• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Skyrmion transport driven by pure voltage generated strain gradient

    2022-11-21 09:39:10ShanQiu邱珊JiaHaoLiu劉嘉豪YaBoChen陳亞博YunPingZhao趙云平BoWei危波andLiangFang方糧
    Chinese Physics B 2022年11期
    關鍵詞:趙云

    Shan Qiu(邱珊) Jia-Hao Liu(劉嘉豪) Ya-Bo Chen(陳亞博) Yun-Ping Zhao(趙云平)Bo Wei(危波) and Liang Fang(方糧)

    1Institute for Quantum Information&State Key Laboratory of High Performance Computing,College of Computer,National University of Defense Technology,Changsha 410073,China

    2Hunan University of Humanities Science and Technology,Loudi 417000,China

    The magnetic skyrmion transport driven by pure voltage-induced strain gradient is proposed and studied via micromagnetic simulation. Through combining the skyrmion with multiferroic heterojunction,a voltage-induced uniaxial strain gradient is adjusted to move skyrmions. In the system,a pair of short-circuited trapezoidal top electrodes can generate the symmetric strain. Due to the symmetry of strain,the magnetic skyrmion can be driven with a linear motion in the middle of the nanostrip without deviation. We calculate the strain distribution generated by the trapezoidal top electrodes pair,and further investigate the influence of the strain intensity as well as the strain gradient on the skyrmion velocity. Our findings provide a stable and low-energy regulation method for skyrmion transport.

    Keywords: skyrmion,strain gradient,multiferroic heterojunction,spintronics

    1. Introduction

    Magnetic skyrmions are topologically protected quasiparticle spin structures.[1–5]Due to their small size[6]and low driven energy consumption, skyrmions are considered a strong competitor in the next generation of spintronic devices,such as information storage,[7]artificial synapses,[8]and nanooscillators.[9]Towards future applications,successful manipulation of skyrmions is the key. Previous work have shown that skyrmions could be generated and manipulated by using different methods, including external magnetic field,[10,11]temperature gradient,[12,13]microwave,[14]spin wave,[15–17]spinpolarized current,[18–22]and electric field,[23,24]etc.Among them, the spin-polarized current is the most widely used method in driving the skyrmion. However, the skyrmion Hall effect is inevitable during the skyrmion motion driven by the spin–orbit torque, which makes the skyrmion deviate to a certain boundary of the nanostrip, and finally, get annihilated.[25,26]

    In recent years,the electric field-generated strain has been experimentally proved to be an effective switching magnetic structure method.[27–30]The strain in the multiferroic heterojunction, which is a ferromagnetic/piezoelectric double-layer composite structure,can be generated by applying a voltage to the piezoelectric layer,and then acts on the ferromagnetic material layer by the inverse magnetostriction effect to control the ferromagnetic layer’s magneto-dynamic characteristics.[31–35]Based on this strategy,some groups have successfully realized the electrical manipulation of magnetic skyrmion creation and annihilation in experiments.[36–38]In particular, the skyrmion transport was also demonstrated using electric fieldgenerated strain gradients. Currently, Liuet al.[39]demonstrated that strain gradient could adjust the skyrmion transverse velocity as the magnetic skyrmion was driven by the in-plane current in a nanotrack.Yaneset al.[40]proposed the skyrmion motion via a strain gradient generated by the voltage between electrodes on a piezoelectric layer. However,this method inevitably results in the limitation of the transmission distance of skyrmions.

    Here we report a skyrmion transports method driven by voltage-generated strain gradient without the assistance of current or magnetic field. The nanostrip is constructed between a pair of short-circuited trapezoidal top electrodes on the piezoelectric layer. The bottom electrode under the piezoelectric layer is grounded.Through finite element simulation,we show that applying a voltage between the top electrodes and the bottom electrode on both sides of the piezoelectric layer can generate a strain gradient on the nanostrip. Due to the symmetry of the strain,the skyrmion can be stabilized on the linear trajectory of motion,avoiding the skyrmion-Hall-effect transport deflection. In addition,we calculate the effects of strain intensity and strain gradient on skyrmion transport speed. Our discovery bridges a new way for ultra-low energy voltage regulation in the multiferroic heterojunction and reliable skyrmion transport.

