• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-frequency switch and excellent slow light based on tunable triple plasmoninduced transparency in bilayer graphene metamaterial*

    2022-11-11 07:53:38XianwenZhouYipingXuYuhuiLiShuboChengZaoYiGuohuiXiaoZiyiWangandZhanyuChen
    Communications in Theoretical Physics 2022年11期

    Xianwen Zhou,Yiping Xu,**,Yuhui Li,Shubo Cheng,Zao Yi,Guohui Xiao,Ziyi Wang and Zhanyu Chen

    1 School of Physics and Optoelectronic Engineering,Yangtze University,Jingzhou 434023,China

    2 Joint Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology,Mianyang 621010,China

    3 Jiangxi Province Key Laboratory of Optoelectronics and Communications,Jiangxi Science and Technology Normal University,Nanchang 330038,China

    Abstract We propose a novel bilayer graphene terahertz metamaterial composed of double graphene ribbons and double graphene rings to excite a dynamically adjustable triple plasma-induced transparency(PIT)effect.The coupled mode theory(CMT)is used to explain the PIT phenomenon,and the results of the CMT and the finite-difference time-domain simulation show high matching degree.By adjusting the Fermi levels of graphene,we have realized a pentafrequency asynchronous optical switch.The performance of this switch,which is mainly manifested in the maximum modulation depth(MD=99.97%)and the minimum insertion loss(IL=0.33 dB),is excellent.In addition,we have studied the slow-light effect of this triple-PIT and found that when the Fermi level of graphene reaches 1.2 eV,the time delay can reach 0.848 ps.Therefore,this metamaterial provides a foundation for the research of multi-frequency optical switches and excellent slow-light devices in the terahertz band.

    Keywords:plasma-induced transparency,coupled mode theory,optical switch,slow-light effect

    1.Introduction

    Surface plasmons(SPs)are surface electromagnetic waves that exist at the interface between metal and dielectric,and they include localized surface plasmons(LSPs)and surface plasmon polaritions(SPPs)[1,2].LSPs are confined to the vicinity of metal nanostructures,while SPPs are localized near the metal-medium interface and spread along it[3–5].Importantly,the SPPs can surmount traditional optical diffraction limits and manipulate light at the sub-wavelength range[6].Accordingly,SPPs play a vital role in various plasmonic devices,such as filters[7],optical switches[8–11],absorbers[12–14],polarizers[15],slow-light devices[16],modulators[17]and others.However,the non-dynamic adjustability and the large ohmic loss of the metal-based SPPs severely restrict the development of SPPs-based devices.Fortunately,graphene can prominently overcome the above shortcomings and become a good metal substitute for the propagation of SPPs.

    Graphene,a two-dimensional carbon nanomaterial with excellent dynamic regulation characteristics,has become a hotspot in research due to its high carrier mobility[18],electrical tunability[19–21]and low transmission loss[22].It has important applications in the fields of modulators[23,24],sensors[25,26],photodetectors[27,28],and so on.In addition,graphene shows metal-like dielectric properties in terahertz band,which enables graphene to propagate the transverse magnetic mode of SPPs wave.Although the optical properties of graphene-based SPPs are similar to that of metal-based SPPs in many ways,there are many advantages that metal does not have.For example,the Fermi energy of graphene can be easily regulated by adjusting the bias voltage,so the spectral characteristics based on the graphene structures can be dynamically modulated without changing the structural parameters.Based on the above advantages,the applications and explorations of graphene in various functional devices are booming.

    The plasma-induced transparency(PIT)is an optical abnormal phenomenon produced by the destructive interference between the resonant modes of SPPs.In the meanwhile,it is a plasmonic analogy of classical electromagnetically induced transparency(EIT)[29].Compared with EIT,PIT is not restricted by the stable optical pumping source,gaseous medium,extremely low-temperature environment and other harsh experimental conditions[30].The PIT phenomenon has been observed in both graphene and metal,but due to the great advantage of graphene’s dynamic modulation,it is mainly used in graphene materials.Normally,the single-PIT comes from the interaction between a bright mode and a dark mode[31,32]or two bright modes[33,34].The bright mode can be easily excited by the incident light and produces opaque valleys which are called Lorentz lines in the transmission spectrum,whereas the dark mode can not be directly excited by the incident light,but it can be excited by the light field which is generated by the interaction between the incident light and the bright mode.The resonance of the dark mode and the bright mode at certain frequency points leads to the formation of two transmission valleys and a PIT window.In addition to single PIT,the dual-PIT has been realized in the single-layer and multi-layer graphene structure.The single-PIT and dual-PIT have been widely used in absorbers,modulators and so on.However,up to date,there are few studies on the triple-PIT with an optical-switching function which is based on the multilayer graphene structure.

