properties of the skyrmion-hosting [Pt/Co/Ta]10multilayers by TR-MOKE measurements. An interlayer PSSW mode is observed. This interlayer dynamic mode is attributed to the spin pumping and spin transfer torque,and shows similar monotonically-increasingf–Hrelationships to that from the FMR mode. Furthermore, the damping of the interlayer PSSW mode is observed to be independent of the magnitudes and the directions of the external fields,and show a relatively low valuecompared with that of FMR mode. Our findings provide a new approach to obtaining the multiple and tunable spin wave modes,relatively low damping,and skyrmion states via building[HM/FM/HM]nmultilayer structures with iDMI,thus can expand the scope of applications of the [HM/FM/HM]nmultilayers as potential platforms for the experimental realization of SMCs.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.12074189,11704191,11774160,and 61427812), the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20192006 and BK20211144),and the Postdoctoral Research Funding Program of Jiangsu Province,China(Grant No.2021K503C).

    猜你喜歡
    莽原
    啟事
    莽原(2023年3期)2023-05-30 12:46:47
    在思想啟蒙與文學(xué)建設(shè)之間
    ——魯迅《莽原》編輯論
    《莽原激流》
    藝術(shù)家(2021年7期)2021-08-20 02:58:06
    未名社成員韋素園佚文考述(下)
    名作欣賞(2021年2期)2021-02-22 06:56:25
    未名社成員韋素園佚文考述(上)
    名作欣賞(2021年1期)2021-01-25 11:20:46
    田野織彩綢
    寶藏(2019年8期)2019-08-22 08:24:08
    北大荒
    詩林(2016年5期)2016-10-25 07:40:20
    《莽原》與微信朋友圈:點(diǎn)贊評(píng)論背后的共鳴
    曠野的聲音——關(guān)于《莽原》雜文的一些思考
    城市地理(2015年24期)2015-08-15 00:52:57
    “文明批評(píng)”與“社會(huì)批評(píng)”的陣地
    老司机深夜福利视频在线观看| 波多野结衣巨乳人妻| 精品久久久久久久久久免费视频| 亚洲一区中文字幕在线| 亚洲精品在线观看二区| 精品久久久久久久毛片微露脸| 午夜精品在线福利| 日韩大尺度精品在线看网址 | 日韩高清综合在线| 91大片在线观看| 国产精品99久久99久久久不卡| 神马国产精品三级电影在线观看 | 国产主播在线观看一区二区| 久久人妻熟女aⅴ| 久久这里只有精品19| 国产精品电影一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产一区二区三区在线臀色熟女| av片东京热男人的天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩欧美免费精品| 