• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lax pair formulation for the open boundary Osp(1|2)spin chain

    2022-11-11 07:53:10XiaoyuZhangandKunHao
    Communications in Theoretical Physics 2022年11期

    Xiaoyu Zhang and Kun Hao,2,*

    1 Institute of Modern Physics,Northwest University,Xi’an 710127,China

    2 Peng Huanwu Center for Fundamental Theory,Xi’an 710127,China

    Abstract Based on the Lax pair formulation,we study the integrable conditions of the Osp(1|2)spin chain with open boundaries.We consider both the non-graded and graded versions of the Osp(1|2)chain.The Lax pair operators M±for the boundaries can be induced by the Lax operator Mj for the bulk of the system.They correspond to the reflection equations(RE)and the Yang–Baxter equation,respectively.We further calculate the boundary K-matrices for both the non-graded and graded versions of the model with open boundaries.The double row monodromy matrix and transfer matrix of the spin chain have also been constructed.The K-matrices obtained from the Lax pair formulation are consistent with those from Sklyanin’s RE.This construction is another way to prove the quantum integrability of the Osp(1|2)chain.We find that the Lax pair formulation has advantages in dealing with the boundary terms of the supersymmetric model.

    Keywords:Bethe Ansatz,lattice integrable models,quantum spin chain,supersymmetry algebra

    1.Introduction

    The nineteen-vertex models with open boundaries have been discussed by many authors.Most of them are based on a boson basis.It is still important to study supersymmetric systems even though there have been certain transformations from a bosonic basis to a fermionic one.Such boson-fermion transformation may bring extra boundary effects.Moreover,the fermionic basis can provide a clear picture to describe the meaning of conserved quantities.

    The typical supersymmetric nineteen-vertex model is the graded Osp(1|2)spin chain.The periodic boundary case was first proposed and solved in[1].A non-graded version of this model was proposed and solved in[2].The difference between the graded and the non-graded periodic Osp(1|2)quantum spin chain was discussed in[3].However,there are only a few works on supersymmetric Osp(1|2)spin chains with open boundaries.The eigenvalues and the eigenvectors of the Osp(1|2)model with diagonal reflecting boundary conditions in the Fermi–Bose–Fermi(FBF)background were studied in[4].

    In this paper,we apply the Lax pair formulation to Osp(1|2)spin chain for the open boundary case.The procedure provides an alternative and straightforward proof for the quantum integrability of the model.We calculate the corresponding boundary K-matrices for the non-graded and the graded Osp(1|2)spin chains using Lax pair operators.We use the diagonal K-matrices solution as an example to illustrate our method.After tedious calculation,the non-diagonal K-matrices are also obtained.We argue that the results also satisfy Sklyanin’s reflection equations(RE)[5].Finally,we make an underlying comparison of the calculation process between the Lax pair formulation to RE.

    The paper is organized as follows.Section 2 shows the Lax pair formulation for the quantum spin chain with open boundary conditions.In sections 3 and 4,we calculate the Lax pair of Osp(1|2)spin chain in bulk and boundaries for the nongraded and graded versions,respectively.Then we calculate the corresponding K-matrices with diagonal and non-diagonal boundary conditions.Section 5 is devoted to the conclusion.

    2.Lax pair formulation

    Considering the integrable quantum lattice models,we first review the Lax pair formulation in the quantum inverse scattering method[6–8]for the corresponding open boundary spin chain case[9–11].The equations of motion for the system have the following equivalent operator representation

    with equations on the boundaries

    Here Lj(λ),Mj(λ)and M±(λ)are operators that have matrices form.These operators depend on the spectral parameter λ,while λ does not depend on the time t and dynamical variables.The consistency conditions for equations(2.1)and(2.2)give rise to the following Lax equations

    with boundary terms

    Thus if the equations of motion have the alternative Lax equations(2.3)and(2.4)form,and the boundary K-matrices are the solutions to constraint equations(2.7)and(2.8),one can conclude that the open boundary system is completely integrable.Define the one row monodromy matrix and the transfer matrix of the system as the following

    Suppose K-(λ),K+(λ)are the matrices of the left and right boundaries,respectively.In the following form,we define the double row transfer matrix τ(λ)for open chain

    The form of Lax equations(2.3)and(2.4)show that the transfer matrix τ(λ)is independent of time t.The boundary matrices must,nevertheless,satisfy the requirements of the constraints

    As a result,the system with open boundaries has an infinite amount of conserved charges.The model is completely integrable.

