• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-frequency switch and excellent slow light based on tunable triple plasmoninduced transparency in bilayer graphene metamaterial*

    2022-11-11 07:53:38XianwenZhouYipingXuYuhuiLiShuboChengZaoYiGuohuiXiaoZiyiWangandZhanyuChen
    Communications in Theoretical Physics 2022年11期

    Xianwen Zhou,Yiping Xu,**,Yuhui Li,Shubo Cheng,Zao Yi,Guohui Xiao,Ziyi Wang and Zhanyu Chen

    1 School of Physics and Optoelectronic Engineering,Yangtze University,Jingzhou 434023,China

    2 Joint Laboratory for Extreme Conditions Matter Properties,Southwest University of Science and Technology,Mianyang 621010,China

    3 Jiangxi Province Key Laboratory of Optoelectronics and Communications,Jiangxi Science and Technology Normal University,Nanchang 330038,China

    Abstract We propose a novel bilayer graphene terahertz metamaterial composed of double graphene ribbons and double graphene rings to excite a dynamically adjustable triple plasma-induced transparency(PIT)effect.The coupled mode theory(CMT)is used to explain the PIT phenomenon,and the results of the CMT and the finite-difference time-domain simulation show high matching degree.By adjusting the Fermi levels of graphene,we have realized a pentafrequency asynchronous optical switch.The performance of this switch,which is mainly manifested in the maximum modulation depth(MD=99.97%)and the minimum insertion loss(IL=0.33 dB),is excellent.In addition,we have studied the slow-light effect of this triple-PIT and found that when the Fermi level of graphene reaches 1.2 eV,the time delay can reach 0.848 ps.Therefore,this metamaterial provides a foundation for the research of multi-frequency optical switches and excellent slow-light devices in the terahertz band.

    Keywords:plasma-induced transparency,coupled mode theory,optical switch,slow-light effect

    1.Introduction

    Surface plasmons(SPs)are surface electromagnetic waves that exist at the interface between metal and dielectric,and they include localized surface plasmons(LSPs)and surface plasmon polaritions(SPPs)[1,2].LSPs are confined to the vicinity of metal nanostructures,while SPPs are localized near the metal-medium interface and spread along it[3–5].Importantly,the SPPs can surmount traditional optical diffraction limits and manipulate light at the sub-wavelength range[6].Accordingly,SPPs play a vital role in various plasmonic devices,such as filters[7],optical switches[8–11],absorbers[12–14],polarizers[15],slow-light devices[16],modulators[17]and others.However,the non-dynamic adjustability and the large ohmic loss of the metal-based SPPs severely restrict the development of SPPs-based devices.Fortunately,graphene can prominently overcome the above shortcomings and become a good metal substitute for the propagation of SPPs.

    Graphene,a two-dimensional carbon nanomaterial with excellent dynamic regulation characteristics,has become a hotspot in research due to its high carrier mobility[18],electrical tunability[19–21]and low transmission loss[22].It has important applications in the fields of modulators[23,24],sensors[25,26],photodetectors[27,28],and so on.In addition,graphene shows metal-like dielectric properties in terahertz band,which enables graphene to propagate the transverse magnetic mode of SPPs wave.Although the optical properties of graphene-based SPPs are similar to that of metal-based SPPs in many ways,there are many advantages that metal does not have.For example,the Fermi energy of graphene can be easily regulated by adjusting the bias voltage,so the spectral characteristics based on the graphene structures can be dynamically modulated without changing the structural parameters.Based on the above advantages,the applications and explorations of graphene in various functional devices are booming.

    The plasma-induced transparency(PIT)is an optical abnormal phenomenon produced by the destructive interference between the resonant modes of SPPs.In the meanwhile,it is a plasmonic analogy of classical electromagnetically induced transparency(EIT)[29].Compared with EIT,PIT is not restricted by the stable optical pumping source,gaseous medium,extremely low-temperature environment and other harsh experimental conditions[30].The PIT phenomenon has been observed in both graphene and metal,but due to the great advantage of graphene’s dynamic modulation,it is mainly used in graphene materials.Normally,the single-PIT comes from the interaction between a bright mode and a dark mode[31,32]or two bright modes[33,34].The bright mode can be easily excited by the incident light and produces opaque valleys which are called Lorentz lines in the transmission spectrum,whereas the dark mode can not be directly excited by the incident light,but it can be excited by the light field which is generated by the interaction between the incident light and the bright mode.The resonance of the dark mode and the bright mode at certain frequency points leads to the formation of two transmission valleys and a PIT window.In addition to single PIT,the dual-PIT has been realized in the single-layer and multi-layer graphene structure.The single-PIT and dual-PIT have been widely used in absorbers,modulators and so on.However,up to date,there are few studies on the triple-PIT with an optical-switching function which is based on the multilayer graphene structure.

