• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lattice Boltzmann method for Casimir invariant of two-dimensional turbulence*

    2016-10-14 12:23:34YuxianXIA夏玉顯YuehongQIAN錢躍竑

    Yu-xian XIA (夏玉顯),Yue-hong QIAN (錢躍竑)

    Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072,China,E-mail:xiayuxian2008.com@163.com

    Lattice Boltzmann method for Casimir invariant of two-dimensional turbulence*

    Yu-xian XIA (夏玉顯),Yue-hong QIAN (錢躍竑)

    Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072,China,E-mail:xiayuxian2008.com@163.com

    The Casimir invariants of the 2-D turbulence are investigated by the lattice Boltzmann method.A coarse-graining approach is used,that allows to resolve the flux of the Casimir invariant in scale and in space.It is found that the flux of the enstrophy cascades to small scales and the direction cascade of the energy flux is upscaled.Moveover,the probability distribution function (PDF) of the enstrophy flux gives a clear evidence that the enstrophy cascades to smaller scales.Finally,the behavior of the cascade of the high-order Casimir invariants Znis discussed.The flux of the fourth-order Casimir invariant Z4cascades to small scales.The flux of Znhas a logarithmic relationship with the scale,that is,

    2-D turbulence,Casimir invariants,lattice Boltzmann method

    Introduction

    It is commonly believed that the simultaneous conservation of the energy and the enstrophy by the advection term of the forced 2-D Navier-Stokes equations gives rise to a dual turbulence cascade when the Reynolds number tends to infinity[1-3].Under statistically stationary conditions,when the turbulent flow is sustained by an external forcing acting in a typical force scale lf,a double cascade develops.According to the Kraichnan theory,at a large scale,i.e.,when the wave numbersk?kf~l-f1,the energy spectrum assumes the formE( k)≈ε2/3k-5/3while in small scales,k?kf,the prediction is E( k)≈η2/3k-3,witha possible logarithmic correction[1].Here η=k2ε.ε and η are,respectively,the energy and the enstrophy injection rates.

    In addition to conserving the energy and the enstrophy,the nonlinear terms of the 2-D incompressible Navier-Stokes equation are well known to conserve the global integral of any continuously differentiable function of the scalar vorticity field,which are known as the Casimir invariants.A fundamental question is whether these Casimir invariants also play an underlying role in the turbulence cascade,in addition to the rugged quadratic invariants (the enstrophy).Whether they cascade to large or small scales is an open question.Polyakov' minimal conformal field theory model suggests that the higher-order Casimir invariants cascade to large scales[4],while Eyink[5]predicted that they might instead cascade to small scales.Bowman[6]pointed out that the fourth power of the vorticity cascades to small scales by using the wellresolved implicitly dealiased pseudospectral simulations.Meanwhile,this study raises the question of whether the Kraichnan theory of the unbounded 2-D turbulence,based solely on the uniform flux of the energy in large scales and that of the enstrophy in small scales,needs to be re-examined to account for a direct cascade of the Casimir invariants to smaller scales.

    A better understanding of the physical mechanism on the basis of the cascades can be obtained by looking at the distribution of the fluxes of the Casimir invariant in scales.Here the key analysis method we use is a “coarse-graining” or “filtering” approach for analyzing the scale interactions in complex flows.Eyink[7]developed the formalism mathematically to analyze the fundamental physics of the scale coupling in turbulence,which was laterly applied to numerical and experimental studies of flows of 2-D turbulence[8-12].For any field a( x),a “coarse-graining” or“filtering” field,which contains modes at a lengthscale>l,is defined as

    where Gl( r)is a normalized convolution kernel.It is well known that the lattice Boltzmann method (LBM)is valid in the investigations of 2-D turbulence[3,13,14].In this paper,this “filtering” approach is used to investigate the flux of the Casimir invariant in the frame of the LBM.

    1.Preliminaries

    1.1 The flux of Casimir invariants

    The balance equations governing the local conservation of the vorticity invariants are expressed in space and in scale.Due to the viscous effect,the high order Casimir invariants are generally not in conservation.However,it is verified that the viscosity has no influence on the definition of the flux of high order Casimir invariants.To introduce the concepts in the simple context,we discuss first the free evolution,i.e.,the equations without any external forcing.Thus,our starting point is the 2-D Euler equations in the “vorticity formulation”.

    That is,we consider the large-scale vorticity defined by convolutionand the large-scale velocity defined by,where Glis taken to be the Gaussian filter.If the filter is convoluted with the equation of motion,Eq.(1),an equation for the largescale vorticity field is obtained

    where σlis the space transport of the vorticity due to the eliminated small-scale turbulence.From Eq.(2),a balance equation is derived for the local densityhl( r,t)=

    where Kl( r,t)represents the space transport of the large-scale enstrophy,

    In Eq.(3),we see that in order forto have a net positive value,the turbulence vorticity transport σl(r,t)should tend to be antiparallel to the large-scale vorticity gradientThe required statistical anticorrelation between σl(r,t)and(r,t)is an alignment property characteristic of the enstrophy cascade.It is analogous to the much-studied alignment of the stress tensorτidue to small scales and the large-scale strain,which underlies the energy cascade to small scales in 3-D.