    3.The non-graded version

    Unless otherwise stated,we will use the standard notation for the algebraic Bethe Ansatz approach here and throughout the rest of the article:for every matrix A ∈End(V),Ajis an embedding operator in the tensor space V ?V ?…,which works as A on the jth space and as an identity on the other factor spaces.

    The Osp(1|2)spin chain has a three-dimensional vector space at each site.For the bosonic(non-graded)formulation case,the R-matrix is given by

    where

    For R ∈End(V ?V),Rij(λ)is an embedding operator of Rmatrix(3.1)in the tensor space.With the exception of the ith and jth factor spaces,it serves as an identity on all factor spaces.The R-matrix satisfies the non-graded quantum Yang–Baxter equation

    and possesses the following properties3The superscript ti denotes the transpose in the ith space.

    P12is the(non-graded)permutation operator defined by the standard basis

    δa,iis the Kronecker delta.Here the subscripts ij of eabindicate the row and column.Ordinarily,we use subscript for space index and superscript for row and column.The functions ρ1(λ)and ρ2(λ)are given by

    3.1.The Lax pair operators for the bulk and boundaries

    It is easy to check that the equations of motion derived from the Hamiltonian(3.10)can be recast to the Lax form.Indeed,in the non-graded version,the L operators take the form

    Following the method in the[12–14],the M operators for the bulk can be derived from the Lax equations(2.1),the Yang–Baxter equation(3.3),and the periodic Hamiltonian(3.10).The M-matrix Mj(λ)has the following form4For convenience,we normalize the entries of Mj(λ)as polynomial by multiplying a common factor on it.in auxiliary space 0,

    The concrete components of the non-graded version M operator are illustrated in section A.1.We remark that the matrix Mj(λ)acts non-trivially on spaces 0,j-1,and j.Here we only use j as a subscript of M to follow the conventions in the previous papers mentioned above.Mj(λ)is the operator for the bulk(of the open boundary case)and also for the periodic case.

    Now we can calculate the M-(λ)and M+(λ)operators with the help of the following boundary terms in the open

    The M+matrix has the form

    where

    We remark that the matrix M-(λ)acts non-trivially on spaces 0,and 1,and the matrix M+(λ)acts non-trivially on spaces 0,and N.So far,we have obtained all the Lax pair operators for the non-graded Osp(1|2)spin chain with open boundaries.

    3.2.Boundary reflection matrices

    We can now calculate the boundary K-matrices from the constraint equations(2.7)and(2.8).Let us set Substituting(3.17)into(2.7),we have the following constraints for K-

    and

    Then we have

    Substituting(3.19)into(2.8),we obtain

    and

    As for non-diagonal boundary conditions,we list a set of nontrivial solutions below without showing the intermediate process and M±m(xù)atrices.Let us consider the following boundary terms in Hamiltonian

    After tedious calculation,we obtain the K-and K+matrices in the same way

    where

    4.The graded version

    4.1.The Lax pair for bulk and boundaries

    Similarly,the equations of motion derived from the Hamiltonian(4.10)can be recast to the Lax form.In the graded case,we also choose the R matrix as the L operator,Lj(λ)=R0j(λ).Then the M operators for the bulk can be derived from the Lax equations(2.1)and the graded quantum Yang–Baxter equation(4.3).The M-matrix Mj(λ)also has the following 3×3 matrix form in auxiliary space 0,

    We show the concrete components of the graded M operator in section A.2.