    2. Model and device structure

    When a ball is subjected to a symmetrical force, it will maintain a stable state. But when the force at both ends produces a gradient,the ball will be“squeezed”to the side where the force is smaller,as shown in Fig.1(a). Based on the inspiration of this phenomenon,we analogize it to skyrmion transport regulation. As shown in Fig. 1(b), when skyrmions in the nanostrip are subjected to a symmetrical force in the vertical direction of motion,they can remain stable on the straight line of motion, avoiding the skyrmion Hall effect. When a force gradient is generated in the direction of movement, the skyrmion will be “squeezed” to the side where the force is smaller,resulting in a directed linear motion.

    Fig. 1. (a) Ball motion driven by pressure gradient. (b) Skyrmion motion driven by pressure gradient. (c)Skyrmion transport system with strain gradient generated by the voltage.

    Figure 1(c) is the skyrmion transport system with strain gradient generated by the voltage. The piezoelectric layer material is PZT(Pb(Zr,Ti)O3),[41]and the bottom Au electrode is grounded. A pair of trapezoidal short-circuited Au top electrodes are constructed on the surface of the piezoelectric layer,and a Pt/Co/Ta three-layers nanostrip is grown between the top electrodes. The Pt/Co/Ta trilayer stack with asymmetric interfaces[42–44]superimposes the interfacial DMI,stabilizing N′eel type skyrmions.Applying a voltage between the top electrodes and the bottom electrode will generate an in-plane uniaxial strain in the direction which is perpendicular to the long axis of the Pt/Co/Ta nanostrip.[45,46]Since there is a distance gradient between the two trapezoidal top electrodes, the generated strain will also form a strain gradient on the Pt/Co/Ta nanostrip, thereby promoting the movement of skyrmion in the nanostrip.

    3. Results and discussion

    We first use COMSOL software to calculate the uniaxial strain distribution on the surface of the piezoelectric layer.The normalized uniaxial strain intensity distributions are simulated by finite element calculation using COMSOL Multiphysics software. We use‘linear elastic materials’and‘piezoelectric materials’in the“solid mechanics”module to simulate the piezoelectric layer and apply the voltage through the“electrostatic”module.Subsequently,the voltage action on strain is coupled through‘piezoelectric effect’in“multi-physical field”module. Finally, the strain distribution is obtained by constructing free tetrahedral mesh and steady-state solver. The calculation result is shown in Fig. 2(a). The color shows the normalized uniaxial strain intensity distribution. According to the report by Cuiet al.,when the top electrode spacing is 1 to 2 times the thickness of the piezoelectric layer, the generated local strain reaches the maximum.[47]The size of the square piezoelectric layer in the simulation is 5 mm×5 mm and the thickness is 0.5 mm. The length of the trapezoidal top electrodes is 4.9 mm, the short side is 0.9 mm, the long side is 1.9 mm, and the thickness is 100 nm. The distance between the two trapezoid electrodes gradually increases from 1 mm to 3 mm. The bottom electrode has the same size as the piezoelectric layer,and the thickness is 200 nm. A voltage of 400 V is applied between the top electrode and the bottom electrode.When the system is stable, as shown in Fig. 2(a), an obvious uniaxial strain gradient will be generated between the trapezoidal electrodes. Where the top electrode spacing is shorter,the uniaxial strain generated is larger. Therefore, setting different trapezoids can control the rate of strain drop.Skyrmions can even be limited in a strain potential well by setting the top electrodes,if required.

    Through the calculation in Fig. 2(a), we determine that the trapezoidal top electrodes can produce a uniaxial strain gradient between the two electrodes. Next, we use the micromagnetic simulation software Mumax3[48]to simulate the N′eel-type skyrmion motion in the Pt/Co/Ta nanostrip driven by solving the Landu–Lifshitz–Gilbert equation[49]

    whereYis the Young’s modulus,Uis the applied voltage,tdis the distance between the two top electrodes, andtpis the thickness of the piezoelectric layer.deffis the piezoelectric coefficient,which is given as

    wherev=0.3 is Poisson’s ratio. In the simulation,the size of the Pt/Co/Ta nanostrip is 256 nm× 50 nm, the thickness of the Co layer is 1 nm, the grid size is 2 nm× 2 nm× 1 nm,the damping coefficientα=0.1,the saturation magnetostrictionλs=-2×10-5,the saturation magnetizationMs=5.8×105A/m,and the exchange constantA=1.5×10-11J/m. All strain directions are perpendicular to the skyrmion movement direction,that is,the long axis of the nanostrip.

    Fig.2. (a)Uniaxial strain distribution on the surface of the piezoelectric layer generated by trapezoidal top electrodes. The color shows the normalized uniaxial strain calculated by COMSOL software. (b) The Ne′el-type skyrmion motion driven by the strain gradient. The magnetization in different directions is indicated by HSL color.