    An identical analysis can be made of the balance for the local densitiesof the contribution to the Casimir invariants Znin the largescale modesBy a similar calculation as before,it follows that

    It is of some interest that it is simply proportional to the enstrophy flux itself,when n>2.

    1.2 lattice Boltzmann method (LBM)

    The Navier-Stokes equation for the fluid flows can be simulated by the LBM in a simple and efficient way[13,15-19].The LBM has its roots in the kinetic theory,and the general idea behind this scheme is to compute a probability distribution function fi( r,t),where

    Table 1 Parameters of the simulations

    fi( r,t)is the population of the particles,withi representing the fluid element with a corresponding velocity along the directioniat the positioniand the timex,as they stream and collide.The statistical behavior of the distribution of the particle population delineates that of the dynamics of the fluid flow.For 2-D incompressible fluid flows,the popular D2Q9 model[13]is used to simulate various fluid flow problems,whose evolution equation for fi( r,t)can be described by

    where ciis the discrete particle velocity,τdenotes the relaxation time,and the local equilibrium distribution is as follows

    where Wiis the lattice weight,αis a Cartesian coordinate (with implied summation convention for repeated indices) andis the speed of sound.Fiis the external force term andis the friction term.The local macroscopic density and the velocity field are then obtained by

    By using the Chapman-Enskog expansion,the Navier-Stokes equations can be derived to the second order of the Knudsen number at a long wavelength and long time limits,

    where Fαis the external force of the system,is the friction force,andνis the viscosity coefficient.The relationship between the external force term Fiin Eq.(9).and the external force Fαof the system in Eq.(14).is described by

    where C=[1- 1/2τ(uF-Fu)].The relationship between the friction force termand the friction forceis the sam e as Eq.(15).In order to obtain the steady state,the linear friction μuis necessary to avoid a energy condensation in a large scale.The additional term Rμin the momentum equation of Eq.(14).is due to the presence of an external force.

    Fig.1 The scale behaviors of the enstrophy flux in two cases of LBM external force model.Here the external force is band-limited 0.9lf<l<1.1lf.Solid curve and dot line represent the Ladd and Verberg force model,dot curve and circle are LGA force model

    Fig.2 The average enstrophy flux and energy flux as a function of length scale l/ lf.Hollow circle represents enstrophy flux in Case A,hollow square represents energy flux in Case A,solid circle represents enstrophy flux in Case B,solid square represents energy flux in Case B.Hollow circle represents enstrophy flux in Case C,hollow square represents energy flux in Case C,solid circle represents enstrophy flux in Case D,solid square represents energy flux in Case B

    In the case of the Ladd and Verberg external forced model,In fact,if the external forceFαis a constant with time,Eq.(14) will be the correct hydrodynamic equation[3].It is found in Fig.1 that the artificial termRμdoes not affect the cascade and statistical behaviors of the 2-D turbulence,so the more detail about Rμwill not be discussed here.The detailed information of the external forcing is given in Table 1.The external force scale Reynolds number of the 2-D turbulence Ref~(kmax/kf)2(kmax=N /2).The initial energy spectrum E( k)=(k/4.68)4exp[2.0(k/4.68)2]will not lead to the significant inverse energy cascade of a short duration simulation.The 2D turbulence is investigated by means of a standard LBM parallel code on a double periodic square domain with the sidesLx=Ly=2π.

    Fig.3 Normalized probability distribution functions for the scale-to-scale enstrophy flux

    2.Numerical results

    The space average of the coarse-grained enstrophy budget as a function of the scale l is calculated.Obviously,the average enstrophy fluxes in different external scaleskf,shown in Fig.2,cascade to small scales.The enstrophy flux falls off in all length scales.The fall in the enstrophy transfer in all scales is due to the effect of the linear frictional force on the full field of the 2-D turbulence.

    It is interesting to measure the energy transfer in the 2-D turbulence,which may reflect the behavior observed more generally in systems with a quasi-2-D character[20,21].In Fig.2,the mean energy transfers for Cases A,B,C,D are negative revealing that the energy cascades to the upscale despite the expected lack of a constant energy flux.It also increases and goes to zero in the length scales smaller than the injection scale lf.The behavior of the energy flux issomewhat dependent on the form of the full-band external force.It is verified that the more energy is injected in a smaller scale.So the more energy is transferred to a larger scale from a smaller scale.Figure 2 shows the double cascade of the 2-D turbulence.