久久久国产成人精品二区| 精品久久久久久久人妻蜜臀av | 国产精品久久视频播放| 亚洲avbb在线观看| 又黄又爽又免费观看的视频| av在线播放免费不卡| 免费女性裸体啪啪无遮挡网站| aaaaa片日本免费| 麻豆一二三区av精品| 久久婷婷成人综合色麻豆| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 老司机午夜十八禁免费视频| 人人澡人人妻人| 女同久久另类99精品国产91| 深夜精品福利| 欧美成狂野欧美在线观看| 久久午夜综合久久蜜桃| 欧美黑人欧美精品刺激| 成年人黄色毛片网站| 久久久久国产一级毛片高清牌| 很黄的视频免费| 中文亚洲av片在线观看爽| 亚洲中文字幕日韩| 精品国产亚洲在线| 老司机靠b影院| 午夜a级毛片| 亚洲专区中文字幕在线| 免费观看精品视频网站| 色老头精品视频在线观看| 女性被躁到高潮视频| 欧美日韩黄片免| 美女午夜性视频免费| 国产精品香港三级国产av潘金莲| 日韩欧美一区视频在线观看| 亚洲熟妇熟女久久| www.www免费av| 国产欧美日韩一区二区精品| 亚洲人成伊人成综合网2020| 国产片内射在线| 午夜福利影视在线免费观看| 老汉色∧v一级毛片| av欧美777| 国产一区二区三区综合在线观看| 色播亚洲综合网| 97超级碰碰碰精品色视频在线观看| 久久伊人香网站| 亚洲av片天天在线观看| 亚洲三区欧美一区| 亚洲欧美日韩无卡精品| 亚洲熟妇熟女久久| 丝袜人妻中文字幕| 亚洲欧美激情综合另类| 亚洲在线自拍视频| 757午夜福利合集在线观看| 国产精品综合久久久久久久免费 | videosex国产| 一边摸一边抽搐一进一小说| 亚洲欧美激情综合另类| 黄色丝袜av网址大全| 美国免费a级毛片| 妹子高潮喷水视频| 国产真人三级小视频在线观看| 日韩三级视频一区二区三区| 色播亚洲综合网| 很黄的视频免费| 九色国产91popny在线| 不卡av一区二区三区| 免费在线观看影片大全网站| 午夜a级毛片| 88av欧美| 久久久久久久久久久久大奶| 很黄的视频免费| 久久久久久久久免费视频了| 91在线观看av| 国产99白浆流出| 最好的美女福利视频网| 欧美老熟妇乱子伦牲交| 欧美日韩亚洲综合一区二区三区_| 免费搜索国产男女视频| 午夜福利视频1000在线观看 | av天堂在线播放| 亚洲成人国产一区在线观看| 免费看美女性在线毛片视频| 男人操女人黄网站| 可以免费在线观看a视频的电影网站| 久久国产精品人妻蜜桃| 91在线观看av| 亚洲三区欧美一区| 国产又爽黄色视频| www.999成人在线观看| 亚洲欧美一区二区三区黑人| 亚洲人成电影观看| 精品无人区乱码1区二区| 国产aⅴ精品一区二区三区波| 精品卡一卡二卡四卡免费| 国产精品免费视频内射| 动漫黄色视频在线观看| 啦啦啦免费观看视频1| 国产精品九九99| 国产精品 国内视频| 久久久精品国产亚洲av高清涩受| 亚洲欧洲精品一区二区精品久久久| 看免费av毛片| 免费在线观看黄色视频的| 国产亚洲精品久久久久5区| 久久久精品欧美日韩精品| 久久香蕉国产精品| 色综合站精品国产| 久久久久久大精品| 少妇裸体淫交视频免费看高清 | 嫩草影院精品99| 99热只有精品国产| 国产在线观看jvid| 在线永久观看黄色视频| 天堂动漫精品| 老鸭窝网址在线观看| 在线av久久热| 男男h啪啪无遮挡| 午夜两性在线视频| 人人妻人人爽人人添夜夜欢视频| 神马国产精品三级电影在线观看 | 午夜免费激情av| 久久久精品国产亚洲av高清涩受| 国产精品一区二区在线不卡| 亚洲va日本ⅴa欧美va伊人久久| 老熟妇乱子伦视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 精品一品国产午夜福利视频| 免费高清在线观看日韩| 国产av又大| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av片天天在线观看| 日本黄色视频三级网站网址| 巨乳人妻的诱惑在线观看| 日韩欧美一区视频在线观看| 成人亚洲精品一区在线观看| 久久精品91无色码中文字幕| 欧美丝袜亚洲另类 | 欧美乱妇无乱码| 亚洲一区高清亚洲精品| 久久人人爽av亚洲精品天堂| 香蕉久久夜色| 国产精品综合久久久久久久免费 | a在线观看视频网站| 无人区码免费观看不卡| 