    In this paper,we propose a bilayer graphene periodic structure composed of upper-layer double graphene ribbons and lower-layer double graphene rings to realize tunable triple-PIT.The simulated results by using of the finite-difference timedomain(FDTD)[35]are consistent with the theoretically calculated results via coupled mode theory(CMT),which represents the correctness of our theoretical analysis[36].Unexpectedly,by adjusting the Fermi levels of graphene,we realized a penta-frequency asynchronous and a double-frequency or triple-frequency synchronous optical switches.The maximum modulation depth(MD)and the minimum insertion loss(IL)of the switches are 99.97%and 0.33 dB,respectively.Additionally,our structure shows excellent slow light characteristics with a maximum time delay up to 0.848 ps.Therefore,these high-performance characteristics provide a theoretical guide for the study of multi-frequency optical switches and excellent slow-light devices.

    2.Structure and theoretical model

    The structure shown in figure 1(a)is a metamaterial unit composed of the upper layer graphene(ULG),the interlayer with a silicon material,the lower layer graphene(LLG)and the substrate silicon.Silicon is a common semiconductor material with weak electrical conductivity and can be easily processed using standard lithography technologies in experiment[37].The red parts in figure 1 represent the ULG and LLG which are two identical graphene ribbons and two concentric rings with different sizes,respectively.The structural plane diagrams of ULG and LLG are shown in figure 1(b).Their geometric parameters are as follows:Lx=4 μm,Ly=4 μm,L1=1.49 μm,L2=2.02 μm(the outer diameter of big graphene ring(BGR)),L3=1.62 μm(the inner diameter of BGR),L4=1.02 μm(the outer diameter of small graphene ring(SGR)),L5=0.62 μm(the inner diameter of SGR),d1=0.2 μm,d2=0.3 μm.Triple-PIT phenomenon occurs when the whole structure(WS)is illuminated perpendicularly by an x-polarized plane wave which is incident along the negative direction of the z-axis.At this time,the intensity of the plane wave is very weak,and the nonlinear effect of graphene has almost no effect,so it can be ignored.The conductivity σgof the monolayer graphene consists of intraband electron photon scattering and direct interband photon transition.In the low terahertz band,direct interband photon transition can be ignored owing to the condition EF≥kBT=25.85 meV[38].Therefore,the conductivity of the single-layer graphene can be expressed as[39]:

    where e,EF,ω,?,and τ are the electronic charge,the Fermi level of graphene,the angular frequency of incident light,the reduced Planck constant and the carrier relaxation time,respectively.Here,τ = μEF/(eVF2),μ is the carrier mobility,VF≈c/300 is the Fermi velocity,c is the speed of light.The experimental results show that the carrier mobility μ of graphene can reach 4 m2(V-1s-1)at room temperature[40].Considering the actual operation situation,we fix μ and VFto 3.5 m2(V-1s-1)and 106m(s-1),respectively.

    Due to the ULG is between the medium air and the substrate silicon,the dispersion relation can be solved by Maxwell equations and electromagnetic field boundary conditions.It can be expressed as[41]:

    Since the media above and below LLG are silicon,the dispersion relation is expressed as[4]:

    Here,εsi=11.9 is the relative permittivity of silicon,εair=1 is the relative permittivity of air,β is the propagation constant,k0is the wave vector of incident light,and ε0is the dielectric constant of vacuum.

    The electric circuit used to adjust the Fermi levels of the upper and lower graphene is schematically drawn in figure 1(a).It can be seen that the gate voltages V1and V2are contacted to ULG and LLG by two electrodes,respectively.The applied voltage can push electrons into the hole of graphene and then regulate the carrier concentration of graphene,promoting a change value of the Fermi energy of graphene[42].Thus,the Fermi levels of ULG and LLG can be respectively changed by adjusting the gate voltages V1and V2in figure 1(a).The electrodes in the device are theoretical schematic regulation between Fermi energy and applied voltage.The relationship between the Fermi levels of ULG and LLG and the gate voltages can be respectively expressed as follows[43]:

    The transmission spectra of four graphene metamaterial structures are shown in figure 2(e).It can be seen that when the ULG(figure 2(a)),BGR(figure 2(b))and SGR(figure 2(c))exist alone,they are all bright radiation modes within a certain frequency range,when they make up the WS,the triple-PIT phenomenon will appear.In order to further analyze the formation of the triple-PIT phenomenon,we divide figure 2(e)into four individual frequency regions:(1),(2),(3),(4).At the same time,the resonant dips of the WS’s transmission spectrum are named dip1,dip2,dip3 and dip4(from left to right).The corresponding frequencies of these four dips are f1=1.509 THz,f2=3.076 THz,f3=4.108 THz and f4=5.397 THz,respectively.In addition,the distributions of electric field intensity corresponding to the four frequencies are showed in figures 2(f)–(i).

    In the first frequency region(1)in figure 2(e),ULG and SGR act as two dark modes and BGR acts as a bright mode.As displayed in figure 2(f),the light field energy is mainly located around BGR and ULG.Namely,ULG is excited by the coupled light field between BGR and incident light,so the formation of dip1 is mainly contributed to BGR and ULG.In the second frequency region(2),in this case,SGR acts as a bright mode,while BGR and ULG act as two dark modes.The electric field energy is mainly concentrated on SGR according to figure 2(g),so the two dark modes BGR and ULG were not excited,indicating that the formation of dip2 is mainly attributed to SGR.In the third frequency region(3),ULG serves as the bright mode,while BGR and SGR serve as the dark mode.The interaction between them forms dip3.It can be found from figure 2(h)that the electric field intensity is mainly distributed on the BGR and UGR.Accordingly,the ULG acting as a bright mode is directly excited,while the BGR serving as a dark mode is excited indirectly by the coupled light field between the incident light and the ULG.Therefore,the interaction between the bright mode ULG and the dark mode BGR forms the dip3.In the fourth frequency region(4),ULG still acts as the bright mode,BGR and SGR act as the dark modes,too.It can be seen from the electric field diagram in figure 2(i)that the light field energy is located around the BGR,SGR and the ULG.It can be concluded that ULG as bright mode is directly excited by incident light,and BGR and SGR as two dark modes are indirectly excited.Therefore,the formation of dip4 is mainly caused by the interaction among the three structures.We can draw the conclusion that the interaction between those models caused by ULG,BGR and SGR will form the obvious triple-PIT phenomenon.

    Next,CMT[37,44]is used to fit the transmission spectra which are obtained by FDTD simulations and to explain the coupling effect.In figure 3,A,B,C and D represent four hypothetical resonator modes,whose amplitudes are a,b,c and d,respectively.The superscript ‘in/out’ and the subcript‘±’ ofrepresent input or output plasmon waves and the positive or negative propagating direction of plasmon waves,respectively.μmn(m,n=1,2,3,4,m ≠n)is the mutual coupling coefficient among the four radiation modes.γinand γondenote the internal and external loss coefficients of the four hypothetical resonators,respectively.The coupling relationship between the four resonators can be expressed as[43]:γn= iω - iωn- γin- γon,where i,ωnand ω are the imaginary unit,the nth resonant angular frequency and the angular frequency of incident light,respectively.Here,ωnis calculated by ωn=2πfn,fnrepresents f1,f2,f3and f4in figure 2(a),γin=ωn/(2Qin)and γon=ωn/(2Qon).Qinis the internal loss quality factor of the nth resonant mode,which can be expressed as Qin=Re(neff)/Im(neff).The effective refractive index is neff=β/k0.The relation between β and ω can be obtained from equations(1),(2)and(3).Qonis the external loss quality factor of the nth resonant mode.Qinand Qonare satisfied by the following equation(1)/Qtn=1/Qin+1/Qon.Here,Qtnis the total quality factor of the nth resonant mode which can be obtained by the ratio of the resonant frequency to 3 dB bandwidth:Qtn=fn/Δfn.fnand Δfnare the resonant frequency and the full width at half maximum of the nth resonant mode,respectively.According to the conservation of energy,the relationships among the four coupled modes are as follows:

    where φ1,φ2and φ3refer to the phase difference between resonators A and B,B and C,C and D,φn=Re(β)dn.(n=1,2,3).

    By combining the above formulas,the transmission coefficient of the system can be obtained by:

    Here,Da,Db,Dcand Ddcan be obtained by:

    where,

    Thus,the theoretical transmission of the proposed triple-PIT system is T=t2.