    In the same way,let us set

    From the equations(2.3)and(2.4),we obtain the associated M-matrix

    where

    and the M+(λ)matrix

    where

    4.2.Boundary reflection matrices

    We can now calculate the boundary K-matrices from the constraint equations(2.7)and(2.8).Let us assume

    Substituting(4.17)into(2.7),we have the following constraints for K-

    The above K-matrices are equivalent to those obtained by Yue and Xiong[4]with FBF grading via solving the RE.

    As for non-diagonal boundary conditions,the non-diagonal elements should have the same parity.So we set

    After tedious calculation,we obtain the following K-and K+matrices

    where

    Again,we omit the form of M±m(xù)atrices in this case.

    The K-and K+matrices above also satisfy the graded version RE5The symbol sti denotes the super transpose in the ith space[4]

    where

    5.Conclusion

    For the open boundary Osp(1|2)spin chain,we proposed the Lax pair formulation.The associated Lax pair operators were calculated.Based on that,we obtained the boundary Kmatrices for both the non-graded and graded versions.In addition,the double row monodromy matrix and the transfer matrix of the spin chain have been built.The results obtained from the Lax pair formulation coincide with those from RE in finding the boundary K-matrices.

    Both the RE scheme and the Lax pair formulation can demonstrate the integrability of the model.There is one special case where only the Lax pair formulation works for the model without crossing unitarity[15],while the RE scheme does not.When solving the RE,one has to take into account the spectral parameter and the crossing parameter.In the last step,a thorough classified discussion of the spectral parameter is needed to determine the concrete entries of the K-matrices.The Lax pair formulation starts with the designed boundaries Hamiltonians H1and HN.If the assumed boundary Hamiltonians happen to guarantee the integrability of the system,then one can definitely get the correct M operators and K-matrices by finishing certain procedures.Although the whole calculation is lengthy,we do not have to consider the spectral parameters in the procedures,and the boundary Hamiltonians can be seen as constants in the derivations.This means that the Lax pair formulation has advantages in dealing with supersymmetric models,especially for non-diagonal boundary cases.

    Acknowledgments

    The work of KH was supported by the National Natural Science Foundation of China(Grant Nos.12275214,11805152,12047502 and 11947301),the Natural Science Basic Research Program of Shaanxi Province Grant Nos.2021JCW-19 and 2019JQ-107,and Shaanxi Key Laboratory for Theoretical Physics Frontiers in China.XZ would like to thank Prof Xiaotian Xu for the helpful discussions.