    The PDFs,shown in Fig.3,are normalized by their respective rms fluctuations.These PDFsin Case E and Case F where the linear friction coefficientμis equal to zero are asymmetric and positively skewed.The PDF has a positive mean,indicating that there is a net transfer of the enstrophy to a smaller scale.These PDFs recorded for different separations lare strongly non-Gaussian,with long tails for large values of the enstrophy flux.The shapes of the PDFs do vary with the scale in the large fluctuation event,thus showing the nature of the intermittency in the enstrophy cascade range corresponding to our result[3]that the intermittency exists in the direct inertial range due to the statistical feature in the velocity field.

    Fig.4 The average enstrophy flux and energy flux as a function of length scale l/ lfwhen l>0.9lfin Case D.Hollow circle represents enstrophy flux,solid circle represents energy flux

    Fig.5 The effect of finite resolution on the enstrophy flux as a function of length scale l/ lf.Hollow circle represents Case A,dot curve represents Case B,solid circle represents Case G,and solid curve represents Case H

    It is important to explore whether the external force scale kmax/kfaffects the cascade of the Casimir invariants.The enstrophy flux in Case D withkmax/ kfequal to 3.41,described in Fig.4,becomes negative in the injection scalelf.The value of kmax/kfin Case D is small so as to see the finite resolution effect on the enstrophy flux.This is not a surprise because the extent of the direct cascade is simply proportional to kmax/kfWhen the values of kmax/kfin Case A and Case C are larger than that in Case D where kmax/kfis equal to 10.24,the sign of the enstrophy flux does not change in all length scales.The enstrophy is really positive in all length scales in the 2-D turbulence forced by the full-band force.From Fig.5,the direction of the enstrophy flux in Cases A and B is consistent with that in Cases G and H where kmax/kfis equal to 20.48.Obviously,the external force scale does have an influence on the Casimir cascade.In order to have a wider range of the inertial range and avoid the finite resolution effect,the condition that kmax/kf≥10.24should be satisfied to investigate the higher order Casimir invariant of the 2-D turbulence.

    Fig.6 The average fourth-order Casimir invariant flux as a function o f length scale l/ lfin Case G and Case H,in Case G,ζ4=2.15±0.1 in Case H.Solid circle represents Case G,hollow circle represents Case H

    Next,the cascade direction of the higher order Casimir invariant Zn(n>2)is estimated.The globally integrated invariantZ3appears to slosh back and forth between the large and small scales.In retrospect,this should be expected sinceω3is not a sign-definite quantity.So,we mainly focus on the determination of a sign-definite quantity like the fourth-order Casimir invariant Z4.Fig.6 displays the space behaviors of Z4.The flux of the fourth-order Casimir invariantcascades to small scales.It is seen in Fig.6 that the flux ofZ4has the logarithmic relationship withthe scale,that is,.In Case G,ζ4=2.15± 0.1 in all length scales.ζ4=2.15±0.1in Case H.Obviously,the friction force does not break up the logarithmic behaviors of the fourth-order Casimir invariant.Figure 7 shows the nonlinear relationship betweenζnand the order n( n=2,4,6)in the enstrophy inertial range.It shows that the intermittency exists in the enstrophy cascade according to the statistical behaviors of higher-order Casimir invariants.

    Fig.7 The relationship between Znand the order n( n=2,4,6)in the enstrophy inertial range.ζ2=1.68±0.2,ζ4=2.15±0.1,ζ6=2.10

    3.Conclusion

    We have presented a statistical analysis of the 2-D turbulence and how to obtain a band-pass decomposition of the flux of Casimir invariants with a Gaussian filter.The mathematical form of the flux of Casimir invariants given in this paper is easy to be used to reveal the cascade behaviors of Casimir invariants.It is verified that the flux of the fourth-order Casimir invariant Z4cascades to small scales.And also,this flux has a uniform logarithmic relationship with the scale.This logarithmic relationship raises the question of whether the Kraichnan theory of the unbounded 2-D turbulence,based solely on the uniform flux of the energy to large scales and that of the enstrophy to small scales,needs to be revisited to account for a direct cascade of Casimir invariants to small scales.In future,we will focus on this issue.

    [1]BOFFETTA G.,ECKE R.E.Two dimensional turbulence[J].Annual Review of Fluid Mechanics,2012,44(3):427-451.

    [2]THUBURN J.,KENT J.and WOO D.N.Cascades,backscatter and conservation in numerical models of twodimensional turbulence[J].Quarterly Journal of the Royal Meteorological Society,2013,140(679):626-638.

    [3]XIA Y.X.,QIAN Y.H.Lattice Boltzmann simulation for forced two-dimensional turbulence[J].Physical Review E,2014,90(2):023004.

    [4]POLYAKOV A.M.The theory of turbulence in two dimensions[J].Nuclear Physics B,1993,396(2-3):367-385.

    [5]EYINK G.L.Exact results on stationary turbulence in 2D:Consequences of vorticity conservation[J].Physica D,1996,91(1-2):97-195.