    In this paper,we propose a bilayer graphene periodic structure composed of upper-layer double graphene ribbons and lower-layer double graphene rings to realize tunable triple-PIT.The simulated results by using of the finite-difference timedomain(FDTD)[35]are consistent with the theoretically calculated results via coupled mode theory(CMT),which represents the correctness of our theoretical analysis[36].Unexpectedly,by adjusting the Fermi levels of graphene,we realized a penta-frequency asynchronous and a double-frequency or triple-frequency synchronous optical switches.The maximum modulation depth(MD)and the minimum insertion loss(IL)of the switches are 99.97%and 0.33 dB,respectively.Additionally,our structure shows excellent slow light characteristics with a maximum time delay up to 0.848 ps.Therefore,these high-performance characteristics provide a theoretical guide for the study of multi-frequency optical switches and excellent slow-light devices.

    2.Structure and theoretical model

    The structure shown in figure 1(a)is a metamaterial unit composed of the upper layer graphene(ULG),the interlayer with a silicon material,the lower layer graphene(LLG)and the substrate silicon.Silicon is a common semiconductor material with weak electrical conductivity and can be easily processed using standard lithography technologies in experiment[37].The red parts in figure 1 represent the ULG and LLG which are two identical graphene ribbons and two concentric rings with different sizes,respectively.The structural plane diagrams of ULG and LLG are shown in figure 1(b).Their geometric parameters are as follows:Lx=4 μm,Ly=4 μm,L1=1.49 μm,L2=2.02 μm(the outer diameter of big graphene ring(BGR)),L3=1.62 μm(the inner diameter of BGR),L4=1.02 μm(the outer diameter of small graphene ring(SGR)),L5=0.62 μm(the inner diameter of SGR),d1=0.2 μm,d2=0.3 μm.Triple-PIT phenomenon occurs when the whole structure(WS)is illuminated perpendicularly by an x-polarized plane wave which is incident along the negative direction of the z-axis.At this time,the intensity of the plane wave is very weak,and the nonlinear effect of graphene has almost no effect,so it can be ignored.The conductivity σgof the monolayer graphene consists of intraband electron photon scattering and direct interband photon transition.In the low terahertz band,direct interband photon transition can be ignored owing to the condition EF≥kBT=25.85 meV[38].Therefore,the conductivity of the single-layer graphene can be expressed as[39]:

    where e,EF,ω,?,and τ are the electronic charge,the Fermi level of graphene,the angular frequency of incident light,the reduced Planck constant and the carrier relaxation time,respectively.Here,τ = μEF/(eVF2),μ is the carrier mobility,VF≈c/300 is the Fermi velocity,c is the speed of light.The experimental results show that the carrier mobility μ of graphene can reach 4 m2(V-1s-1)at room temperature[40].Considering the actual operation situation,we fix μ and VFto 3.5 m2(V-1s-1)and 106m(s-1),respectively.

    Due to the ULG is between the medium air and the substrate silicon,the dispersion relation can be solved by Maxwell equations and electromagnetic field boundary conditions.It can be expressed as[41]:

    Since the media above and below LLG are silicon,the dispersion relation is expressed as[4]:

    Here,εsi=11.9 is the relative permittivity of silicon,εair=1 is the relative permittivity of air,β is the propagation constant,k0is the wave vector of incident light,and ε0is the dielectric constant of vacuum.

    The electric circuit used to adjust the Fermi levels of the upper and lower graphene is schematically drawn in figure 1(a).It can be seen that the gate voltages V1and V2are contacted to ULG and LLG by two electrodes,respectively.The applied voltage can push electrons into the hole of graphene and then regulate the carrier concentration of graphene,promoting a change value of the Fermi energy of graphene[42].Thus,the Fermi levels of ULG and LLG can be respectively changed by adjusting the gate voltages V1and V2in figure 1(a).The electrodes in the device are theoretical schematic regulation between Fermi energy and applied voltage.The relationship between the Fermi levels of ULG and LLG and the gate voltages can be respectively expressed as follows[43]:

    The transmission spectra of four graphene metamaterial structures are shown in figure 2(e).It can be seen that when the ULG(figure 2(a)),BGR(figure 2(b))and SGR(figure 2(c))exist alone,they are all bright radiation modes within a certain frequency range,when they make up the WS,the triple-PIT phenomenon will appear.In order to further analyze the formation of the triple-PIT phenomenon,we divide figure 2(e)into four individual frequency regions:(1),(2),(3),(4).At the same time,the resonant dips of the WS’s transmission spectrum are named dip1,dip2,dip3 and dip4(from left to right).The corresponding frequencies of these four dips are f1=1.509 THz,f2=3.076 THz,f3=4.108 THz and f4=5.397 THz,respectively.In addition,the distributions of electric field intensity corresponding to the four frequencies are showed in figures 2(f)–(i).