    Appendix.The M-matrix for bulk and periodic case

    A.1.The non-graded version M operator

    For the non-graded version,the elements of M in(3.15)can be expressed as

    A.2.The graded M operator

    For the graded version,the elements in the M operator(4.15)can be expressed as

    午夜福利视频1000在线观看| 久久人人爽人人爽人人片va| 国产私拍福利视频在线观看| 看非洲黑人一级黄片| 夜夜看夜夜爽夜夜摸| 18禁动态无遮挡网站| 亚洲激情五月婷婷啪啪| 精品不卡国产一区二区三区| 国产精品一区二区三区四区免费观看| 级片在线观看| 97在线视频观看| 男女边吃奶边做爰视频| 久久综合国产亚洲精品| 久久久久久国产a免费观看| 男女边吃奶边做爰视频| 国产精品久久久久久精品电影| 黄片wwwwww| 久久久久久久久大av| 国产精品久久久久久精品电影| 久久久久久久午夜电影| 91在线精品国自产拍蜜月| 国产亚洲精品久久久com| av女优亚洲男人天堂| 精品一区二区三区视频在线| 欧美色视频一区免费| 午夜激情欧美在线| 99久久成人亚洲精品观看| 十八禁国产超污无遮挡网站| 日本黄色片子视频| 久久人妻av系列| 赤兔流量卡办理| 尾随美女入室| 国产毛片a区久久久久| 天堂中文最新版在线下载 | 又粗又硬又长又爽又黄的视频| 国产精品一及| 狂野欧美激情性xxxx在线观看| 免费观看的影片在线观看| 中文乱码字字幕精品一区二区三区 | 精品久久久久久久久av| 舔av片在线| 99久国产av精品国产电影| 亚洲精品456在线播放app| 免费观看精品视频网站| 小蜜桃在线观看免费完整版高清| 国产成人freesex在线| 两个人的视频大全免费| 自拍偷自拍亚洲精品老妇| 3wmmmm亚洲av在线观看| 99九九线精品视频在线观看视频| av视频在线观看入口| 国产亚洲av嫩草精品影院| 亚洲av电影不卡..在线观看| 直男gayav资源| 亚洲天堂国产精品一区在线| 国产伦一二天堂av在线观看| 亚洲欧美日韩东京热| .国产精品久久| 草草在线视频免费看| 久久99热这里只频精品6学生 | 久久草成人影院| 色吧在线观看| 九九久久精品国产亚洲av麻豆| 国产精品福利在线免费观看| 欧美bdsm另类| 国产私拍福利视频在线观看| 亚洲综合色惰| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲午夜精品一区二区久久 | 美女大奶头视频| 亚洲欧美成人综合另类久久久 | 啦啦啦啦在线视频资源| 日本黄色片子视频| 久久久久久久国产电影| 干丝袜人妻中文字幕| 禁无遮挡网站| 亚洲欧美清纯卡通| 色播亚洲综合网| av卡一久久| 国产男人的电影天堂91| 久久久精品欧美日韩精品| 精品人妻熟女av久视频| 色5月婷婷丁香| 蜜臀久久99精品久久宅男| 色综合站精品国产| 久久草成人影院| 久久鲁丝午夜福利片| 亚洲激情五月婷婷啪啪| 日韩精品青青久久久久久| 极品教师在线视频| 国产麻豆成人av免费视频| 国产老妇伦熟女老妇高清| 亚洲欧美日韩高清专用| 成人av在线播放网站| 99热6这里只有精品| 男人狂女人下面高潮的视频| 亚洲色图av天堂| 热99在线观看视频| 日韩高清综合在线| 久久精品熟女亚洲av麻豆精品 | 亚洲国产日韩欧美精品在线观看| 亚洲自拍偷在线| 偷拍熟女少妇极品色| 国产亚洲一区二区精品| 搞女人的毛片| 黄片wwwwww| 