    [6]BOWMAN J.C.Casimir cascades in two-dimensional turbulence[J].Journal of Fluid Mechanics,2013,729:364-376.

    [7]EYINK G.Local energy flux and the refined similarity hypothesis[J].Journal of Statistical Physics,1995,78(1):335-351.

    [8]EYINK G.Multi-scale gradient expansion of turbulence stress tensor[J].Journal of Fluid Mechanics,2006,549:159-190.

    [9]CHEN S.Y.,ECKE R.E.and EYINK G.L.et al.Physical mechanism of the two-dimensional enstrophy cascade[J].Physical Review Letters,2003,91(21):214501.

    [10]CHEN S.Y.,ECKE R.E.and EYINK G.L.et al.Physical mechanism of the two-dimensional inverse energy cascade[J].Physical Review Letters,2006,96(8):084502.

    [11]RIVERA M.K.,DANIEL W.B.and CHEN S.Y.et al.Energy and enstrophy transfer in decaying two-dimensional turbulence[J].Physical Review Letters,2003,90(10):104502.

    [12]RIVERA M.K.,ALUIE H.and ECKE R.E.The direct enstrophy cascade of two-dimensional soap film flows[J].Physics of Fluids,2013,26(5):499-502.

    [13]XU H.,QIAN Y.H.and TAO W.Q.Revisiting twodimensional turbulence by lattice Boltzmann method[J].Progress in Computational Fluid Dynamics,2009,9(3):133-140.

    [14]BENZI R.,SUCCI S.Two-dimensional turbulence with the lattice Boltzmann equation[J].Journal of Physics A Mathematical and General,1990,23(1):L1-L5.

    [15]QIAN Y.H.,D?HUMIèRES D.and LALLEMAND P.Lattice BGK models for Navier-Stokes equation[J].Europhysics Letters,1992,17(6):479-484.

    [16]QIAN Y.H.Simulating thermohydrodynamics with lattice BGK models[J].Journal of Computational Physics,1993,8(3):231-242.

    [17]BENZI R.,SUCCI S.and VERGASSOLA M.The lattice boltzmann equation:Theory and applications[J].Physics Reports,1992,222(3):145-197.

    [18]AIDUN C.K.,CLAUSEN J.R.Lattice-Boltzmann method for complex flows[J].Annual Review of Fluid Mechanics,2010,42(1):439-472.

    [19]DIAO Wei,Cheng Yong-guang and ZHANG Chun-ze et al.Three-dimensional prediction of reservoir water temperature by the lattice Boltzmann method:Validation[J].Journal of Hydrodynamics,2015,27(2):248-256.

    [20]BOFFETTA G.Energy and enstrophy fluxes in the double cascade of two- dimensional turbulence[J].Journal of Fluid Mechanics,2007,589:253-260.

    [21]BOFFETTA G.,MUSACCHIO S.Evidence for the double cascade scenario in two-dimensional turbulence[J].Physical Review E,Statistical,Nonlinear,and Soft Matter Physics,2010,82(2):016307.

    10.1016/S1001-6058(16)60634-0

    (Received July 10,2014,Revised August 11,2015)

    * Project supported by the National Natural Science Foundation of China (Grant No.91441104),the Ministry of Education in China via project (Grant No.IRT0844) and the Shanghai Science and Technology Commission Project of leading Scientists and Excellent Academic Leaders (Grant No.11XD1402300).