    In the first frequency region(1)in figure 2(e),ULG and SGR act as two dark modes and BGR acts as a bright mode.As displayed in figure 2(f),the light field energy is mainly located around BGR and ULG.Namely,ULG is excited by the coupled light field between BGR and incident light,so the formation of dip1 is mainly contributed to BGR and ULG.In the second frequency region(2),in this case,SGR acts as a bright mode,while BGR and ULG act as two dark modes.The electric field energy is mainly concentrated on SGR according to figure 2(g),so the two dark modes BGR and ULG were not excited,indicating that the formation of dip2 is mainly attributed to SGR.In the third frequency region(3),ULG serves as the bright mode,while BGR and SGR serve as the dark mode.The interaction between them forms dip3.It can be found from figure 2(h)that the electric field intensity is mainly distributed on the BGR and UGR.Accordingly,the ULG acting as a bright mode is directly excited,while the BGR serving as a dark mode is excited indirectly by the coupled light field between the incident light and the ULG.Therefore,the interaction between the bright mode ULG and the dark mode BGR forms the dip3.In the fourth frequency region(4),ULG still acts as the bright mode,BGR and SGR act as the dark modes,too.It can be seen from the electric field diagram in figure 2(i)that the light field energy is located around the BGR,SGR and the ULG.It can be concluded that ULG as bright mode is directly excited by incident light,and BGR and SGR as two dark modes are indirectly excited.Therefore,the formation of dip4 is mainly caused by the interaction among the three structures.We can draw the conclusion that the interaction between those models caused by ULG,BGR and SGR will form the obvious triple-PIT phenomenon.

    Next,CMT[37,44]is used to fit the transmission spectra which are obtained by FDTD simulations and to explain the coupling effect.In figure 3,A,B,C and D represent four hypothetical resonator modes,whose amplitudes are a,b,c and d,respectively.The superscript ‘in/out’ and the subcript‘±’ ofrepresent input or output plasmon waves and the positive or negative propagating direction of plasmon waves,respectively.μmn(m,n=1,2,3,4,m ≠n)is the mutual coupling coefficient among the four radiation modes.γinand γondenote the internal and external loss coefficients of the four hypothetical resonators,respectively.The coupling relationship between the four resonators can be expressed as[43]:γn= iω - iωn- γin- γon,where i,ωnand ω are the imaginary unit,the nth resonant angular frequency and the angular frequency of incident light,respectively.Here,ωnis calculated by ωn=2πfn,fnrepresents f1,f2,f3and f4in figure 2(a),γin=ωn/(2Qin)and γon=ωn/(2Qon).Qinis the internal loss quality factor of the nth resonant mode,which can be expressed as Qin=Re(neff)/Im(neff).The effective refractive index is neff=β/k0.The relation between β and ω can be obtained from equations(1),(2)and(3).Qonis the external loss quality factor of the nth resonant mode.Qinand Qonare satisfied by the following equation(1)/Qtn=1/Qin+1/Qon.Here,Qtnis the total quality factor of the nth resonant mode which can be obtained by the ratio of the resonant frequency to 3 dB bandwidth:Qtn=fn/Δfn.fnand Δfnare the resonant frequency and the full width at half maximum of the nth resonant mode,respectively.According to the conservation of energy,the relationships among the four coupled modes are as follows:

    where φ1,φ2and φ3refer to the phase difference between resonators A and B,B and C,C and D,φn=Re(β)dn.(n=1,2,3).

    By combining the above formulas,the transmission coefficient of the system can be obtained by:

    Here,Da,Db,Dcand Ddcan be obtained by:

    where,

    Thus,the theoretical transmission of the proposed triple-PIT system is T=t2.

    3.Results and discussion

    In order to explore the influence of EFon the triple-PIT,we change EFfrom 0.6 to 1.2 eV by a step of 0.2 eV and obtain the theoretical transmission spectra of this structure according to CMT and the simulated transmission spectra through FDTD.The fitting diagrams of transmission spectra by CMT(red dotted lines)and FDTD(blue solid lines)are shown in figure 4(a).It is found that the results obtained by FDTD simulation and CMT calculation fit well.As EFincreases,the curves tend to blue shift.

    Besides,it can be seen that the four resonant frequencies corresponding to the four dips increase as the increasing of the Fermi levels in figure 4(a).In order to better observe the transmission evolution under continuous changing of the Fermi levels,we draw a three-dimensional planar diagram of the evolution as shown in figure 4(b).It is easy to observe from this figure that the obvious blue shift of the transmission spectra has taken place as the Fermi levels increase.It should be pointed out that when the blue shift occurs with the increasing of the Fermi levels,some resonant dips turn into the transparent windows at different Fermi levels,which provides a theoretical basis for the realization of the optical switch.On this basis,we found that when EFis set to 1.2 and 0.6 eV(or 0.8 eV),the proposed structure can realize the multi-switch modulation function at[fs1,fs2,fs3,fs4,fs5,fs6]=[1.648,2.382,3.354,4.187,4.742,5.913]THz as shown in figures 4(b)and 5.When EF=0.6 eV,the proposed graphene metamaterial realizes the ‘on’ state at[fs1,fs3,fs6]=[1.648,3.354,5.913]THz and the ‘off’ state at[fs2,fs4]=[2.382,4.187]THz.When EF=1.2 eV,‘on’ and ‘off’states are completely opposite.The solid and hollow circles in figures 4(b)and 5 represent the ‘off’ and ‘on’ states of the switches,respectively.Therefore,when EF=0.6 and 1.2 eV,it can realize a penta-frequency asynchronous and a doublefrequency or triple-frequency synchronous optical switches.In addition,it realizes ‘on’ state at fs3=3.354 THz and ‘off’state at fs5=4.742 THz when EF=0.8 eV.‘on’ and ‘off’states are opposite when EF=1.2 eV.Taking into account thenature of the switch,the extinction ratio(ER)is used to express the amplitude modulation[45]

    Table 1.Parameters of the optical switches in the proposed bilayer graphene metamaterial.