    Figure 2(b)shows the N′eel type skyrmion motion driven by the strain gradient. The HSL color in the figure indicates the magnetization in different directions. The uniaxial strain decreases uniformly from 2000 MPa(on the left side of the nanostrip) to 0 (on the right side of the nanostrip). The skyrmion is driven by the strain gradient from the left side to the right side of the nanostrip. The skyrmion moving speed under a uniform strain gradient decreases with the strain. The distance of the first 40-ns movement is almost equivalent to the distance of the subsequent 120-ns movement. After 160 ns,the skyrmion movement tends to stagnate. This shows that the skyrmion moving speed is not only related to the strain gradient but also related to the magnitude of the strain. When the strain is too small,the skyrmion cannot continue to move.

    We calculate the influence of the magnitude of the strain on the skyrmion velocity,as shown in Fig.3. We fix the strain gradient to 0.78125 MPa/nm, and make the skyrmion move from the center of the nanostrip to the right. The average velocity of skyrmions within 10 ns is calculated with the strain at the center of the nanostrip from 100 MPa to 1000 MPa. As shown in Fig.3,skyrmion velocity increases linearly with the strain.Therefore,the greater the strain,the faster the skyrmion moves. If the strain is too small,the skyrmion will not be able to move. For our material system,the skyrmion motion has a threshold strain close to 100 MPa. Below this strain level,the skyrmion will stop moving.When the strain is too large(about 1800 MPa), the skyrmion will be “squeezed” by the strain and annihilated. Under the action of the strain gradient, the skyrmion will produce asymmetric deformation, which leads to the motion of the skyrmion. Due to the topological protection of the skyrmion, the skyrmion can basically maintain its shape,moving under certain strains and strain gradient. A certain threshold of the strain and the strain gradient are required for the skyrmion to produce enough deformation for its motion. It can be compared to the ball in Fig.1(a),which explodes under excessive pressure. Therefore, using the strain gradient to drive skyrmions requires the strain not too large to cause the skyrmion to annihilate.

    Fig.3. The speed variation of skyrmion as a function of the beginning strain in the middle of Pt/Co/Ta nanostrip as the strain gradient is fixed.

    We then calculate the influence of the strain gradient on the skyrmion velocity,as shown in Fig.4.We fix the maximum strain of the nanostrip to 2000 MPa,and calculate the average speed of skyrmion in 10 ns under different strain gradients.Similarly, skyrmion motion requires a strain gradient greater than a threshold, about 0.7 MPa/nm. Below this strain gradient, the skyrmion cannot move. Different from the influence of strain magnitude, the influence of increasing strain gradient on skyrmion velocity is not linear. Although the skyrmion velocity increases with the strain gradient, the ascent speed slows down with the increase of the strain gradient. After the strain gradient increases above 7 MPa/nm, the skyrmion velocity will no longer increase significantly with the strain gradient. Therefore, when the strain gradient is applied to drive skyrmion motion, the energy consumption, efficiency and transmission distance should be considered comprehensively to set the strain gradient reasonably.

    The reading of skyrmion can be achieved by constructing a magnetic tunnel junction at the appropriate position.Liet al.recently reported a skyrmion magnetic tunnel junction,which displays an obvious tunnel magnetoresistance signal.[50]Their experiments showed that the skyrmion had a double-layer coupling structure in the tunnel junction and could generate a readable tunnel magnetoresistance signal through the difference in interplane magnetization between the free and reference skyrmion layers.

    Since the calculation of micromagnetic simulation is difficult to support the calculation of oversized size, the nanostrips we calculate are at nanometer size and the strain gradient is amplified. It should be pointed out that it is difficult for our electrode to generate a very large strain gradient due to the limitation of the thickness of the piezoelectric layer in the experimental preparation. Therefore, the speed of the skyrmion driven by the strain gradient is significantly lower than that driven by the current. Meanwhile, due to the limitation of electrode size,the range of strain gradient is limited.Therefore, our design is suitable for the local precise motion of skyrmion with low heat loss. A large range of skyrmion motions can be considered by growing magnetic materials on flexible polyimide substrates to produce a large range of strain gradients.[51]

    Fig.4. The speed variation of skyrmion as a function of the strain gradient in the Pt/Co/Ta nanostrip as the beginning strain is fixed.