少妇的丰满在线观看| 真人做人爱边吃奶动态| 欧美不卡视频在线免费观看 | 亚洲男人的天堂狠狠| 国产av一区在线观看免费| 精品卡一卡二卡四卡免费| 少妇 在线观看| 日韩精品免费视频一区二区三区| 嫩草影院精品99| 欧美色视频一区免费| 色尼玛亚洲综合影院| 亚洲最大成人中文| 国产精品影院久久| 美女高潮喷水抽搐中文字幕| 久久人妻熟女aⅴ| 国内精品久久久久久久电影| 99精品在免费线老司机午夜| 侵犯人妻中文字幕一二三四区| 国产不卡一卡二| 成在线人永久免费视频| 制服诱惑二区| 美女扒开内裤让男人捅视频| 精品卡一卡二卡四卡免费| 一区二区三区高清视频在线| 免费av毛片视频| 满18在线观看网站| 久久久久久亚洲精品国产蜜桃av| 啦啦啦韩国在线观看视频| 一本综合久久免费| 精品一区二区三区视频在线观看免费| 亚洲国产精品sss在线观看| 亚洲性夜色夜夜综合| 操出白浆在线播放| 免费观看精品视频网站| 亚洲专区国产一区二区| 美女免费视频网站| 国产成人精品在线电影| 亚洲精品中文字幕一二三四区| 女人被狂操c到高潮| 一本综合久久免费| av天堂在线播放| 免费高清视频大片| 久久久久国内视频| 婷婷丁香在线五月| 日韩精品中文字幕看吧| 欧美日本亚洲视频在线播放| 国产亚洲欧美在线一区二区| www.www免费av| 国产成人啪精品午夜网站| 午夜福利影视在线免费观看| 国产精品久久久久久亚洲av鲁大| 美女高潮喷水抽搐中文字幕| 免费观看人在逋| 国产区一区二久久| 欧美日本视频| 男女午夜视频在线观看| 嫩草影院精品99| 国产麻豆69| 日日爽夜夜爽网站| 黄网站色视频无遮挡免费观看| 久久中文看片网| 桃红色精品国产亚洲av| 91大片在线观看| 动漫黄色视频在线观看| www.999成人在线观看| 好男人在线观看高清免费视频 | 美女扒开内裤让男人捅视频| 亚洲av五月六月丁香网| 免费看a级黄色片| 国产精品精品国产色婷婷| 性少妇av在线| 搡老熟女国产l中国老女人| 亚洲全国av大片| 成人亚洲精品一区在线观看| 日本vs欧美在线观看视频| 欧美乱码精品一区二区三区| 18禁观看日本| 欧美日韩中文字幕国产精品一区二区三区 | 岛国视频午夜一区免费看| 久久久久久久久久久久大奶| 欧美国产日韩亚洲一区| 色婷婷久久久亚洲欧美| 久久狼人影院| 一级片免费观看大全| 欧美国产日韩亚洲一区| 很黄的视频免费| 搡老熟女国产l中国老女人| 一级毛片高清免费大全| 精品国产超薄肉色丝袜足j| 国产在线观看jvid| 亚洲中文av在线| 18禁黄网站禁片午夜丰满| 日日爽夜夜爽网站| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 99久久综合精品五月天人人| 国产熟女xx| 国产男靠女视频免费网站| 亚洲性夜色夜夜综合| 久久草成人影院| 老熟妇乱子伦视频在线观看| 两个人免费观看高清视频| 亚洲黑人精品在线| 在线播放国产精品三级| 又紧又爽又黄一区二区| 免费在线观看完整版高清| 亚洲色图 男人天堂 中文字幕| 精品第一国产精品| 亚洲精品国产区一区二| 美女高潮到喷水免费观看| 可以在线观看的亚洲视频| 波多野结衣巨乳人妻| 免费看a级黄色片| 国产伦人伦偷精品视频| 亚洲免费av在线视频| 成人永久免费在线观看视频| 99国产极品粉嫩在线观看| 免费观看人在逋| 国产精品久久电影中文字幕| 不卡av一区二区三区| 日本 av在线| 男人的好看免费观看在线视频 | 免费高清视频大片| 国产极品粉嫩免费观看在线| 精品高清国产在线一区| 欧美日本亚洲视频在线播放| 免费观看人在逋| 黄色丝袜av网址大全| 亚洲精品国产区一区二| 国产亚洲欧美在线一区二区| 一进一出抽搐动态| 精品卡一卡二卡四卡免费| 国产三级在线视频| 国产成人精品无人区| 国产高清videossex| 在线观看www视频免费| 国产午夜精品久久久久久| 美女 人体艺术 gogo| 在线国产一区二区在线| 亚洲国产精品999在线| 亚洲aⅴ乱码一区二区在线播放 | 国产xxxxx性猛交| 亚洲五月天丁香| 最新美女视频免费是黄的| 女人被躁到高潮嗷嗷叫费观| 90打野战视频偷拍视频| 久久久精品国产亚洲av高清涩受| 欧美最黄视频在线播放免费| www.自偷自拍.com| 中文字幕另类日韩欧美亚洲嫩草| 人妻久久中文字幕网| 一二三四在线观看免费中文在| 免费高清视频大片| 操美女的视频在线观看| 又紧又爽又黄一区二区| 精品国产一区二区三区四区第35| 免费女性裸体啪啪无遮挡网站| 熟女少妇亚洲综合色aaa.