天天躁日日操中文字幕| 老师上课跳d突然被开到最大视频| av天堂中文字幕网| 爱豆传媒免费全集在线观看| 亚洲人与动物交配视频| 高清视频免费观看一区二区 | 床上黄色一级片| 国产人妻一区二区三区在| 看片在线看免费视频| 亚洲精品自拍成人| 男女国产视频网站| 免费看日本二区| 熟妇人妻久久中文字幕3abv| 亚洲综合色惰| 亚洲人与动物交配视频| 国产成人午夜福利电影在线观看| 国产单亲对白刺激| 久久久久久久久久久免费av| 五月玫瑰六月丁香| 能在线免费观看的黄片| 日韩欧美在线乱码| 天堂中文最新版在线下载 | 国产免费福利视频在线观看| 亚洲欧美精品自产自拍| 边亲边吃奶的免费视频| 欧美日韩在线观看h| 日韩欧美三级三区| 两个人视频免费观看高清| 国产一级毛片在线| 亚洲色图av天堂| 久久久久久久久久黄片| 麻豆精品久久久久久蜜桃| 日韩国内少妇激情av| 久久久久精品久久久久真实原创| 国产人妻一区二区三区在| 国产伦一二天堂av在线观看| 亚州av有码| 午夜激情福利司机影院| 人妻制服诱惑在线中文字幕| 亚洲真实伦在线观看| 亚洲国产高清在线一区二区三| 韩国av在线不卡| 久久精品人妻少妇| 日韩三级伦理在线观看| 午夜福利在线观看吧| 国产v大片淫在线免费观看| 午夜免费男女啪啪视频观看| 日本免费一区二区三区高清不卡| 国产精品人妻久久久影院| 女人十人毛片免费观看3o分钟| 99久久人妻综合| 天堂网av新在线| 老司机影院毛片| 久久精品国产自在天天线| 女人十人毛片免费观看3o分钟| 男人狂女人下面高潮的视频| 一个人看视频在线观看www免费| 国产av在哪里看| 一级毛片电影观看 | 欧美成人精品欧美一级黄| 日韩欧美在线乱码| 天天躁夜夜躁狠狠久久av| 精品午夜福利在线看| 午夜免费激情av| 日本三级黄在线观看| 亚洲成色77777| 男女下面进入的视频免费午夜| 男女边吃奶边做爰视频| 日韩高清综合在线| 国产 一区 欧美 日韩| 午夜视频国产福利| 最近中文字幕2019免费版| 日韩欧美精品v在线| 九色成人免费人妻av| 卡戴珊不雅视频在线播放| 麻豆成人午夜福利视频| 丝袜喷水一区| 小说图片视频综合网站| 永久免费av网站大全| 热99在线观看视频| 免费观看人在逋| 麻豆成人午夜福利视频| 国产乱人偷精品视频| 亚洲,欧美,日韩| 永久免费av网站大全| 99久久精品热视频| 乱人视频在线观看| 男插女下体视频免费在线播放| 欧美极品一区二区三区四区| 青春草视频在线免费观看| 亚洲第一区二区三区不卡| 少妇丰满av| 搡老妇女老女人老熟妇| 国产精品熟女久久久久浪| 内地一区二区视频在线| 天天一区二区日本电影三级| 天天躁夜夜躁狠狠久久av| 免费不卡的大黄色大毛片视频在线观看 | 久久久久国产网址| 成年女人看的毛片在线观看| 久久这里只有精品中国| 一个人免费在线观看电影| 乱系列少妇在线播放| 99热这里只有是精品在线观看| 成人一区二区视频在线观看| 国产av码专区亚洲av| 91久久精品国产一区二区三区| 好男人在线观看高清免费视频| 国产又黄又爽又无遮挡在线| 高清午夜精品一区二区三区| 少妇丰满av| 亚洲av熟女| 国产亚洲一区二区精品| 国产激情偷乱视频一区二区| 日本免费在线观看一区| 国产一区二区在线观看日韩| or卡值多少钱| 99热6这里只有精品| 美女被艹到高潮喷水动态| 国产免费福利视频在线观看| 国产精品久久久久久精品电影| 一区二区三区四区激情视频| 欧美极品一区二区三区四区| 国产精品国产高清国产av| 神马国产精品三级电影在线观看| 舔av片在线| 国产精品一二三区在线看| 精品久久久久久久人妻蜜臀av| 亚洲精品亚洲一区二区| 偷拍熟女少妇极品色| 国产v大片淫在线免费观看| 国内精品一区二区在线观看| 