    4. Conclusion

    We proposed a skyrmion transport method driven by a voltage-generated strain gradient. Through the arrangement of trapezoidal electrodes pair on the piezoelectric layer,a uniform uniaxial strain gradient is generated to the ferromagnetic nanostrip to drive the skyrmion to move. Due to the symmetry of the strain, the skyrmion can move stably along a straight line under strain protection without deviation. The speed of movement increases with the strain intensity and the strain gradient. It is worth mentioning that the strain-gradient induced skyrmion transport speed is not comparable to the current induced skyrmion transport speed. In addition,the architecture is not compatible with modern semiconductor technology. Therefore,our approach is mainly aimed at the insulating skyrmion-hosting materials regardless of their electrical conductivity.

    Acknowledgements

    Project supported in part by the National Natural Science Foundation of China (Grant No. 61832007), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2021JM-221 and 2018JM6075), and the Natural Science Basic Research Plan in Shanxi Province of China(Grant No.2020JQ-470).

    猜你喜歡
    趙云
    A NOTE ON MEASURE-THEORETICEQUICONTINUITY AND RIGIDITY*
    《無風的夏日》
    人文天下(2021年6期)2021-12-05 00:37:40
    標點符號的爭吵
    Jokes Today
    薛景 趙云 華金濤
    甘南牧民 趙云雁
    金秋(2020年4期)2020-08-18 02:39:20
    七進七出長坂坡
    趙云只追三里
    SUB-ADDITIVE PRESSURE ON A BOREL SET?
    寫好中國字
    小主人報(2015年10期)2015-09-18 01:57:20
    亚洲精品乱久久久久久| 国产极品天堂在线| 欧美激情 高清一区二区三区| 亚洲人成77777在线视频| 亚洲一区二区三区欧美精品| 日韩av免费高清视频| 91在线精品国自产拍蜜月| 亚洲欧美日韩另类电影网站| 国产淫语在线视频| 欧美xxⅹ黑人| 一本—道久久a久久精品蜜桃钙片| 高清不卡的av网站| 丝袜在线中文字幕| 久久久久国产网址| 一区在线观看完整版| 国产一区亚洲一区在线观看| 黄色毛片三级朝国网站| 中文字幕亚洲精品专区| 麻豆成人av视频| 男女啪啪激烈高潮av片| 色哟哟·www| 一区二区三区免费毛片| 精品99又大又爽又粗少妇毛片| 久久亚洲国产成人精品v| 天天操日日干夜夜撸| 色婷婷av一区二区三区视频| av电影中文网址| 