    3.Results and discussion

    In order to explore the influence of EFon the triple-PIT,we change EFfrom 0.6 to 1.2 eV by a step of 0.2 eV and obtain the theoretical transmission spectra of this structure according to CMT and the simulated transmission spectra through FDTD.The fitting diagrams of transmission spectra by CMT(red dotted lines)and FDTD(blue solid lines)are shown in figure 4(a).It is found that the results obtained by FDTD simulation and CMT calculation fit well.As EFincreases,the curves tend to blue shift.

    Besides,it can be seen that the four resonant frequencies corresponding to the four dips increase as the increasing of the Fermi levels in figure 4(a).In order to better observe the transmission evolution under continuous changing of the Fermi levels,we draw a three-dimensional planar diagram of the evolution as shown in figure 4(b).It is easy to observe from this figure that the obvious blue shift of the transmission spectra has taken place as the Fermi levels increase.It should be pointed out that when the blue shift occurs with the increasing of the Fermi levels,some resonant dips turn into the transparent windows at different Fermi levels,which provides a theoretical basis for the realization of the optical switch.On this basis,we found that when EFis set to 1.2 and 0.6 eV(or 0.8 eV),the proposed structure can realize the multi-switch modulation function at[fs1,fs2,fs3,fs4,fs5,fs6]=[1.648,2.382,3.354,4.187,4.742,5.913]THz as shown in figures 4(b)and 5.When EF=0.6 eV,the proposed graphene metamaterial realizes the ‘on’ state at[fs1,fs3,fs6]=[1.648,3.354,5.913]THz and the ‘off’ state at[fs2,fs4]=[2.382,4.187]THz.When EF=1.2 eV,‘on’ and ‘off’states are completely opposite.The solid and hollow circles in figures 4(b)and 5 represent the ‘off’ and ‘on’ states of the switches,respectively.Therefore,when EF=0.6 and 1.2 eV,it can realize a penta-frequency asynchronous and a doublefrequency or triple-frequency synchronous optical switches.In addition,it realizes ‘on’ state at fs3=3.354 THz and ‘off’state at fs5=4.742 THz when EF=0.8 eV.‘on’ and ‘off’states are opposite when EF=1.2 eV.Taking into account thenature of the switch,the extinction ratio(ER)is used to express the amplitude modulation[45]

    Table 1.Parameters of the optical switches in the proposed bilayer graphene metamaterial.

    Table 2.Performance comparison of our metamaterial with other graphene-based structures.

    whereTmaxandTminare the transmittances of the ‘on’ and‘off’states,respectively.In addition,modulation depth(MD)and insertion loss(IL)are also two key factors to judge the performance of the switch,which can be obtained respectively by the following formulas:

    After calculations,we give table 1 to clearly display the ER,MD and IL of each switch.One can clearly see that the ranges of MD and IL are(97.30 %≤MD ≤99.97%)and(0.33 dB ≤IL ≤1.04 dB),respectively,which means that the switching effect of the proposed structure is very superior.In order to highlight the excellent performance of the switches,we also list table 2 to compare the performance of graphene optical switches in different structures.It can be concluded that not only big MD,high ER and low IL are the symbols of the optical switch modulators’excellent performance,but also the multi-frequency characteristic is a good advantage.

    Generally speaking,PIT effect has great application prospects in optical storage.Because its transparent window shows an extreme dispersion effect,the propagation speed of the electromagnetic wave can be slowed down.The result is that the interaction between light and matter is enhanced,that is,the interaction time between light and matter is increased,which means more light information is stored.Time delay(τd)is an important parameter of the slow-light effect.τdcan be expressed as the following equation[56]:

    where φ=arg(t)is the transmission phase shift.Figures 6(a)–(d)show the curves of time delay and phase shift as a function of the frequency of incident light at different Fermi levels.We successfully understand that the destructive interference of the incident light and the four coupled modes causes serious dispersion in the vicinity of the transparent window,which in turn leads to a sharp change in phase shift and a significant change in time delay.In figure 6(a),the peak values of the time delay are P1=0.364 ps,P2=0.373 ps and P3=0.407 ps.The maximum time delays in figures 6(a)–(d)are 0.407 ps,0.704 ps,0.845 ps and 0.848 ps,respectively.We can conclude that the maximum time delay increases as the Fermi level of graphene increases.In other words,as the Fermi level of graphene increases,the slow-light effect is becoming better and better.