    Biography:Yu-xian XIA (1982-),Male,Ph.D.Candidate

    Yue-hong QIAN,E-mail:qian@shu.edu.cn

    2016,28(2):319-324

    欧美中文综合在线视频| 久久久水蜜桃国产精品网| 午夜两性在线视频| 久久精品亚洲熟妇少妇任你| 真人做人爱边吃奶动态| 国产人伦9x9x在线观看| 777米奇影视久久| 日本一区二区免费在线视频| 午夜福利在线观看吧| 亚洲,欧美精品.| 99re在线观看精品视频| 黑人巨大精品欧美一区二区mp4| 亚洲国产欧美在线一区| 久久久久久久久久久久大奶| 亚洲第一青青草原| 少妇精品久久久久久久| 纯流量卡能插随身wifi吗| 国产精品久久久久久精品电影小说| 制服人妻中文乱码| 伦理电影免费视频| 国产高清videossex| 法律面前人人平等表现在哪些方面| 亚洲第一欧美日韩一区二区三区 | 国产三级黄色录像| 欧美老熟妇乱子伦牲交| 久久天堂一区二区三区四区| 日韩三级视频一区二区三区| 777久久人妻少妇嫩草av网站| 青青草视频在线视频观看| 大型av网站在线播放| 国产日韩欧美亚洲二区| 在线观看舔阴道视频| 男女免费视频国产| 亚洲av成人不卡在线观看播放网| 淫妇啪啪啪对白视频| av片东京热男人的天堂| 久久久国产精品麻豆| 在线永久观看黄色视频| 日韩欧美一区视频在线观看| 美女午夜性视频免费| 午夜福利欧美成人| 国产xxxxx性猛交| 天天影视国产精品| 在线观看免费视频网站a站| 极品少妇高潮喷水抽搐| 十分钟在线观看高清视频www| 欧美精品人与动牲交sv欧美| 欧美午夜高清在线| 亚洲三区欧美一区| 手机成人av网站| 色视频在线一区二区三区| 在线av久久热| 欧美日韩一级在线毛片| 在线看a的网站| 精品久久久久久久毛片微露脸| kizo精华| 日韩精品免费视频一区二区三区| 久久精品国产a三级三级三级| 亚洲欧美精品综合一区二区三区| 天天躁日日躁夜夜躁夜夜| 国产精品久久电影中文字幕 | 久久久久久亚洲精品国产蜜桃av| 免费人妻精品一区二区三区视频| 精品免费久久久久久久清纯 | 大型av网站在线播放| 中国美女看黄片| 免费看十八禁软件| 久久九九热精品免费| 一区在线观看完整版| 丝袜美腿诱惑在线| 成年动漫av网址| 丁香六月天网| 国产在线一区二区三区精| 久久久久久久国产电影| av天堂在线播放| 在线观看66精品国产| 成年人午夜在线观看视频| 精品福利观看| 亚洲va日本ⅴa欧美va伊人久久| 女性被躁到高潮视频| 国产精品1区2区在线观看. | 精品久久久久久电影网| aaaaa片日本免费| 91麻豆av在线| 成人三级做爰电影| 亚洲avbb在线观看| 免费观看人在逋| 日韩精品免费视频一区二区三区| 黄网站色视频无遮挡免费观看| 亚洲色图综合在线观看| 精品国产一区二区久久| 免费高清在线观看日韩| 色在线成人网| 国产免费av片在线观看野外av| 国产高清激情床上av| 悠悠久久av| 国产精品久久久久久精品电影小说| 咕卡用的链子| 天天躁日日躁夜夜躁夜夜| 黄色视频在线播放观看不卡| 亚洲欧美激情在线| 久久婷婷成人综合色麻豆| 丝袜喷水一区| 一区二区日韩欧美中文字幕| 蜜桃在线观看..| 亚洲精品美女久久久久99蜜臀| 五月开心婷婷网| 久久精品aⅴ一区二区三区四区| 亚洲国产成人一精品久久久| 欧美性长视频在线观看| 咕卡用的链子| 亚洲精品av麻豆狂野| 国产激情久久老熟女| 老司机福利观看| 亚洲九九香蕉| 亚洲中文av在线| 欧美日韩中文字幕国产精品一区二区三区 | 1024香蕉在线观看| 精品人妻在线不人妻| 大型黄色视频在线免费观看| 亚洲av成人不卡在线观看播放网| 国产成人欧美| 18禁观看日本| 妹子高潮喷水视频| 国产精品影院久久| 午夜福利一区二区在线看| 99re6热这里在线精品视频| 久久国产精品大桥未久av| 麻豆av在线久日| 麻豆国产av国片精品| 夜夜夜夜夜久久久久| 精品国产乱码久久久久久小说| 久久亚洲真实| 俄罗斯特黄特色一大片| 一夜夜www| 成人手机av| 女警被强在线播放| 国产成人av教育| 国产极品粉嫩免费观看在线| 可以免费在线观看a视频的电影网站| 久久ye,这里只有精品| 丁香六月欧美| 在线观看66精品国产| 两个人免费观看高清视频| 亚洲精品粉嫩美女一区| 满18在线观看网站| 男人操女人黄网站| 91麻豆av在线| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美网| 一级黄色大片毛片| 日韩制服丝袜自拍偷拍| 一区二区日韩欧美中文字幕| 19禁男女啪啪无遮挡网站| 啪啪无遮挡十八禁网站| 欧美激情 高清一区二区三区| 国产不卡一卡二| 国产成人欧美| 欧美日韩av久久| 九色亚洲精品在线播放| 精品高清国产在线一区| www.