久久久久久人妻| 伊人久久精品亚洲午夜| 国产精品一国产av| 最近中文字幕高清免费大全6| 99热全是精品| 大又大粗又爽又黄少妇毛片口| 亚洲无线观看免费| 国产精品偷伦视频观看了| 夫妻午夜视频| 少妇熟女欧美另类| 人人妻人人爽人人添夜夜欢视频| 国产精品国产三级专区第一集| 免费久久久久久久精品成人欧美视频 | 熟女av电影| 熟女电影av网| 国产精品欧美亚洲77777| 精品少妇久久久久久888优播| 午夜免费鲁丝| 中文字幕制服av| 国产精品99久久久久久久久| av播播在线观看一区| 亚洲欧洲日产国产| 久久精品夜色国产| 久久婷婷青草| 交换朋友夫妻互换小说| √禁漫天堂资源中文www| 女性被躁到高潮视频| 欧美精品高潮呻吟av久久| 久久国产精品大桥未久av| 最新中文字幕久久久久| 午夜老司机福利剧场| 高清毛片免费看| 久久久久国产网址| 国产精品秋霞免费鲁丝片| 日本爱情动作片www.在线观看| 国产精品国产三级国产专区5o| 另类亚洲欧美激情| 男女边摸边吃奶| 日韩av免费高清视频| 日本欧美国产在线视频| 成人综合一区亚洲| 午夜日本视频在线| 日韩成人av中文字幕在线观看| 久久99热6这里只有精品| 午夜免费男女啪啪视频观看| 亚洲av国产av综合av卡| 久久久久久久精品精品| 黑人巨大精品欧美一区二区蜜桃 | 制服诱惑二区| 黄色毛片三级朝国网站| 国产色爽女视频免费观看| 最近中文字幕2019免费版| 极品人妻少妇av视频| 91精品国产国语对白视频| 久热久热在线精品观看| 国产精品一区二区在线观看99| 日韩精品有码人妻一区| 最近手机中文字幕大全| 丝袜喷水一区| 大话2 男鬼变身卡| 在线观看国产h片| 亚洲精品第二区| 97超碰精品成人国产| 91午夜精品亚洲一区二区三区| 国产精品欧美亚洲77777| 狂野欧美白嫩少妇大欣赏| 成人午夜精彩视频在线观看| 亚洲精品乱码久久久久久按摩| 国产亚洲最大av| 久久久久国产精品人妻一区二区| 自线自在国产av| 在线观看人妻少妇| 午夜免费观看性视频| 色5月婷婷丁香| 亚洲欧美一区二区三区黑人 | 18禁观看日本| 一级毛片aaaaaa免费看小| 国产伦理片在线播放av一区| 少妇高潮的动态图| 国产一区亚洲一区在线观看| 国产 精品1| 午夜视频国产福利| 精品久久久久久久久亚洲| 黄色毛片三级朝国网站| 久久国产精品男人的天堂亚洲 | 欧美精品国产亚洲| 99热全是精品| 国产免费现黄频在线看| 高清av免费在线| 曰老女人黄片| 国产成人freesex在线| 69精品国产乱码久久久| 2021少妇久久久久久久久久久| 一级爰片在线观看| 久久99精品国语久久久| 欧美日韩国产mv在线观看视频| 久久久a久久爽久久v久久| 欧美xxⅹ黑人| 久久综合国产亚洲精品| 亚洲国产欧美日韩在线播放| 欧美三级亚洲精品| 久久人人爽av亚洲精品天堂| 精品亚洲乱码少妇综合久久| 两个人的视频大全免费| 91在线精品国自产拍蜜月| 国产深夜福利视频在线观看| 日本黄大片高清| 午夜久久久在线观看| 狂野欧美白嫩少妇大欣赏| 久久av网站| 3wmmmm亚洲av在线观看| 日韩免费高清中文字幕av| 免费少妇av软件| 99国产综合亚洲精品| 这个男人来自地球电影免费观看 | 亚洲欧美日韩卡通动漫| 麻豆精品久久久久久蜜桃| 乱人伦中国视频| 国产av一区二区精品久久| 日韩熟女老妇一区二区性免费视频| 边亲边吃奶的免费视频| av又黄又爽大尺度在线免费看| 国产成人av激情在线播放 | 一级毛片aaaaaa免费看小| av有码第一页| 精品午夜福利在线看| 最近的中文字幕免费完整| 久久久久久久久久成人| 国产欧美另类精品又又久久亚洲欧美| 成人二区视频| 两个人的视频大全免费| 国产免费视频播放在线视频| 在线观看免费视频网站a站| 中文欧美无线码| 国产成人av激情在线播放 | 少妇的逼水好多| 色吧在线观看| 亚洲成人手机| 欧美丝袜亚洲另类| 免费看不卡的av| 国产亚洲av片在线观看秒播厂| 国产色爽女视频免费观看| 麻豆成人av视频| 2022亚洲国产成人精品| 一区二区av电影网| 精品少妇久久久久久888优播| 国产精品久久久久久精品电影小说| 自线自在国产av| 欧美激情 