    Table 2.Performance comparison of our metamaterial with other graphene-based structures.

    whereTmaxandTminare the transmittances of the ‘on’ and‘off’states,respectively.In addition,modulation depth(MD)and insertion loss(IL)are also two key factors to judge the performance of the switch,which can be obtained respectively by the following formulas:

    After calculations,we give table 1 to clearly display the ER,MD and IL of each switch.One can clearly see that the ranges of MD and IL are(97.30 %≤MD ≤99.97%)and(0.33 dB ≤IL ≤1.04 dB),respectively,which means that the switching effect of the proposed structure is very superior.In order to highlight the excellent performance of the switches,we also list table 2 to compare the performance of graphene optical switches in different structures.It can be concluded that not only big MD,high ER and low IL are the symbols of the optical switch modulators’excellent performance,but also the multi-frequency characteristic is a good advantage.

    Generally speaking,PIT effect has great application prospects in optical storage.Because its transparent window shows an extreme dispersion effect,the propagation speed of the electromagnetic wave can be slowed down.The result is that the interaction between light and matter is enhanced,that is,the interaction time between light and matter is increased,which means more light information is stored.Time delay(τd)is an important parameter of the slow-light effect.τdcan be expressed as the following equation[56]:

    where φ=arg(t)is the transmission phase shift.Figures 6(a)–(d)show the curves of time delay and phase shift as a function of the frequency of incident light at different Fermi levels.We successfully understand that the destructive interference of the incident light and the four coupled modes causes serious dispersion in the vicinity of the transparent window,which in turn leads to a sharp change in phase shift and a significant change in time delay.In figure 6(a),the peak values of the time delay are P1=0.364 ps,P2=0.373 ps and P3=0.407 ps.The maximum time delays in figures 6(a)–(d)are 0.407 ps,0.704 ps,0.845 ps and 0.848 ps,respectively.We can conclude that the maximum time delay increases as the Fermi level of graphene increases.In other words,as the Fermi level of graphene increases,the slow-light effect is becoming better and better.

    Additionally,the delay-bandwidth product(DBP)is another important parameter to evaluate the slow-light effect,which symbolizes the highest buffering capacity of all slowlight devices.It can be expressed as DBP=τdΔf,where Δf is the 3 dB bandwidth of time delay[57].The evolution of DBP with EFis shown in figure 7.It can be seen that the smallest DBP is bigger than 0.1.When EF=1.2 eV,the biggest DBP can reach 0.58,which is higher than 0.31[54]and 0.26[55]obtained from other PIT systems,too.In order to highlight the slow-light effect of the proposed structure,we compare our structure with other graphene structures,as shown in table 2.It can be found that our structure has great advantages in slow-light effect compared with most other slow-light devices.

    4.Conclusions

    In short,a novel bilayer graphene terahertz metamaterial composed of double graphene ribbons and double graphene rings realizes the dynamically tunable triple-PIT.The simulated transmission spectra by FDTD method fit well with the theoretical results by CMT.It is worth noting that this structure realizes a penta-frequency switching modulator according to the dynamically adjustable triple-PIT effect.The maximum modulation depth(MD)and the minimum insertion loss(IL)of the switch are 99.97%and 0.33 dB,respectively.In addition,the slow-light effect of the proposed structure is also further investigated by the time delay.The results show that when the Fermi level of graphene reaches 1.2 eV,the maximum time delay can reach 0.848 ps,and the biggest DBP is up to 0.58.Consequently,the proposed structure opens up a new idea for the research of multi-frequency optical switches and excellent slow-light devices.

    Acknowledgments

    This work was supported in part by the National Natural Science Foundation of China(NSFC)(61605018,11904032,61841503),Science and Technology Project Foundation of the Education Department of Jiangxi Province(GJJ150815).

    Conflicts of interest

    There are no conflicts of interest to declare.