精华液| 亚洲第一欧美日韩一区二区三区 | 黑人欧美特级aaaaaa片| 国产高清国产精品国产三级| 国产精品一区二区免费欧美| 黑人操中国人逼视频| 一级黄色大片毛片| 丝瓜视频免费看黄片| 一区二区日韩欧美中文字幕| 国产一区二区三区综合在线观看| 国产成人精品在线电影| 最新的欧美精品一区二区| 免费在线观看黄色视频的| 色精品久久人妻99蜜桃| 久久精品91无色码中文字幕| 在线看a的网站| 精品国产乱码久久久久久男人| 最近最新中文字幕大全免费视频| 51午夜福利影视在线观看| 视频在线观看一区二区三区| 桃红色精品国产亚洲av| 两性夫妻黄色片| aaaaa片日本免费| av网站在线播放免费| 制服人妻中文乱码| 少妇猛男粗大的猛烈进出视频| av不卡在线播放| 老熟妇乱子伦视频在线观看| 女同久久另类99精品国产91| 在线亚洲精品国产二区图片欧美| 亚洲欧美色中文字幕在线| 91精品三级在线观看| 亚洲七黄色美女视频| av福利片在线| 91精品国产国语对白视频| 欧美性长视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 美女主播在线视频| 婷婷丁香在线五月| 中文字幕av电影在线播放| 一级黄色大片毛片| 少妇精品久久久久久久| 日韩欧美三级三区| 欧美黑人欧美精品刺激| 色94色欧美一区二区| 黄片大片在线免费观看| 高清av免费在线| 国产成人精品久久二区二区免费| 欧美日韩黄片免| 巨乳人妻的诱惑在线观看| 欧美变态另类bdsm刘玥| 精品国产乱码久久久久久男人| 热re99久久国产66热| 国产亚洲一区二区精品| 国产不卡一卡二| 人人妻人人澡人人爽人人夜夜| 超色免费av| 国产男女内射视频| 欧美日韩国产mv在线观看视频| 在线亚洲精品国产二区图片欧美| 在线永久观看黄色视频| 香蕉丝袜av| 亚洲国产av新网站| 黑人欧美特级aaaaaa片| a级毛片黄视频| 黑人操中国人逼视频| av免费在线观看网站| 免费在线观看视频国产中文字幕亚洲| 国产精品国产高清国产av | 久久影院123| 9191精品国产免费久久| 国产精品电影一区二区三区 | 人人澡人人妻人| 亚洲午夜精品一区,二区,三区| 女人被躁到高潮嗷嗷叫费观| 国产不卡av网站在线观看| 久久亚洲真实| 2018国产大陆天天弄谢| 老司机深夜福利视频在线观看| 乱人伦中国视频| 成年人免费黄色播放视频| 大香蕉久久成人网| 国产精品欧美亚洲77777| 一本大道久久a久久精品| 国产深夜福利视频在线观看| 天堂动漫精品| 中文欧美无线码| 精品欧美一区二区三区在线| 黄色毛片三级朝国网站| 久热爱精品视频在线9| 日韩免费av在线播放| 久久精品熟女亚洲av麻豆精品| 人人妻人人澡人人爽人人夜夜| 日本a在线网址| 欧美日韩成人在线一区二区| 久久精品国产99精品国产亚洲性色 | 国产一区有黄有色的免费视频| 少妇精品久久久久久久| 亚洲av美国av| 国产福利在线免费观看视频| 欧美日韩成人在线一区二区| 成年女人毛片免费观看观看9 | 国产男女超爽视频在线观看| 欧美日韩成人在线一区二区| 欧美中文综合在线视频| 一边摸一边抽搐一进一出视频| 久久精品熟女亚洲av麻豆精品| 精品福利永久在线观看| 一级片'在线观看视频| 中文字幕精品免费在线观看视频| 乱人伦中国视频| 女性生殖器流出的白浆| 久久亚洲真实| 国产成人欧美在线观看 | 亚洲成国产人片在线观看| 99精品在免费线老司机午夜| 中文亚洲av片在线观看爽 | 国产在视频线精品| 曰老女人黄片| 999久久久精品免费观看国产| 国产不卡av网站在线观看| 最近最新免费中文字幕在线| 国产精品免费大片| 9热在线视频观看99| 亚洲国产看品久久| 国产伦人伦偷精品视频| 操美女的视频在线观看| 亚洲av片天天在线观看| 嫩草影视91久久| 午夜福利免费观看在线| 久久这里只有精品19| 日韩免费高清中文字幕av| 免费黄频网站在线观看国产| 国内毛片毛片毛片毛片毛片| 国产一区二区在线观看av| 免费不卡黄色视频| 女人爽到高潮嗷嗷叫在线视频| 乱人伦中国视频| 日韩人妻精品一区2区三区| 欧美精品av麻豆av| 91九色精品人成在线观看| 757午夜福利合集在线观看| 