高清一区二区三区| 夫妻性生交免费视频一级片| 亚洲精品亚洲一区二区| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品久久午夜乱码| 欧美精品亚洲一区二区| 久久久国产欧美日韩av| 大香蕉久久网| 日本与韩国留学比较| 亚洲精品国产色婷婷电影| 国产精品熟女久久久久浪| 精品亚洲成a人片在线观看| 日韩熟女老妇一区二区性免费视频| 国产熟女午夜一区二区三区 | 如何舔出高潮| 国产精品国产av在线观看| 欧美亚洲 丝袜 人妻 在线| 卡戴珊不雅视频在线播放| av在线老鸭窝| 亚洲精品自拍成人| 99久久综合免费| 成年女人在线观看亚洲视频| 亚洲美女视频黄频| 三级国产精品片| 国产男女超爽视频在线观看| 国产精品女同一区二区软件| 男人添女人高潮全过程视频| 视频区图区小说| 国产精品久久久久久精品电影小说| 精品人妻熟女毛片av久久网站| 日本vs欧美在线观看视频| 久久久久国产精品人妻一区二区| 一级毛片黄色毛片免费观看视频| 亚洲精品久久午夜乱码| 两个人免费观看高清视频| 哪个播放器可以免费观看大片| 人妻人人澡人人爽人人| a级片在线免费高清观看视频| 精品国产一区二区久久| 人妻系列 视频| 国产av精品麻豆| 日韩强制内射视频| 亚洲第一av免费看| 日韩精品有码人妻一区| 日本黄色片子视频| 大话2 男鬼变身卡| 王馨瑶露胸无遮挡在线观看| 国产成人freesex在线| 亚洲av福利一区| 如何舔出高潮| 超色免费av| 最近手机中文字幕大全| 伦理电影大哥的女人| 午夜久久久在线观看| 亚洲人成网站在线播| 边亲边吃奶的免费视频| 人妻人人澡人人爽人人| 岛国毛片在线播放| 久久影院123| 丝袜喷水一区| 亚洲国产av影院在线观看| 午夜激情福利司机影院| 成人毛片60女人毛片免费| 国产av国产精品国产| 日韩欧美一区视频在线观看| 97超视频在线观看视频| 免费黄网站久久成人精品| 日韩av在线免费看完整版不卡| videossex国产| 亚洲无线观看免费| 97在线视频观看| 老熟女久久久| av福利片在线| 国产无遮挡羞羞视频在线观看| 成年美女黄网站色视频大全免费 | 亚洲第一区二区三区不卡| 青青草视频在线视频观看| 欧美一级a爱片免费观看看| 观看av在线不卡| 国产精品一区www在线观看| 免费av不卡在线播放| 中国国产av一级| 国产成人精品一,二区| 亚洲熟女精品中文字幕| 麻豆精品久久久久久蜜桃| 日本-黄色视频高清免费观看| 人人妻人人添人人爽欧美一区卜| 亚洲精华国产精华液的使用体验| 国产亚洲欧美精品永久| av在线app专区| 国产午夜精品久久久久久一区二区三区| 美女cb高潮喷水在线观看| 亚洲精品美女久久av网站| 九色成人免费人妻av| 亚洲精品一区蜜桃| 26uuu在线亚洲综合色| 少妇人妻精品综合一区二区| 天天操日日干夜夜撸| 王馨瑶露胸无遮挡在线观看| av有码第一页| 一区二区三区四区激情视频| 国产成人一区二区在线| 亚洲欧洲精品一区二区精品久久久 | 91精品三级在线观看| 日本猛色少妇xxxxx猛交久久| 欧美亚洲日本最大视频资源| 亚洲中文av在线| www.色视频.com| 国产日韩一区二区三区精品不卡 | 久久国产精品男人的天堂亚洲 | 99国产综合亚洲精品| 色吧在线观看| av女优亚洲男人天堂| 国产精品不卡视频一区二区| 国产 一区精品| 亚洲成人手机| 日本欧美视频一区| a级毛片在线看网站| 综合色丁香网| 久久精品国产a三级三级三级| av.在线天堂| 多毛熟女@视频| 久久久久久久大尺度免费视频| 亚洲av中文av极速乱| 老司机亚洲免费影院| 女性生殖器流出的白浆| av在线播放精品| 国产不卡av网站在线观看| 精品久久蜜臀av无| 久久久国产欧美日韩av| 我的女老师完整版在线观看| 亚洲精品一区蜜桃| 亚洲欧美成人综合另类久久久| 亚洲成人一二三区av| 日韩一本色道免费dvd| 热99国产精品久久久久久7| 国产免费现黄频在线看| 国产成人a∨麻豆精品| 久久久久久久久久成人| 国产综合精华液| 欧美变态另类bdsm刘玥| a级毛片免费高清观看在线播放| 少妇精品久久久久久久| av在线app专区| 3wmmmm亚洲av在线观看| 