九九久久精品国产亚洲av麻豆| 国产高清有码在线观看视频| 精品人妻熟女av久视频| 免费人成在线观看视频色| 91午夜精品亚洲一区二区三区| 久久精品综合一区二区三区| 能在线免费观看的黄片| 大又大粗又爽又黄少妇毛片口| 高清午夜精品一区二区三区| 色综合亚洲欧美另类图片| 欧美成人一区二区免费高清观看| 九九爱精品视频在线观看| 中文亚洲av片在线观看爽| eeuss影院久久| 99久国产av精品国产电影| 午夜免费男女啪啪视频观看| 亚洲av成人av| 亚洲国产精品国产精品| 3wmmmm亚洲av在线观看| 久久精品国产99精品国产亚洲性色| 亚洲精品aⅴ在线观看| av卡一久久| 久久久久免费精品人妻一区二区| 色综合站精品国产| 国产高清三级在线| 日韩制服骚丝袜av| 蜜桃久久精品国产亚洲av| 人人妻人人澡欧美一区二区| 中文字幕精品亚洲无线码一区| 亚洲第一区二区三区不卡| 色播亚洲综合网| 欧美日韩国产亚洲二区| 乱人视频在线观看| kizo精华| 国产精品爽爽va在线观看网站| 国产又黄又爽又无遮挡在线| 国产精品av视频在线免费观看| 美女高潮的动态| 日本免费一区二区三区高清不卡| 国产淫片久久久久久久久| 亚洲成色77777| 观看美女的网站| 秋霞伦理黄片| 有码 亚洲区| 高清在线视频一区二区三区 | 2021少妇久久久久久久久久久| 日韩欧美国产在线观看| 国产真实伦视频高清在线观看| 在现免费观看毛片| 亚洲成人av在线免费| 国产黄片视频在线免费观看| 亚洲在久久综合| 午夜福利在线观看吧| 国产色婷婷99| 97超视频在线观看视频| 久久久a久久爽久久v久久| 日本午夜av视频| 最近的中文字幕免费完整| 大话2 男鬼变身卡| 亚洲四区av| 在线a可以看的网站| 国产黄色小视频在线观看| 久久久欧美国产精品| 国产成人精品婷婷| 99热这里只有是精品50| 国产成年人精品一区二区| 久久精品国产鲁丝片午夜精品| 亚洲成人中文字幕在线播放| 干丝袜人妻中文字幕| 日韩av不卡免费在线播放| 99久久精品国产国产毛片| 女人久久www免费人成看片 | 国产精品.久久久| 久久久久久久久久黄片| 免费看av在线观看网站| 在现免费观看毛片| 午夜免费男女啪啪视频观看| 在线观看一区二区三区| 午夜爱爱视频在线播放| 伦理电影大哥的女人| 精品久久久久久久久av| 久久精品国产鲁丝片午夜精品| 午夜福利网站1000一区二区三区| 校园人妻丝袜中文字幕| 老女人水多毛片| 欧美一区二区精品小视频在线| 91精品伊人久久大香线蕉| 18+在线观看网站| 我的女老师完整版在线观看| 嘟嘟电影网在线观看| 精品一区二区三区人妻视频| 中文字幕熟女人妻在线| 亚洲天堂国产精品一区在线| 国产极品天堂在线| 久久综合国产亚洲精品| 精品人妻一区二区三区麻豆| av福利片在线观看| 我的女老师完整版在线观看| 热99re8久久精品国产| 亚洲成色77777| 精品久久久久久久久av| 国产精品蜜桃在线观看| 国产精品久久久久久久电影| 91精品伊人久久大香线蕉| 看免费成人av毛片| 亚洲av熟女| 成人高潮视频无遮挡免费网站| 综合色丁香网| 国产免费男女视频| 久久6这里有精品| 亚洲欧美日韩东京热| 超碰av人人做人人爽久久| 国产伦理片在线播放av一区| 在线观看美女被高潮喷水网站| kizo精华| 校园人妻丝袜中文字幕| 大香蕉久久网| 国产精品久久久久久av不卡| 人人妻人人澡人人爽人人夜夜 | 噜噜噜噜噜久久久久久91| 小蜜桃在线观看免费完整版高清| 久久久久久大精品| av在线亚洲专区| 美女xxoo啪啪120秒动态图| 国产成人精品一,二区| 国产一区亚洲一区在线观看| 日韩视频在线欧美| 亚洲国产欧美人成| 亚洲人成网站在线观看播放| 狂野欧美激情性xxxx在线观看| 