    Additionally,the delay-bandwidth product(DBP)is another important parameter to evaluate the slow-light effect,which symbolizes the highest buffering capacity of all slowlight devices.It can be expressed as DBP=τdΔf,where Δf is the 3 dB bandwidth of time delay[57].The evolution of DBP with EFis shown in figure 7.It can be seen that the smallest DBP is bigger than 0.1.When EF=1.2 eV,the biggest DBP can reach 0.58,which is higher than 0.31[54]and 0.26[55]obtained from other PIT systems,too.In order to highlight the slow-light effect of the proposed structure,we compare our structure with other graphene structures,as shown in table 2.It can be found that our structure has great advantages in slow-light effect compared with most other slow-light devices.

    4.Conclusions

    In short,a novel bilayer graphene terahertz metamaterial composed of double graphene ribbons and double graphene rings realizes the dynamically tunable triple-PIT.The simulated transmission spectra by FDTD method fit well with the theoretical results by CMT.It is worth noting that this structure realizes a penta-frequency switching modulator according to the dynamically adjustable triple-PIT effect.The maximum modulation depth(MD)and the minimum insertion loss(IL)of the switch are 99.97%and 0.33 dB,respectively.In addition,the slow-light effect of the proposed structure is also further investigated by the time delay.The results show that when the Fermi level of graphene reaches 1.2 eV,the maximum time delay can reach 0.848 ps,and the biggest DBP is up to 0.58.Consequently,the proposed structure opens up a new idea for the research of multi-frequency optical switches and excellent slow-light devices.

    Acknowledgments

    This work was supported in part by the National Natural Science Foundation of China(NSFC)(61605018,11904032,61841503),Science and Technology Project Foundation of the Education Department of Jiangxi Province(GJJ150815).

    Conflicts of interest

    There are no conflicts of interest to declare.