| 黑人巨大精品欧美一区二区mp4| 一二三四社区在线视频社区8| 99香蕉大伊视频| 麻豆一二三区av精品| 人人妻,人人澡人人爽秒播| 亚洲中文av在线| 成人国语在线视频| 精品少妇一区二区三区视频日本电影| 久久精品影院6| 国产精品秋霞免费鲁丝片| 不卡av一区二区三区| 黄片小视频在线播放| 欧美日韩一级在线毛片| 国产熟女xx| 波多野结衣av一区二区av| 老鸭窝网址在线观看| 国产精品电影一区二区三区| 色在线成人网| 欧美成人性av电影在线观看| 法律面前人人平等表现在哪些方面| 激情视频va一区二区三区| 久久久精品欧美日韩精品| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看影片大全网站| 成在线人永久免费视频| 成人亚洲精品av一区二区| 国产一区二区三区视频了| 国产成人精品在线电影| 久久草成人影院| 国产午夜福利久久久久久| 亚洲av日韩精品久久久久久密| 久久草成人影院| 一区二区三区激情视频| av有码第一页| 91麻豆av在线| 欧美日韩黄片免| 香蕉丝袜av| 亚洲精品国产色婷婷电影| 乱人伦中国视频| 夜夜爽天天搞| 欧美大码av| 神马国产精品三级电影在线观看 | 9热在线视频观看99| 欧美午夜高清在线| 精品熟女少妇八av免费久了| netflix在线观看网站| 欧美黑人精品巨大| 欧美色视频一区免费| 国产免费男女视频| 一a级毛片在线观看| 香蕉国产在线看| 91九色精品人成在线观看| 亚洲片人在线观看| 在线观看日韩欧美| 亚洲国产精品合色在线| 99精品欧美一区二区三区四区| 欧美色欧美亚洲另类二区 | 啪啪无遮挡十八禁网站| 亚洲色图综合在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 免费搜索国产男女视频| 99精品在免费线老司机午夜| 日韩 欧美 亚洲 中文字幕| 亚洲精品粉嫩美女一区| 最新在线观看一区二区三区| av免费在线观看网站| 淫秽高清视频在线观看| 国产人伦9x9x在线观看| 欧美一区二区精品小视频在线| 满18在线观看网站| 国产精品野战在线观看| 欧美黑人精品巨大| 一级作爱视频免费观看| 免费无遮挡裸体视频| 久久久久久久午夜电影| 成熟少妇高潮喷水视频| 午夜视频精品福利| av网站免费在线观看视频| 啦啦啦韩国在线观看视频| 精品一品国产午夜福利视频| 午夜福利视频1000在线观看 | 亚洲av电影在线进入| 亚洲天堂国产精品一区在线| 亚洲精品在线观看二区| 在线观看午夜福利视频| 91精品国产国语对白视频| 久久亚洲精品不卡| 午夜精品在线福利| 美国免费a级毛片| 黄片小视频在线播放| 亚洲一区高清亚洲精品| 国产99白浆流出| 男女之事视频高清在线观看| 人人澡人人妻人| 国产精品久久久av美女十八| 国产欧美日韩一区二区精品| 欧美日韩瑟瑟在线播放| 人人妻人人爽人人添夜夜欢视频| 欧美一级毛片孕妇| 久久婷婷成人综合色麻豆| 满18在线观看网站| 91精品国产国语对白视频| 国产免费av片在线观看野外av| 亚洲一卡2卡3卡4卡5卡精品中文| 国语自产精品视频在线第100页| 国产成人精品在线电影| 久久热在线av| 精品一品国产午夜福利视频| 三级毛片av免费| 亚洲五月色婷婷综合| 国产精品av久久久久免费| 91老司机精品| 久热这里只有精品99| 国产精品秋霞免费鲁丝片| 一区二区三区激情视频| 免费女性裸体啪啪无遮挡网站| 久久 成人 亚洲| 在线永久观看黄色视频| 老司机午夜十八禁免费视频| 黑人巨大精品欧美一区二区mp4| 黄色视频,在线免费观看| 国产激情欧美一区二区| 亚洲专区中文字幕在线| 色老头精品视频在线观看| 在线天堂中文资源库| 国产精品久久电影中文字幕| 好男人电影高清在线观看| www.www免费av| 天天一区二区日本电影三级 | 制服人妻中文乱码| 在线视频色国产色| 国产成人av教育| 久久婷婷成人综合色麻豆| 欧美成人一区二区免费高清观看 | 午夜福利高清视频| 丝袜人妻中文字幕| 激情在线观看视频在线高清| 极品教师在线免费播放| 人妻丰满熟妇av一区二区三区| 国产不卡一卡二| 亚洲成a人片在线一区二区| 色哟哟哟哟哟哟| 国产精品久久视频播放| 国产成+人综合+亚洲专区| 老汉色av国产亚洲站长工具| 国产高清videossex| 精品人妻1区二区| 欧美日韩福利视频一区二区| 亚洲人成网站在线播放欧美日韩| 日本免费a在线| 黄色毛片三级朝国网站| 99热只有精品国产| 国产单亲对白刺激| 女人高潮潮喷娇喘18禁视频| 午夜精品在线福利| 在线观看免费视频日本深夜| а√天堂www在线а√下载| 好看av亚洲va欧美ⅴa在| 国产成人精品在线电影| 亚洲精品av麻豆狂野| 99精品欧美一区二区三区四区| www.