国产成人午夜福利电影在线观看| 青青草视频在线视频观看| 欧美激情国产日韩精品一区| 亚洲aⅴ乱码一区二区在线播放| 日韩国内少妇激情av| 91在线精品国自产拍蜜月| 看免费成人av毛片| videossex国产| 在线a可以看的网站| 丝袜美腿在线中文| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| 白带黄色成豆腐渣| 亚洲va在线va天堂va国产| 欧美三级亚洲精品| 熟女人妻精品中文字幕| 日产精品乱码卡一卡2卡三| 久久精品国产99精品国产亚洲性色| 一个人看的www免费观看视频| 性插视频无遮挡在线免费观看| 三级男女做爰猛烈吃奶摸视频| 男女视频在线观看网站免费| 色网站视频免费| 午夜福利在线观看吧| 国产av码专区亚洲av| 毛片女人毛片| 成人毛片a级毛片在线播放| 精品一区二区三区视频在线| 亚洲精品久久久久久婷婷小说 | 寂寞人妻少妇视频99o| 精品一区二区三区视频在线| 日日啪夜夜撸| 特大巨黑吊av在线直播| 热99在线观看视频| 亚洲av成人精品一区久久| 亚洲av成人av| 精品久久久久久久人妻蜜臀av| 国产一区二区亚洲精品在线观看| 看片在线看免费视频| 一级毛片电影观看 | 亚洲欧洲日产国产| 赤兔流量卡办理| av在线天堂中文字幕| 国产探花极品一区二区| videossex国产| 日本-黄色视频高清免费观看| 国产老妇伦熟女老妇高清| 久久热精品热| 国产单亲对白刺激| 亚洲伊人久久精品综合 | 国产精品无大码| 欧美极品一区二区三区四区| 美女黄网站色视频| 久久这里有精品视频免费| 青春草亚洲视频在线观看| 免费看光身美女| 性插视频无遮挡在线免费观看| 在线天堂最新版资源| 国产淫片久久久久久久久| 亚洲精品乱码久久久久久按摩| 最近2019中文字幕mv第一页| 日本色播在线视频| 天堂影院成人在线观看| 精品久久国产蜜桃| av在线亚洲专区| 欧美zozozo另类| 最近中文字幕2019免费版| 99久久精品国产国产毛片| 日本免费一区二区三区高清不卡| 男人狂女人下面高潮的视频| 久久久久久久久大av| 中文字幕久久专区| 久久综合国产亚洲精品| 国产精品一区二区在线观看99 | 啦啦啦啦在线视频资源| 日韩制服骚丝袜av| 国产精品电影一区二区三区| 免费观看人在逋| 黄色日韩在线| 成人性生交大片免费视频hd| 亚洲成人精品中文字幕电影| 精品久久久久久久久久久久久| 国产亚洲91精品色在线| 欧美日韩国产亚洲二区| 久久午夜福利片| 亚洲电影在线观看av| 亚洲人与动物交配视频| 国产一区二区在线观看日韩| 国产成人精品一,二区| 91久久精品国产一区二区三区| 不卡视频在线观看欧美| 伊人久久精品亚洲午夜| 成年女人永久免费观看视频| 熟妇人妻久久中文字幕3abv| 国语对白做爰xxxⅹ性视频网站| 边亲边吃奶的免费视频| 亚洲精品456在线播放app| 亚洲欧美日韩无卡精品| 国产真实乱freesex| 纵有疾风起免费观看全集完整版 | 18禁在线无遮挡免费观看视频| 国产精品1区2区在线观看.| 男人的好看免费观看在线视频| 日韩人妻高清精品专区| 亚洲av电影不卡..在线观看| 亚洲国产欧洲综合997久久,| 青春草视频在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品一区二区在线观看99 | 高清av免费在线| 国产色爽女视频免费观看| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 精品人妻视频免费看| 啦啦啦啦在线视频资源| 欧美日本亚洲视频在线播放| 国产精品一二三区在线看| 日产精品乱码卡一卡2卡三| 非洲黑人性xxxx精品又粗又长| 