    ORCID iDs

    高清日韩中文字幕在线| 国内久久婷婷六月综合欲色啪| 少妇裸体淫交视频免费看高清| 欧美性感艳星| 国产一区二区在线av高清观看| 国产精品一及| 91麻豆精品激情在线观看国产| 精品乱码久久久久久99久播| 亚洲自拍偷在线| 国产男靠女视频免费网站| 97人妻精品一区二区三区麻豆| 日韩精品有码人妻一区| 搡女人真爽免费视频火全软件 | 精品一区二区三区视频在线观看免费| 黄色配什么色好看| 女同久久另类99精品国产91| 国产视频一区二区在线看| 我的老师免费观看完整版| 国产高清不卡午夜福利| 神马国产精品三级电影在线观看| 日韩欧美精品v在线| 日韩欧美一区二区三区在线观看| 嫩草影视91久久| 国产高清视频在线播放一区| 色哟哟哟哟哟哟| 一区二区三区高清视频在线| 22中文网久久字幕| 国产男靠女视频免费网站| 久久精品国产自在天天线| 久久精品国产自在天天线| 日日撸夜夜添| 黑人高潮一二区| 亚洲精品粉嫩美女一区| 亚洲性夜色夜夜综合| 免费观看人在逋| 久久久久九九精品影院| 久久久久久久久久久丰满| 免费看光身美女| 国产精品一区二区性色av| 97碰自拍视频| 国产成年人精品一区二区| 精品久久久久久久久av| 乱系列少妇在线播放| 啦啦啦观看免费观看视频高清| 免费观看在线日韩| 哪里可以看免费的av片| 午夜爱爱视频在线播放| 在线播放无遮挡| 久久欧美精品欧美久久欧美| 中国国产av一级| 99热6这里只有精品| 99久久精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 国产精品av视频在线免费观看| 日日干狠狠操夜夜爽| 欧美中文日本在线观看视频| 国产黄片美女视频| 99热网站在线观看| 在现免费观看毛片| 久久久久久久久中文| 又粗又爽又猛毛片免费看| 国产一区二区激情短视频| 亚洲欧美中文字幕日韩二区| 中国美白少妇内射xxxbb| av中文乱码字幕在线| 噜噜噜噜噜久久久久久91| 午夜激情福利司机影院| 又黄又爽又免费观看的视频| 日日撸夜夜添| 国产成人aa在线观看| 日韩一区二区视频免费看| 久久久久久九九精品二区国产| 女生性感内裤真人,穿戴方法视频| 日韩 亚洲 欧美在线| 99久久精品一区二区三区| 精品一区二区三区视频在线观看免费| 12—13女人毛片做爰片一| 亚洲精品456在线播放app| 欧美中文日本在线观看视频| 麻豆乱淫一区二区| 高清毛片免费看| 久久久a久久爽久久v久久| 少妇的逼水好多| 97超碰精品成人国产| 日本熟妇午夜| 夜夜看夜夜爽夜夜摸| 中文字幕av成人在线电影| 国产真实伦视频高清在线观看| 99久久精品热视频| 国产一区二区在线av高清观看| 一夜夜www| 老司机影院成人| 97超级碰碰碰精品色视频在线观看| 中文字幕免费在线视频6| 日本一本二区三区精品| 色5月婷婷丁香| 国产精品综合久久久久久久免费| 亚洲精华国产精华液的使用体验 | 午夜福利高清视频| 亚洲av一区综合| 成年女人毛片免费观看观看9| 波多野结衣巨乳人妻| 在线国产一区二区在线| 99riav亚洲国产免费| 亚洲成人久久爱视频| 特大巨黑吊av在线直播| 精品久久久久久久人妻蜜臀av| 网址你懂的国产日韩在线| 中文亚洲av片在线观看爽| 亚洲精品亚洲一区二区| 日韩制服骚丝袜av| 亚洲最大成人av| 午夜福利在线观看吧| 久久久久性生活片| 级片在线观看| 午夜视频国产福利| 国语自产精品视频在线第100页| 老熟妇仑乱视频hdxx| 婷婷六月久久综合丁香| 日韩强制内射视频| 91久久精品国产一区二区三区| 超碰av人人做人人爽久久| 偷拍熟女少妇极品色| 成人无遮挡网站| 久久久国产成人精品二区| 亚洲国产精品久久男人天堂| 少妇的逼水好多| 成人亚洲欧美一区二区av| av天堂在线播放| 色吧在线观看| 日韩欧美免费精品| 日本一二三区视频观看| 中文字幕精品亚洲无线码一区| 欧美另类亚洲清纯唯美| 午夜免费男女啪啪视频观看 | 我要看日韩黄色一级片| 色视频www国产| 久久久久国产精品人妻aⅴ院| 亚洲国产欧美人成| 国产日本99.免费观看| 国产精品99久久久久久久久| 色噜噜av男人的天堂激情| 一本久久中文字幕| 亚洲人成网站在线观看播放| 丰满的人妻完整版| 午夜激情欧美在线| .