    ORCID iDs

    老司机午夜福利在线观看视频 | 免费在线观看影片大全网站| 国产成人一区二区三区免费视频网站| 性色av乱码一区二区三区2| 精品一品国产午夜福利视频| 免费看a级黄色片| 国产亚洲一区二区精品| 成人永久免费在线观看视频 | 国产主播在线观看一区二区| 新久久久久国产一级毛片| 久久婷婷成人综合色麻豆| 黄色视频在线播放观看不卡| 亚洲色图综合在线观看| 法律面前人人平等表现在哪些方面| 日韩一卡2卡3卡4卡2021年| 一本一本久久a久久精品综合妖精| 日本欧美视频一区| 纯流量卡能插随身wifi吗| 变态另类成人亚洲欧美熟女 | 亚洲成人免费电影在线观看| 午夜福利影视在线免费观看| 亚洲欧美日韩高清在线视频 | 久久久久久久国产电影| 国产亚洲av高清不卡| 9热在线视频观看99| 亚洲色图综合在线观看| 精品少妇久久久久久888优播| √禁漫天堂资源中文www| 亚洲国产av影院在线观看| 1024视频免费在线观看| 天堂中文最新版在线下载| 精品国产一区二区三区久久久樱花| 久久中文看片网| h视频一区二区三区| 悠悠久久av| 国产精品久久久久久精品电影小说| 亚洲国产欧美网| 青青草视频在线视频观看| 夫妻午夜视频| 丰满人妻熟妇乱又伦精品不卡| 老司机午夜十八禁免费视频| 久久九九热精品免费| 午夜福利在线观看吧| 欧美精品一区二区大全| 日本欧美视频一区| 国产精品国产高清国产av | 大片免费播放器 马上看| 在线播放国产精品三级| 久久性视频一级片| 免费观看av网站的网址| 日本黄色日本黄色录像| 国产淫语在线视频| 国产精品麻豆人妻色哟哟久久| 大型黄色视频在线免费观看| 成人特级黄色片久久久久久久 | 97在线人人人人妻| 麻豆乱淫一区二区| 在线观看舔阴道视频| 精品国内亚洲2022精品成人 | 色94色欧美一区二区| 精品人妻熟女毛片av久久网站| 久久天堂一区二区三区四区| 丝袜喷水一区| 免费少妇av软件| 国产av一区二区精品久久| 免费少妇av软件| 亚洲成人免费av在线播放| 少妇精品久久久久久久| 老汉色∧v一级毛片| 亚洲欧美激情在线| 欧美日韩国产mv在线观看视频| 欧美日韩国产mv在线观看视频| 人人妻人人添人人爽欧美一区卜| 亚洲成a人片在线一区二区| 热99re8久久精品国产| 99香蕉大伊视频| 国产色视频综合| 久久精品91无色码中文字幕| 欧美精品人与动牲交sv欧美| 露出奶头的视频| 国产精品九九99| 老汉色av国产亚洲站长工具| 性高湖久久久久久久久免费观看| 性高湖久久久久久久久免费观看| 久久久国产精品麻豆| 啦啦啦 在线观看视频| 十八禁网站免费在线| 亚洲欧美色中文字幕在线| 欧美av亚洲av综合av国产av| 午夜福利视频在线观看免费| www.自偷自拍.com| 伊人久久大香线蕉亚洲五| 国产精品影院久久| 免费少妇av软件| 亚洲成av片中文字幕在线观看| 日韩视频在线欧美| 男人舔女人的私密视频| 欧美+亚洲+日韩+国产| 狠狠精品人妻久久久久久综合| 欧美成人午夜精品| 亚洲五月色婷婷综合| 国产日韩欧美视频二区| 亚洲欧美激情在线| 亚洲精品国产区一区二| 成人特级黄色片久久久久久久 | 亚洲国产看品久久| 美女午夜性视频免费| 精品视频人人做人人爽| 天天影视国产精品| 久久久国产欧美日韩av| 丁香欧美五月| 人妻 亚洲 视频| 他把我摸到了高潮在线观看 | 法律面前人人平等表现在哪些方面| 中文字幕色久视频| 在线av久久热| 菩萨蛮人人尽说江南好唐韦庄| 午夜老司机福利片| 亚洲国产av新网站| 精品一区二区三区四区五区乱码| 老司机午夜十八禁免费视频| 夜夜夜夜夜久久久久| 性少妇av在线| 久久人人97超碰香蕉20202| 纯流量卡能插随身wifi吗| 国产精品久久久人人做人人爽| 香蕉丝袜av| 国产欧美日韩综合在线一区二区| 免费在线观看日本一区| 成年版毛片免费区| 人妻 亚洲 视频| 一夜夜www| 亚洲精品国产一区二区精华液| 在线 av 中文字幕| 男女无遮挡免费网站观看| 午夜激情久久久久久久| 制服人妻中文乱码| 在线 av 中文字幕| 人人妻,人人澡人人爽秒播| 久久av网站| 黄频高清免费视频| 亚洲精品中文字幕一二三四区 | 激情视频va一区二区三区| 成年动漫av网址| 日本a在线网址| 老司机影院毛片| 久久天躁狠狠躁夜夜2o2o| 美女扒开内裤让男人捅视频| 国产精品国产高清国产av | 三上悠亚av全集在线观看| 国产日韩欧美亚洲二区| 国产淫语在线视频| 19禁男女啪啪无遮挡网站| 亚洲国产精品一区二区三区在线| 又大又爽又粗| 亚洲伊人久久精品综合| 色尼玛亚洲综合影院| 