久久精品人妻少妇| 简卡轻食公司| 久久久久久九九精品二区国产| 麻豆成人午夜福利视频| 我的老师免费观看完整版| 99热全是精品| 亚洲国产精品专区欧美| 国产伦精品一区二区三区四那| 最近中文字幕高清免费大全6| 你懂的网址亚洲精品在线观看 | 看非洲黑人一级黄片| 亚洲在线观看片| 免费大片18禁| 日本黄色视频三级网站网址| 久久人人爽人人片av| 国产精品av视频在线免费观看| 免费人成在线观看视频色| 午夜亚洲福利在线播放| 99久久九九国产精品国产免费| 国语对白做爰xxxⅹ性视频网站| 高清午夜精品一区二区三区| 日本一二三区视频观看| 精品一区二区三区人妻视频| 国产人妻一区二区三区在| 国产乱人视频| 色视频www国产| 人人妻人人澡欧美一区二区| 国产一级毛片在线| 少妇被粗大猛烈的视频| 午夜精品国产一区二区电影 | 69人妻影院| 精品少妇黑人巨大在线播放 | 高清视频免费观看一区二区 | 亚洲欧美日韩高清专用| 91久久精品电影网| 久99久视频精品免费| 国产爱豆传媒在线观看| 欧美xxxx性猛交bbbb| 亚洲激情五月婷婷啪啪| 国产麻豆成人av免费视频| 夜夜看夜夜爽夜夜摸| 大香蕉97超碰在线| 人妻夜夜爽99麻豆av| 在线免费十八禁| 国产女主播在线喷水免费视频网站 | 色哟哟·www| 国产毛片a区久久久久| av女优亚洲男人天堂| 黄片wwwwww| 国产精品电影一区二区三区| 91久久精品国产一区二区成人| 亚洲av日韩在线播放| 欧美成人精品欧美一级黄| 五月玫瑰六月丁香| 搞女人的毛片| 精品一区二区三区视频在线| 26uuu在线亚洲综合色| 国产精品野战在线观看| 亚洲五月天丁香| 欧美又色又爽又黄视频| 国产亚洲av片在线观看秒播厂 | 欧美xxxx黑人xx丫x性爽| 久久久久久九九精品二区国产| 国产精品久久电影中文字幕| 欧美性猛交黑人性爽| 欧美日韩综合久久久久久| 99热6这里只有精品| 国产成人免费观看mmmm| 欧美人与善性xxx| 久久久色成人| 男女下面进入的视频免费午夜| 成人午夜精彩视频在线观看| av国产久精品久网站免费入址| 国产av在哪里看| 国产精品麻豆人妻色哟哟久久 | 亚洲久久久久久中文字幕| 一级毛片电影观看 | 一二三四中文在线观看免费高清| 纵有疾风起免费观看全集完整版 | 日韩一区二区视频免费看| 嫩草影院入口| 只有这里有精品99| 午夜精品一区二区三区免费看| 一区二区三区四区激情视频| 天天躁夜夜躁狠狠久久av| 高清在线视频一区二区三区 | 欧美变态另类bdsm刘玥| 一级毛片我不卡| 91aial.com中文字幕在线观看| 大又大粗又爽又黄少妇毛片口| 99久久无色码亚洲精品果冻| 国产精品国产三级专区第一集| 精品人妻一区二区三区麻豆| 日韩成人av中文字幕在线观看| 国产成人精品久久久久久| 精品99又大又爽又粗少妇毛片| 淫秽高清视频在线观看| 国产高清不卡午夜福利| 又爽又黄无遮挡网站| 精品久久久久久久久av| 欧美日韩综合久久久久久| 男人狂女人下面高潮的视频| 国产精品三级大全| 欧美不卡视频在线免费观看| 99热6这里只有精品| 国产欧美另类精品又又久久亚洲欧美| 九草在线视频观看| 秋霞在线观看毛片| 国产亚洲一区二区精品| 男人舔女人下体高潮全视频| 级片在线观看| 久久久久久久久大av| a级毛片免费高清观看在线播放| 又黄又爽又刺激的免费视频.| 亚洲av男天堂| 国产又黄又爽又无遮挡在线| 菩萨蛮人人尽说江南好唐韦庄 | 少妇高潮的动态图| 欧美xxxx黑人xx丫x性爽| 18禁在线无遮挡免费观看视频| 国产精品国产三级国产专区5o | 一级毛片我不卡| 一区二区三区高清视频在线| 女的被弄到高潮叫床怎么办| 亚洲自偷自拍三级| 色5月婷婷丁香| 亚洲五月天丁香| 午夜日本视频在线|