熟女人妻精品国产| 精品国产一区二区三区四区第35| 亚洲欧美激情综合另类| 91字幕亚洲| tocl精华| 一二三四在线观看免费中文在| 满18在线观看网站| 成人永久免费在线观看视频| 亚洲人成77777在线视频| 看免费av毛片| 国产精品二区激情视频| 日本三级黄在线观看| 男女午夜视频在线观看| 国产欧美日韩综合在线一区二区| 亚洲欧美精品综合一区二区三区| 亚洲一码二码三码区别大吗| 99久久99久久久精品蜜桃| 国产午夜精品久久久久久| 一区在线观看完整版| 亚洲五月色婷婷综合| 亚洲av第一区精品v没综合| 国产伦一二天堂av在线观看| 露出奶头的视频| 热re99久久国产66热| 国产精品二区激情视频| 久久热在线av| 亚洲视频免费观看视频| 成人18禁在线播放| avwww免费| 中文亚洲av片在线观看爽| 中国美女看黄片| 在线观看66精品国产| 午夜亚洲福利在线播放| 一本综合久久免费| 一进一出好大好爽视频| 操出白浆在线播放| 日韩免费av在线播放| 国产成人精品无人区| 久久人妻av系列| 日韩欧美一区视频在线观看| 熟女少妇亚洲综合色aaa.| 日韩精品免费视频一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 一级a爱片免费观看的视频| 91麻豆av在线| 巨乳人妻的诱惑在线观看| 中文字幕色久视频| 一级a爱片免费观看的视频| 精品午夜福利视频在线观看一区| 精品久久久久久,| 亚洲第一欧美日韩一区二区三区| 久久国产乱子伦精品免费另类| 老司机午夜福利在线观看视频| 91成人精品电影| 久久草成人影院| 精品国产一区二区三区四区第35| 色综合欧美亚洲国产小说| 精品国产一区二区三区四区第35| 欧美日韩亚洲国产一区二区在线观看| 国产主播在线观看一区二区| 日韩欧美在线二视频| 国产精品久久久人人做人人爽| 久久人妻av系列| 国产午夜精品久久久久久| 国产精品野战在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 成人国语在线视频| 日韩成人在线观看一区二区三区| 女人精品久久久久毛片| 丁香欧美五月| 日韩欧美在线二视频| 国产91精品成人一区二区三区| 9色porny在线观看| 亚洲精品美女久久av网站| 亚洲色图综合在线观看| 视频区欧美日本亚洲| 亚洲国产欧美网| 91av网站免费观看| 色婷婷久久久亚洲欧美| 免费搜索国产男女视频| 在线观看66精品国产| 禁无遮挡网站| 免费在线观看影片大全网站| 99香蕉大伊视频| 婷婷精品国产亚洲av在线| 国产精品亚洲av一区麻豆| 亚洲第一av免费看| 精品午夜福利视频在线观看一区| 日本欧美视频一区| 亚洲欧美精品综合久久99| 日韩 欧美 亚洲 中文字幕| 亚洲第一电影网av| 长腿黑丝高跟| 国产亚洲精品综合一区在线观看 | 国产成+人综合+亚洲专区| 久久人妻熟女aⅴ| 777久久人妻少妇嫩草av网站| 一级,二级,三级黄色视频| 一区二区三区激情视频| 别揉我奶头~嗯~啊~动态视频| 12—13女人毛片做爰片一| 美女 人体艺术 gogo| 天天躁狠狠躁夜夜躁狠狠躁| 可以免费在线观看a视频的电影网站| 啦啦啦免费观看视频1| 久久久久精品国产欧美久久久| 亚洲激情在线av| 99精品在免费线老司机午夜| 90打野战视频偷拍视频| 韩国av一区二区三区四区| 黄频高清免费视频| 变态另类成人亚洲欧美熟女 | 一区二区三区激情视频| 午夜精品久久久久久毛片777| 人人妻,人人澡人人爽秒播| 精品午夜福利视频在线观看一区| 黄色女人牲交| 我的亚洲天堂| 久久久国产精品麻豆| 国产成+人综合+亚洲专区| 免费搜索国产男女视频| 成人特级黄色片久久久久久久| 99精品久久久久人妻精品| 久久久国产欧美日韩av| 熟女少妇亚洲综合色aaa.| 国产精品免费一区二区三区在线| 精品国内亚洲2022精品成人| 免费高清在线观看日韩| 日韩精品中文字幕看吧|