日本黄色视频三级网站网址 | 欧美激情久久久久久爽电影 | 曰老女人黄片| 三上悠亚av全集在线观看| 捣出白浆h1v1| 丝袜人妻中文字幕| 高清在线国产一区| 亚洲欧美激情在线| 十八禁网站网址无遮挡| 国产麻豆69| 亚洲自偷自拍图片 自拍| 国产成人系列免费观看| 久久免费观看电影| 午夜免费鲁丝| 欧美+亚洲+日韩+国产| 日韩视频一区二区在线观看| 99久久精品国产亚洲精品| 无遮挡黄片免费观看| 性高湖久久久久久久久免费观看| 国产麻豆69| 我的亚洲天堂| 国产高清视频在线播放一区| 久久久国产精品麻豆| 欧美日韩视频精品一区| 久久久久精品国产欧美久久久| 一本久久精品| 午夜两性在线视频| 老汉色av国产亚洲站长工具| 国产色视频综合| 国产aⅴ精品一区二区三区波| 亚洲专区国产一区二区| 国产不卡一卡二| 高清黄色对白视频在线免费看| 最新在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 亚洲av成人不卡在线观看播放网| 国产亚洲欧美在线一区二区| 久久久精品国产亚洲av高清涩受| 久久国产亚洲av麻豆专区| 亚洲国产成人一精品久久久| 99精品欧美一区二区三区四区| 一区二区三区精品91| 亚洲精品国产色婷婷电影| 热re99久久精品国产66热6| 高清视频免费观看一区二区| 黄片大片在线免费观看| 久久久久久久久免费视频了| 亚洲专区中文字幕在线| 黄频高清免费视频| 成人影院久久| 黄色 视频免费看| 精品免费久久久久久久清纯 | 亚洲熟女精品中文字幕| 少妇猛男粗大的猛烈进出视频| videos熟女内射| 久久精品91无色码中文字幕| 真人做人爱边吃奶动态| 国产在线观看jvid| 大陆偷拍与自拍| 亚洲免费av在线视频| 精品久久久精品久久久| 搡老岳熟女国产| 亚洲人成电影观看| 久久99热这里只频精品6学生| 国产野战对白在线观看| 男女边摸边吃奶| 国产成人免费无遮挡视频| 亚洲少妇的诱惑av| 国产亚洲精品久久久久5区| 国产精品久久电影中文字幕 | 搡老乐熟女国产| 久久婷婷成人综合色麻豆| 天天添夜夜摸| 欧美中文综合在线视频| 不卡一级毛片| 黑丝袜美女国产一区| 多毛熟女@视频| 老司机靠b影院| 大陆偷拍与自拍| 免费久久久久久久精品成人欧美视频| 亚洲成人免费电影在线观看| 久久精品人人爽人人爽视色| 国产精品亚洲av一区麻豆| av免费在线观看网站| videosex国产| 成人手机av| 国产精品一区二区免费欧美| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区四区第35| 免费高清在线观看日韩| 亚洲伊人久久精品综合| 国产精品电影一区二区三区 | 日韩免费高清中文字幕av| 午夜免费成人在线视频| 亚洲精品粉嫩美女一区| 亚洲色图 男人天堂 中文字幕| 精品卡一卡二卡四卡免费| 免费少妇av软件| 最近最新免费中文字幕在线| 美女福利国产在线| 精品一区二区三卡| 最黄视频免费看| 国产精品国产高清国产av | 日韩精品免费视频一区二区三区| 波多野结衣一区麻豆| 91九色精品人成在线观看| 精品国产亚洲在线| 俄罗斯特黄特色一大片| 欧美一级毛片孕妇| 少妇猛男粗大的猛烈进出视频| avwww免费| 久久九九热精品免费| 一本综合久久免费| 久久精品国产a三级三级三级| 黑丝袜美女国产一区| 三级毛片av免费| 熟女少妇亚洲综合色aaa.| 国产视频一区二区在线看| 成年人免费黄色播放视频| 极品人妻少妇av视频| 757午夜福利合集在线观看| 国产在线视频一区二区| av网站在线播放免费| 午夜精品国产一区二区电影| 亚洲熟妇熟女久久| 色婷婷av一区二区三区视频| 色老头精品视频在线观看| 国产91精品成人一区二区三区 | 在线 av 中文字幕| 久久久欧美国产精品| 免费在线观看黄色视频的| 亚洲va日本ⅴa欧美va伊人久久| 国产91精品成人一区二区三区 | 动漫黄色视频在线观看| 黑丝袜美女国产一区| 国产精品欧美亚洲77777| 午夜视频精品福利| 精品免费久久久久久久清纯 | 国产单亲对白刺激| 亚洲成人免费电影在线观看| 免费高清在线观看日韩| 国产片内射在线| 老熟女久久久| 狠狠狠狠99中文字幕| 一级毛片女人18水好多| 男女午夜视频在线观看| 成人手机av| 老司机深夜福利视频在线观看| 国产精品二区激情视频| 欧美日韩亚洲高清精品| 性色av乱码一区二区三区2| 18禁黄网站禁片午夜丰满| 亚洲精华国产精华精| 亚洲av片天天在线观看| 91麻豆精品激情在线观看国产 | 在线观看舔阴道视频| 欧美黄色片欧美黄色片| 精品欧美一区二区三区在线| 999久久久精品免费观看国产| 久久人妻熟女aⅴ| 亚洲欧美日韩高清在线视频 | 日本撒尿小便嘘嘘汇集6| 亚洲欧美激情在线| 久久久久久久精品吃奶| 两个人看的免费小视频| 999久久久精品免费观看国产| 国产精品av久久久久免费| 精品欧美一区二区三区在线| 777久久人妻少妇嫩草av网站| 国产精品二区激情视频| 无人区码免费观看不卡 | 90打野战视频偷拍视频| e午夜精品久久久久久久| 九色亚洲精品在线播放| 99精品欧美一区二区三区四区| 亚洲精品国产一区二区精华液| 亚洲欧美日韩另类电影网站| 亚洲av美国av| 日韩一卡2卡3卡4卡2021年| 在线观看www视频免费| 亚洲国产精品一区二区三区在线| 日日摸夜夜添夜夜添小说| 日韩精品免费视频一区二区三区| 精品一区二区三区四区五区乱码| 建设人人有责人人尽责人人享有的| 高清黄色对白视频在线免费看| 咕卡用的链子| 国产在线免费精品| 国产日韩一区二区三区精品不卡| 精品视频人人做人人爽| 国产成人免费观看mmmm| 成人国产一区最新在线观看| 大香蕉久久成人网| a级毛片黄视频| 久久中文字幕人妻熟女| 免费在线观看日本一区| 欧美黑人精品巨大| 两人在一起打扑克的视频| 久久久久久久大尺度免费视频| 久久久久久久精品吃奶| 欧美乱码精品一区二区三区| av有码第一页| 窝窝影院91人妻| 欧美黑人精品巨大| 18禁裸乳无遮挡动漫免费视频| 悠悠久久av| 在线天堂中文资源库| 搡老乐熟女国产| 欧美在线黄色| e午夜精品久久久久久久| 妹子高潮喷水视频| 精品福利永久在线观看| 丰满少妇做爰视频| 国产一区二区三区综合在线观看| 色尼玛亚洲综合影院| 丝袜喷水一区| bbb黄色大片| 超碰97精品在线观看| 男女边摸边吃奶| 在线十欧美十亚洲十日本专区| 亚洲中文av在线| 国产在线精品亚洲第一网站| 人妻 亚洲 视频| 自拍欧美九色日韩亚洲蝌蚪91| av天堂在线播放| 精品国产乱码久久久久久小说| 在线观看www视频免费| 一级,二级,三级黄色视频| 国产精品久久久久成人av| 亚洲精品国产精品久久久不卡| 国产aⅴ精品一区二区三区波| 久久久精品免费免费高清| 日韩中文字幕视频在线看片| 亚洲 国产 在线| 成年人黄色毛片网站| 人人澡人人妻人| 在线永久观看黄色视频| 婷婷丁香在线五月| 国产真人三级小视频在线观看| 亚洲国产欧美在线一区| 亚洲精品在线观看二区| 国产国语露脸激情在线看| 免费在线观看影片大全网站| 久久性视频一级片| 建设人人有责人人尽责人人享有的| 亚洲av国产av综合av卡| 精品福利观看| 亚洲精品中文字幕一二三四区 | 久热这里只有精品99| 男女高潮啪啪啪动态图| 91麻豆精品激情在线观看国产 | 另类亚洲欧美激情| 欧美成人免费av一区二区三区 | 亚洲专区字幕在线| 香蕉丝袜av| 老熟妇乱子伦视频在线观看| 麻豆av在线久日| 一二三四在线观看免费中文在| 69av精品久久久久久 | 啪啪无遮挡十八禁网站| 天堂俺去俺来也www色官网| 男人操女人黄网站| 大型黄色视频在线免费观看| e午夜精品久久久久久久| 国产不卡一卡二| 国产精品一区二区在线不卡| 老汉色av国产亚洲站长工具| 王馨瑶露胸无遮挡在线观看| 欧美日韩亚洲综合一区二区三区_| 女性被躁到高潮视频| 亚洲黑人精品在线| 97人妻天天添夜夜摸| 久久久久久久精品吃奶| 在线观看免费视频日本深夜| 久久久久国内视频| 麻豆乱淫一区二区| 欧美日韩视频精品一区| 丝袜在线中文字幕| 欧美亚洲 丝袜 人妻 在线| 欧美成人午夜精品| 色精品久久人妻99蜜桃| 国产精品98久久久久久宅男小说| 欧美精品一区二区大全| 97人妻天天添夜夜摸| 一级,二级,三级黄色视频| 少妇 在线观看| 一区二区三区精品91| 不卡一级毛片| 精品熟女少妇八av免费久了| 日韩制服丝袜自拍偷拍| 老司机午夜十八禁免费视频| 国产日韩欧美亚洲二区| 国产单亲对白刺激| 99re在线观看精品视频| 熟女少妇亚洲综合色aaa.| 色在线成人网| 91麻豆av在线| av欧美777| 伦理电影免费视频| 久久av网站| 日本av手机在线免费观看| 视频区欧美日本亚洲| 午夜91福利影院| 日韩欧美免费精品| 一边摸一边抽搐一进一出视频| 中亚洲国语对白在线视频| 午夜两性在线视频| 丝袜人妻中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线观看吧| 麻豆成人av在线观看| 免费看十八禁软件|