久久国产亚洲av麻豆专区| 两性午夜刺激爽爽歪歪视频在线观看 | 高清视频免费观看一区二区| 99re6热这里在线精品视频| 久久中文字幕一级| 老鸭窝网址在线观看| 欧美乱妇无乱码| 18禁黄网站禁片午夜丰满| 久久午夜综合久久蜜桃| 99国产精品一区二区三区| 成人av一区二区三区在线看| 亚洲第一av免费看| 99精品欧美一区二区三区四区| a在线观看视频网站| 婷婷丁香在线五月| 国产成人免费无遮挡视频| 一二三四在线观看免费中文在| 精品国产一区二区三区四区第35| 十八禁网站网址无遮挡| 性色av乱码一区二区三区2| 亚洲精品乱久久久久久| 亚洲avbb在线观看| 国产精品欧美亚洲77777| 国产精品久久久久成人av| 韩国精品一区二区三区| 久久久久精品人妻al黑| 亚洲天堂av无毛| 黄片播放在线免费| 妹子高潮喷水视频| 国产精品二区激情视频| a级毛片在线看网站| 亚洲国产av影院在线观看| 亚洲情色 制服丝袜| 国产精品一区二区精品视频观看| 成人特级黄色片久久久久久久 | 在线亚洲精品国产二区图片欧美| 久久国产精品男人的天堂亚洲| 国产精品二区激情视频| 狠狠狠狠99中文字幕| 大香蕉久久成人网| 99热国产这里只有精品6| 夜夜夜夜夜久久久久| 成人18禁在线播放| 亚洲av成人一区二区三| 91字幕亚洲| 欧美午夜高清在线| 欧美激情高清一区二区三区| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久电影网| 2018国产大陆天天弄谢| 国产精品一区二区免费欧美| 一本大道久久a久久精品| 久久久精品区二区三区| 成人av一区二区三区在线看| 精品亚洲乱码少妇综合久久| 在线观看一区二区三区激情| 美女午夜性视频免费| 少妇被粗大的猛进出69影院| 亚洲第一青青草原| 欧美激情高清一区二区三区| 欧美激情高清一区二区三区| 汤姆久久久久久久影院中文字幕| 中文字幕人妻熟女乱码| 欧美成人免费av一区二区三区 | 一二三四社区在线视频社区8| 在线永久观看黄色视频| 午夜福利,免费看| 视频区欧美日本亚洲| 少妇裸体淫交视频免费看高清 | 国产精品久久久久成人av| 欧美日韩精品网址| 中文亚洲av片在线观看爽 | 久久 成人 亚洲| 高潮久久久久久久久久久不卡| 啦啦啦中文免费视频观看日本| 在线观看舔阴道视频| 亚洲五月色婷婷综合| 99久久99久久久精品蜜桃| 免费在线观看日本一区| 精品高清国产在线一区| 国产亚洲av高清不卡| 热re99久久精品国产66热6| 一区福利在线观看| 免费高清在线观看日韩| 欧美亚洲 丝袜 人妻 在线| 黄色a级毛片大全视频| 美女主播在线视频| 亚洲国产av影院在线观看| 婷婷丁香在线五月| 99精品在免费线老司机午夜| 色婷婷久久久亚洲欧美| 国产成人欧美| 精品一区二区三区av网在线观看 | 18禁观看日本| 三上悠亚av全集在线观看| 男女无遮挡免费网站观看| 亚洲第一青青草原| 啪啪无遮挡十八禁网站| 精品国产一区二区久久| 久久久久国产一级毛片高清牌| 久久久久网色| 国产又爽黄色视频| 久久久久久久精品吃奶| 国产一区二区在线观看av| 人人妻人人添人人爽欧美一区卜| 黑人巨大精品欧美一区二区mp4| 日本五十路高清| 日韩欧美三级三区| 国产黄色免费在线视频| 午夜激情久久久久久久| 精品国产国语对白av| 久久久久久免费高清国产稀缺| 十八禁网站免费在线| 大型av网站在线播放| 免费在线观看黄色视频的| 国产精品欧美亚洲77777| 9191精品国产免费久久| 黑人巨大精品欧美一区二区mp4| 午夜福利视频在线观看免费| 99re6热这里在线精品视频| 久久精品国产亚洲av高清一级| 成人黄色视频免费在线看| 熟女少妇亚洲综合色aaa.| 中文字幕av电影在线播放| 一二三四在线观看免费中文在| 国产又爽黄色视频| 美女高潮到喷水免费观看| 老鸭窝网址在线观看| 人妻久久中文字幕网| 国产精品久久久久成人av| 亚洲国产成人一精品久久久| 国产精品国产av在线观看| 一个人免费在线观看的高清视频| 一区二区三区精品91| 正在播放国产对白刺激| 大片免费播放器 马上看| 久久久久久人人人人人| 久久天堂一区二区三区四区| 最近最新免费中文字幕在线| 婷婷丁香在线五月| 高清欧美精品videossex| 丰满饥渴人妻一区二区三| 久久久国产欧美日韩av| 亚洲精品国产精品久久久不卡| 久久久久久久精品吃奶| 日韩欧美一区二区三区在线观看 | 免费观看a级毛片全部| 欧美国产精品一级二级三级| 午夜日韩欧美国产| 婷婷成人精品国产| 久久精品国产亚洲av香蕉五月 | 深夜精品福利| cao死你这个sao货| 日本一区二区免费在线视频| 精品第一国产精品| 色老头精品视频在线观看| 亚洲少妇的诱惑av| 99re6热这里在线精品视频| 母亲3免费完整高清在线观看| 精品一区二区三区四区五区乱码| 50天的宝宝边吃奶边哭怎么回事| 国产精品99久久99久久久不卡| 国产成人系列免费观看| 美女高潮到喷水免费观看| 国产精品偷伦视频观看了| 欧美中文综合在线视频| 咕卡用的链子| 亚洲国产成人一精品久久久| 亚洲,欧美精品.