国产精品久久| 国产高清视频在线观看网站| 成人鲁丝片一二三区免费| 国产精品一区二区三区四区免费观看 | 我要看日韩黄色一级片| 中文字幕人妻熟人妻熟丝袜美| 国产精品综合久久久久久久免费| 卡戴珊不雅视频在线播放| 老师上课跳d突然被开到最大视频| 国产免费一级a男人的天堂| 中文字幕熟女人妻在线| 久久久久精品国产欧美久久久| 成人毛片a级毛片在线播放| 我要看日韩黄色一级片| 真实男女啪啪啪动态图| 精品人妻视频免费看| av视频在线观看入口| 真实男女啪啪啪动态图| 最好的美女福利视频网| 免费观看的影片在线观看| 久久久久久久久中文| 男人舔女人下体高潮全视频| 国产真实乱freesex| 欧美+日韩+精品| 丰满的人妻完整版| 美女高潮的动态| 欧美日韩综合久久久久久| 人妻制服诱惑在线中文字幕| 亚洲av成人av| 午夜福利成人在线免费观看| 欧美+亚洲+日韩+国产| av视频在线观看入口| 国产精品一区二区免费欧美| 色在线成人网| 日韩亚洲欧美综合| 网址你懂的国产日韩在线| 久久人人爽人人爽人人片va| 精品久久久久久成人av| ponron亚洲| 岛国在线免费视频观看| 日韩大尺度精品在线看网址| 久久精品夜夜夜夜夜久久蜜豆| 男人和女人高潮做爰伦理| 国产精品亚洲美女久久久| 日日撸夜夜添| 男人狂女人下面高潮的视频| 亚洲成人久久性| 亚洲av第一区精品v没综合| 国产aⅴ精品一区二区三区波| 成人毛片a级毛片在线播放| 日本a在线网址| 日本一本二区三区精品| 日韩精品有码人妻一区| 久久99热6这里只有精品| 婷婷精品国产亚洲av| 99在线人妻在线中文字幕| 欧美成人精品欧美一级黄| 色哟哟哟哟哟哟| 两个人视频免费观看高清| 国产在线精品亚洲第一网站| 黄片wwwwww| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 亚洲精品一区av在线观看| 一区二区三区免费毛片| 伊人久久精品亚洲午夜| 日韩强制内射视频| 大又大粗又爽又黄少妇毛片口| 18禁黄网站禁片免费观看直播| 一本一本综合久久| 网址你懂的国产日韩在线| 久久久精品94久久精品| 又黄又爽又刺激的免费视频.| 色在线成人网| 最近的中文字幕免费完整| 国产白丝娇喘喷水9色精品| 男女边吃奶边做爰视频| 老女人水多毛片| 自拍偷自拍亚洲精品老妇| 春色校园在线视频观看| 白带黄色成豆腐渣| 美女xxoo啪啪120秒动态图| 亚洲天堂国产精品一区在线| 在线观看一区二区三区| 成年免费大片在线观看| 一进一出抽搐gif免费好疼| 99久久无色码亚洲精品果冻| 欧美激情国产日韩精品一区| 国产精品三级大全| 欧美高清性xxxxhd video| 国内少妇人妻偷人精品xxx网站| 夜夜爽天天搞| 久久精品国产亚洲av涩爱 | 波多野结衣高清无吗| 欧美成人一区二区免费高清观看| 久久精品国产亚洲av涩爱 | 久久精品夜色国产| 国产极品精品免费视频能看的| 嫩草影院新地址| 99热精品在线国产| 99热只有精品国产| 午夜激情福利司机影院| 成人永久免费在线观看视频| 中文亚洲av片在线观看爽| 在线免费观看的www视频| 男人和女人高潮做爰伦理| 在线国产一区二区在线| 日韩一本色道免费dvd| 亚洲18禁久久av| 春色校园在线视频观看| 精品人妻一区二区三区麻豆 | 久久99热这里只有精品18| 高清毛片免费观看视频网站| 国产 一区 欧美 日韩| 色哟哟哟哟哟哟| 99在线人妻在线中文字幕| 日韩 亚洲 欧美在线| 午夜日韩欧美国产| 久久久午夜欧美精品| 美女xxoo啪啪120秒动态图| 在线免费观看不下载黄p国产| 久久久久免费精品人妻一区二区| 亚洲精品成人久久久久久| 天天躁日日操中文字幕| 久久久精品大字幕| 最好的美女福利视频网| 最近的中文字幕免费完整| 欧美区成人在线视频| 亚洲av熟女| 91在线观看av| 久久久久久大精品| 欧美最黄视频在线播放免费| 香蕉av资源在线| 亚洲一区高清亚洲精品| 欧美又色又爽又黄视频| 国产黄色视频一区二区在线观看 | 日韩精品中文字幕看吧| 男女之事视频高清在线观看| 天堂av国产一区二区熟女人妻| 亚洲av美国av| 国产在视频线在精品| 97人妻精品一区二区三区麻豆| 欧美xxxx性猛交bbbb| 日本黄色视频三级网站网址| 俺也久久电影网| 人妻制服诱惑在线中文字幕| 亚洲七黄色美女视频| 97超碰精品成人国产| 九色成人免费人妻av| 老女人水多毛片| 久久国产乱子免费精品| 国产成人影院久久av| 午夜日韩欧美国产| 亚洲av.av天堂| 老司机影院成人| 亚洲欧美日韩东京热| 成年女人永久免费观看视频| 99久久精品一区二区三区| 五月玫瑰六月丁香| 中文在线观看免费www的网站| 2021天堂中文幕一二区在线观| 成人av在线播放网站| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 国产午夜精品论理片| 久久久精品94久久精品| 