中文字幕亚洲精品专区| 日韩伦理黄色片| 免费看av在线观看网站| 国产午夜精品久久久久久一区二区三区| 狂野欧美激情性bbbbbb| 欧美xxⅹ黑人| 色婷婷久久久亚洲欧美| 人妻夜夜爽99麻豆av| 午夜91福利影院| av有码第一页| 热re99久久国产66热| 看免费成人av毛片| 久久 成人 亚洲| 国产一区二区三区综合在线观看 | 天堂俺去俺来也www色官网| 日韩人妻高清精品专区| 国产成人aa在线观看| 男女免费视频国产| 亚洲精品日本国产第一区| 插逼视频在线观看| 一级毛片我不卡| 久久女婷五月综合色啪小说| 91久久精品国产一区二区成人| 亚洲性久久影院| 久久午夜综合久久蜜桃| 亚洲性久久影院| 久久影院123| 久久久欧美国产精品| 多毛熟女@视频| 国产淫语在线视频| 亚洲欧洲日产国产| 久久这里有精品视频免费| 国产成人精品婷婷| 一区二区日韩欧美中文字幕 | 久久久久久久精品精品| 成年人免费黄色播放视频| 午夜免费鲁丝| 大香蕉久久网| 一区二区三区免费毛片| 你懂的网址亚洲精品在线观看| 亚洲高清免费不卡视频| 色网站视频免费| 午夜91福利影院| 黑丝袜美女国产一区| 精品卡一卡二卡四卡免费| 国产免费现黄频在线看| 最后的刺客免费高清国语| 国产成人精品在线电影| av电影中文网址| 国产av码专区亚洲av| 大片免费播放器 马上看| 伦理电影大哥的女人| 高清不卡的av网站| 国产男女超爽视频在线观看| 一本大道久久a久久精品| 中文字幕人妻丝袜制服| 成年人午夜在线观看视频| 午夜福利在线观看免费完整高清在| 午夜福利影视在线免费观看| 寂寞人妻少妇视频99o| 日本欧美国产在线视频| 久久久久久久久久久久大奶| 欧美xxxx性猛交bbbb| 日韩一本色道免费dvd| 最近的中文字幕免费完整| 日韩av在线免费看完整版不卡| 亚洲人与动物交配视频| 国产黄频视频在线观看| 嘟嘟电影网在线观看| 五月伊人婷婷丁香| 三上悠亚av全集在线观看| 又大又黄又爽视频免费| 乱码一卡2卡4卡精品| 色吧在线观看| 国产淫语在线视频| av天堂久久9| 亚洲性久久影院| 色视频在线一区二区三区| 免费看光身美女| 一区二区三区四区激情视频| 欧美最新免费一区二区三区| 最近手机中文字幕大全| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 亚洲精品亚洲一区二区| 婷婷成人精品国产| 国产精品秋霞免费鲁丝片| av黄色大香蕉| 中文精品一卡2卡3卡4更新| 国产免费又黄又爽又色| 97在线视频观看| 亚洲精品一二三| 国产成人av激情在线播放 | 亚洲av电影在线观看一区二区三区| 国产伦理片在线播放av一区| 亚洲精品av麻豆狂野| 成人免费观看视频高清| 美女cb高潮喷水在线观看| 满18在线观看网站| 韩国av在线不卡| 街头女战士在线观看网站| 欧美3d第一页| 亚洲美女视频黄频| 国产日韩欧美在线精品| 男女边吃奶边做爰视频| 国产精品99久久久久久久久| 丝袜美足系列| 久久99一区二区三区| 老司机影院成人| 91午夜精品亚洲一区二区三区| a级毛色黄片| 国产午夜精品久久久久久一区二区三区| 国产精品蜜桃在线观看| 七月丁香在线播放| 青春草视频在线免费观看| 男女边吃奶边做爰视频| 在线精品无人区一区二区三| 美女内射精品一级片tv| 两个人的视频大全免费| 丰满饥渴人妻一区二区三| 亚洲色图 男人天堂 中文字幕 | 国产日韩欧美在线精品| 国产视频首页在线观看| www.av在线官网国产| 亚洲成人手机| 午夜福利网站1000一区二区三区| 建设人人有责人人尽责人人享有的| 亚洲av国产av综合av卡| 久久久久久久大尺度免费视频| 亚洲国产精品专区欧美| 在线观看免费视频网站a站| 在线观看国产h片| 国产欧美亚洲国产| 我要看黄色一级片免费的| 亚洲av欧美aⅴ国产| 国产乱来视频区| 一区在线观看完整版| 亚洲精品一区蜜桃| 午夜久久久在线观看| 久久av网站| 在线观看免费高清a一片| 欧美日韩一区二区视频在线观看视频在线| 水蜜桃什么品种好| 成年人午夜在线观看视频| 亚洲欧美成人精品一区二区| 亚洲内射少妇av| 亚洲国产毛片av蜜桃av| 亚洲av男天堂| 国产爽快片一区二区三区| 