| 最近最新中文字幕大全免费视频| 一区二区av电影网| av国产精品久久久久影院| 一级黄色大片毛片| 一区福利在线观看| 日本a在线网址| 日本vs欧美在线观看视频| 免费在线观看日本一区| 麻豆乱淫一区二区| 国产高清激情床上av| 欧美激情高清一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦中文免费视频观看日本| 妹子高潮喷水视频| 一区二区日韩欧美中文字幕| 精品免费久久久久久久清纯 | 日韩有码中文字幕| 国产aⅴ精品一区二区三区波| 老司机在亚洲福利影院| 久久国产精品男人的天堂亚洲| 亚洲性夜色夜夜综合| 性少妇av在线| 免费在线观看日本一区| 久热爱精品视频在线9| 考比视频在线观看| 交换朋友夫妻互换小说| 多毛熟女@视频| 曰老女人黄片| 国产又色又爽无遮挡免费看| 男女下面插进去视频免费观看| 久久久国产一区二区| 亚洲va日本ⅴa欧美va伊人久久| 91字幕亚洲| videosex国产| 女警被强在线播放| 一区二区三区国产精品乱码| 好男人电影高清在线观看| 亚洲av电影在线进入| 日本一区二区免费在线视频| 亚洲中文日韩欧美视频| 亚洲伊人色综图| 国产免费现黄频在线看| 精品久久蜜臀av无| 精品国产国语对白av| 女人高潮潮喷娇喘18禁视频| 亚洲av第一区精品v没综合| 熟女少妇亚洲综合色aaa.| 色婷婷久久久亚洲欧美| 美女午夜性视频免费| 精品免费久久久久久久清纯 | 国产亚洲欧美精品永久| 国产精品一区二区精品视频观看| 久久天堂一区二区三区四区| 国产av又大| 丁香六月欧美| 久久亚洲精品不卡| 日本wwww免费看| 国产亚洲一区二区精品| 天堂中文最新版在线下载| 日日夜夜操网爽| 精品人妻在线不人妻| 桃花免费在线播放| 嫩草影视91久久| 1024视频免费在线观看| 精品卡一卡二卡四卡免费| 中文字幕人妻丝袜一区二区| 午夜成年电影在线免费观看| 欧美精品高潮呻吟av久久| 精品一区二区三区四区五区乱码| 黄色 视频免费看| 国产一区二区三区综合在线观看| 成人影院久久| 亚洲精品久久成人aⅴ小说| 久久久久久亚洲精品国产蜜桃av| 久久久久久免费高清国产稀缺| 亚洲一码二码三码区别大吗| 亚洲中文日韩欧美视频| 人妻一区二区av| 老司机福利观看| 三上悠亚av全集在线观看| 国产免费福利视频在线观看| 国产男女内射视频| 亚洲成人免费电影在线观看| 国产一区二区激情短视频| 国产97色在线日韩免费| 亚洲精品一卡2卡三卡4卡5卡| 一二三四社区在线视频社区8| 人人妻人人澡人人看| 免费在线观看视频国产中文字幕亚洲| 在线永久观看黄色视频| 美女主播在线视频| 夜夜骑夜夜射夜夜干| 国产91精品成人一区二区三区 | 美国免费a级毛片| 日韩欧美一区二区三区在线观看 | 亚洲国产av新网站| 女性被躁到高潮视频| 十八禁网站网址无遮挡| 久久久久精品国产欧美久久久| 午夜精品国产一区二区电影| 国产精品久久久久久人妻精品电影 | 桃花免费在线播放| 一二三四在线观看免费中文在| 国产精品一区二区在线观看99| 极品教师在线免费播放| 2018国产大陆天天弄谢| 另类精品久久| 人人妻人人澡人人爽人人夜夜| 欧美一级毛片孕妇| 亚洲精品在线美女| 一个人免费在线观看的高清视频| 熟女少妇亚洲综合色aaa.| 蜜桃国产av成人99| 一个人免费在线观看的高清视频| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久久精品久久久| 久久久精品免费免费高清| 欧美人与性动交α欧美精品济南到| 亚洲自偷自拍图片 自拍| 蜜桃在线观看..| 国产国语露脸激情在线看| a级毛片黄视频| 国产欧美亚洲国产| 老司机午夜福利在线观看视频 | 精品国产一区二区三区四区第35| a在线观看视频网站| 午夜91福利影院| 1024香蕉在线观看| 99久久精品国产亚洲精品| 久热爱精品视频在线9| videosex国产| 久久影院123| 丝瓜视频免费看黄片| 国产成人精品无人区| 亚洲精品av麻豆狂野| 80岁老熟妇乱子伦牲交| 操出白浆在线播放| 97人妻天天添夜夜摸| 国产三级黄色录像| 熟女少妇亚洲综合色aaa.