欧美日韩在线观看h| 久久人人爽人人片av| 日韩人妻高清精品专区| 国产老妇伦熟女老妇高清| 熟女电影av网| 精品国产国语对白av| videosex国产| 久久 成人 亚洲| 亚洲精品美女久久av网站| 久久综合国产亚洲精品| 久久亚洲国产成人精品v| a级毛片免费高清观看在线播放| 一级毛片aaaaaa免费看小| 中文精品一卡2卡3卡4更新| 亚洲第一av免费看| 黑人欧美特级aaaaaa片| 久久精品人人爽人人爽视色| 美女国产高潮福利片在线看| 国产午夜精品久久久久久一区二区三区| 高清毛片免费看| 又粗又硬又长又爽又黄的视频| 国产精品人妻久久久久久| 日日爽夜夜爽网站| 亚洲欧美精品自产自拍| 99热这里只有是精品在线观看| 亚洲欧洲国产日韩| 青春草视频在线免费观看| 国产成人av激情在线播放 | 久久精品久久精品一区二区三区| 91精品一卡2卡3卡4卡| 日韩伦理黄色片| 精品久久久噜噜| 免费大片18禁| 国产精品久久久久久久电影| 性色av一级| 日韩不卡一区二区三区视频在线| 青春草视频在线免费观看| 欧美日韩视频高清一区二区三区二| 欧美日韩综合久久久久久| 亚洲欧美一区二区三区国产| 又大又黄又爽视频免费| 精品一品国产午夜福利视频| 黄色怎么调成土黄色| 全区人妻精品视频| 麻豆精品久久久久久蜜桃| 九九久久精品国产亚洲av麻豆| h视频一区二区三区| 国产av国产精品国产| 国产白丝娇喘喷水9色精品| 毛片一级片免费看久久久久| 最后的刺客免费高清国语| 国产精品99久久久久久久久| 国产精品一区二区在线不卡| 国产精品人妻久久久久久| 9色porny在线观看| 午夜免费男女啪啪视频观看| 夫妻午夜视频| 成人午夜精彩视频在线观看| 在线观看三级黄色| 一级爰片在线观看| 97超视频在线观看视频| 午夜福利视频在线观看免费| 久久久久久伊人网av| 国产深夜福利视频在线观看| 草草在线视频免费看| 黑人巨大精品欧美一区二区蜜桃 | 只有这里有精品99| 天堂俺去俺来也www色官网| 黄片无遮挡物在线观看| 美女视频免费永久观看网站| 美女主播在线视频| 成年av动漫网址| 草草在线视频免费看| av在线app专区| xxx大片免费视频| 青春草视频在线免费观看| 色哟哟·www| 国产精品人妻久久久久久| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av涩爱| 亚洲精品久久午夜乱码| 国产白丝娇喘喷水9色精品| av女优亚洲男人天堂| 最新中文字幕久久久久| 少妇被粗大的猛进出69影院 | 在现免费观看毛片| 日韩中字成人| 久久这里有精品视频免费| 精品少妇内射三级| 亚洲精品久久久久久婷婷小说| 亚洲精品一区蜜桃| 成人漫画全彩无遮挡| 肉色欧美久久久久久久蜜桃| 91精品国产九色| 2018国产大陆天天弄谢| www.av在线官网国产| 精品人妻熟女av久视频| 亚洲伊人久久精品综合| 97超碰精品成人国产| 亚洲精品国产av成人精品| 黄片无遮挡物在线观看| 亚洲三级黄色毛片| 91精品国产国语对白视频| 男的添女的下面高潮视频| 老熟女久久久| 欧美性感艳星| 人妻夜夜爽99麻豆av| 熟妇人妻不卡中文字幕| 丰满乱子伦码专区| 99国产综合亚洲精品| 超碰97精品在线观看| 国产亚洲欧美精品永久| 亚洲经典国产精华液单| 99热这里只有是精品在线观看| 桃花免费在线播放| 99re6热这里在线精品视频| av女优亚洲男人天堂| 亚洲怡红院男人天堂| 色5月婷婷丁香| 中文乱码字字幕精品一区二区三区| 久久精品久久久久久噜噜老黄| 午夜视频国产福利| 午夜福利影视在线免费观看| 国产熟女午夜一区二区三区 | 黄色毛片三级朝国网站| 亚洲精品亚洲一区二区| 久久久国产欧美日韩av| 国产av国产精品国产| 午夜日本视频在线| 久久久久久久亚洲中文字幕| 久久国产亚洲av麻豆专区| 男女边摸边吃奶| av在线老鸭窝| 久久 成人 亚洲| 超色免费av| 美女中出高潮动态图| 好男人视频免费观看在线| 中文欧美无线码| 亚洲三级黄色毛片| av国产久精品久网站免费入址| 欧美日韩在线观看h| 日韩一区二区视频免费看| 精品久久久精品久久久| 男人操女人黄网站| 午夜视频国产福利| 国产亚洲精品久久久com|