| 在线亚洲精品国产二区图片欧美| 51午夜福利影视在线观看| 亚洲精品国产色婷婷电影| 亚洲 国产 在线| 久久精品国产亚洲av高清一级| 免费不卡黄色视频| 欧美日韩av久久| 91精品三级在线观看| 如日韩欧美国产精品一区二区三区| 国产在视频线精品| 亚洲成av片中文字幕在线观看| 亚洲成国产人片在线观看| 在线观看免费视频日本深夜| 91成年电影在线观看| 久久人人爽av亚洲精品天堂| 国产免费av片在线观看野外av| 两人在一起打扑克的视频| 亚洲欧美激情在线| 色94色欧美一区二区| 亚洲欧洲精品一区二区精品久久久| 欧美av亚洲av综合av国产av| 国产麻豆69| 飞空精品影院首页| 日韩大码丰满熟妇| www日本在线高清视频| 国产欧美亚洲国产| 成人18禁高潮啪啪吃奶动态图| 午夜福利乱码中文字幕| 在线观看免费午夜福利视频| 亚洲午夜精品一区,二区,三区| 国产一区二区三区在线臀色熟女 | 少妇精品久久久久久久| 久久久国产成人免费| 757午夜福利合集在线观看| 欧美日韩中文字幕国产精品一区二区三区 | av线在线观看网站| 久久精品成人免费网站| 91九色精品人成在线观看| 美女高潮喷水抽搐中文字幕| 成人18禁在线播放| 日本欧美视频一区| 亚洲成国产人片在线观看| 精品亚洲成a人片在线观看| 欧美日韩视频精品一区| 黄色成人免费大全| 久久亚洲真实| 热re99久久国产66热| 亚洲,欧美精品.| av天堂久久9| 国产不卡av网站在线观看| 久久久久视频综合| 丝瓜视频免费看黄片| 欧美日韩视频精品一区| 午夜两性在线视频| 交换朋友夫妻互换小说| 在线观看舔阴道视频| 亚洲久久久国产精品| www.熟女人妻精品国产| 无遮挡黄片免费观看| 人人妻人人澡人人看| 999精品在线视频| 亚洲精品自拍成人| 五月天丁香电影| 天堂中文最新版在线下载| 成人永久免费在线观看视频 | 日本av手机在线免费观看| 日韩欧美三级三区| svipshipincom国产片| 国产一区有黄有色的免费视频| 黄色片一级片一级黄色片| 亚洲精品国产区一区二| 男女午夜视频在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲中文字幕日韩| 亚洲av国产av综合av卡| 在线观看免费视频日本深夜| 嫁个100分男人电影在线观看| 精品一区二区三区视频在线观看免费 | 欧美变态另类bdsm刘玥| 2018国产大陆天天弄谢| 丝瓜视频免费看黄片| 99精品久久久久人妻精品| 亚洲中文字幕日韩| 99riav亚洲国产免费| 麻豆成人av在线观看| 久久久久久久久久久久大奶| 岛国在线观看网站| 黄色视频,在线免费观看| 亚洲成人手机| 日韩三级视频一区二区三区| 人人妻人人添人人爽欧美一区卜| 亚洲,欧美精品.| 亚洲精品国产色婷婷电影| 少妇被粗大的猛进出69影院| 高清在线国产一区| h视频一区二区三区| 免费久久久久久久精品成人欧美视频| 国产真人三级小视频在线观看| 亚洲免费av在线视频| 国产深夜福利视频在线观看| 久久久国产成人免费| 欧美日韩亚洲高清精品| 免费在线观看黄色视频的| 999久久久国产精品视频| 国产精品秋霞免费鲁丝片| 伊人久久大香线蕉亚洲五| 99热国产这里只有精品6| 大型黄色视频在线免费观看| 欧美日韩福利视频一区二区| 成人国产一区最新在线观看| 在线观看免费午夜福利视频| 亚洲全国av大片| 久久久精品国产亚洲av高清涩受| 天天躁夜夜躁狠狠躁躁| 国产精品美女特级片免费视频播放器 | 日韩欧美一区二区三区在线观看 | 丝袜人妻中文字幕| 精品国产亚洲在线| tocl精华| videos熟女内射| 亚洲国产中文字幕在线视频| 男女床上黄色一级片免费看| 淫妇啪啪啪对白视频| 成在线人永久免费视频| 女人爽到高潮嗷嗷叫在线视频| 天堂中文最新版在线下载| 亚洲五月色婷婷综合| 黄片大片在线免费观看| 激情视频va一区二区三区| 久久九九热精品免费| 久久婷婷成人综合色麻豆| 久久久国产成人免费| 成人av一区二区三区在线看| 18禁黄网站禁片午夜丰满| 十八禁高潮呻吟视频| 十分钟在线观看高清视频www| videos熟女内射| 成年女人毛片免费观看观看9 | 超碰成人久久| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 久久性视频一级片| 成人国产一区最新在线观看| 久久久久久亚洲精品国产蜜桃av| 日本欧美视频一区| 熟女少妇亚洲综合色aaa.| 久热这里只有精品99| 91大片在线观看| 国产精品二区激情视频|