久久久久久久久中文| 哪里可以看免费的av片| 欧美潮喷喷水| av在线播放精品| 日日摸夜夜添夜夜添小说| 免费不卡的大黄色大毛片视频在线观看 | 搞女人的毛片| 免费观看人在逋| 欧美日本视频| 美女xxoo啪啪120秒动态图| 午夜视频国产福利| 露出奶头的视频| 天堂av国产一区二区熟女人妻| 国产高清视频在线观看网站| 日韩大尺度精品在线看网址| 99在线人妻在线中文字幕| 99热这里只有是精品50| 丰满的人妻完整版| 老师上课跳d突然被开到最大视频| 婷婷六月久久综合丁香| 精品久久久久久久久久久久久| 欧美日韩精品成人综合77777| 日本黄色片子视频| 欧美日韩在线观看h| a级毛色黄片| 亚洲av中文av极速乱| 能在线免费观看的黄片| 精品一区二区三区视频在线观看免费| 99久国产av精品国产电影| 国产精品久久久久久久电影| 高清毛片免费观看视频网站| 亚洲中文字幕一区二区三区有码在线看| 久久午夜福利片| 国产精品一区二区三区四区免费观看 | 久久久精品大字幕| 亚洲熟妇熟女久久| 久久久久久久亚洲中文字幕| 亚洲18禁久久av| 99热这里只有是精品50| 国产亚洲91精品色在线| av在线老鸭窝| 欧美精品国产亚洲| 大又大粗又爽又黄少妇毛片口| 精品午夜福利在线看| 国产在线精品亚洲第一网站| АⅤ资源中文在线天堂| 国产伦精品一区二区三区四那| 久久精品影院6| 欧美高清性xxxxhd video| 国产三级中文精品| 亚洲av熟女| 国产色婷婷99| 国产高清激情床上av| 亚洲国产色片| 亚洲欧美日韩东京热| 久久久久久久久久黄片| 51国产日韩欧美| 婷婷精品国产亚洲av| 精品久久国产蜜桃| 欧美另类亚洲清纯唯美| 悠悠久久av| 狠狠狠狠99中文字幕| 成人综合一区亚洲| 97人妻精品一区二区三区麻豆| 在现免费观看毛片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av美国av| 免费看日本二区| 国产高潮美女av| av在线播放精品| 精品国内亚洲2022精品成人| 国产 一区精品| 国产欧美日韩一区二区精品| 国内精品一区二区在线观看| 国产精品免费一区二区三区在线| 免费看日本二区| 免费在线观看影片大全网站| 99国产精品一区二区蜜桃av| h日本视频在线播放| 一区二区三区免费毛片| 亚洲中文字幕一区二区三区有码在线看| 久久久色成人| 日韩人妻高清精品专区| 免费在线观看成人毛片| 亚洲精品成人久久久久久| 欧美另类亚洲清纯唯美| 免费电影在线观看免费观看| 亚洲在线观看片| 亚洲国产欧洲综合997久久,| 中文字幕av在线有码专区| 91久久精品国产一区二区三区| 日韩成人伦理影院| 岛国在线免费视频观看| 欧美区成人在线视频| 亚洲最大成人手机在线| 嫩草影视91久久| 久久99热6这里只有精品| 精品人妻视频免费看| 色av中文字幕| 国产精品免费一区二区三区在线| 亚洲欧美日韩高清在线视频| 丰满乱子伦码专区| 精品少妇黑人巨大在线播放 | 久久久久久久午夜电影| 国产午夜精品论理片| av在线播放精品| av福利片在线观看| 久久久色成人| 99国产极品粉嫩在线观看| 女人被狂操c到高潮| 男人舔女人下体高潮全视频| 观看免费一级毛片| 国产精品三级大全| 欧美激情国产日韩精品一区| 国产精品久久视频播放| 不卡一级毛片| 少妇猛男粗大的猛烈进出视频 | 免费观看精品视频网站| 嫩草影院精品99| 久久精品国产亚洲av涩爱 | 久久久久久久久久久丰满| 免费不卡的大黄色大毛片视频在线观看 | 一a级毛片在线观看| 久久久午夜欧美精品| 一区二区三区免费毛片| 国产午夜精品论理片| 少妇的逼好多水| 久久久久精品国产欧美久久久| 日韩欧美精品v在线| 国产黄色视频一区二区在线观看 | 精品欧美国产一区二区三| 搞女人的毛片| 欧美性猛交黑人性爽| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 国产片特级美女逼逼视频| 少妇高潮的动态图| 久久久精品欧美日韩精品| 亚洲丝袜综合中文字幕| 久久热精品热| 国产精品久久久久久av不卡| 又黄又爽又免费观看的视频| 欧美性猛交╳xxx乱大交人| 欧美高清成人免费视频www| 最近中文字幕高清免费大全6| 国产精品亚洲美女久久久| 综合色av麻豆| 久久久久久久久久成人| 亚洲精品久久国产高清桃花| 国产亚洲精品久久久久久毛片| 亚洲aⅴ乱码一区二区在线播放| 老熟妇乱子伦视频在线观看| 欧美色视频一区免费| 亚洲真实伦在线观看| 欧美极品一区二区三区四区| 国产成年人精品一区二区| 在线国产一区二区在线| 夜夜爽天天搞| 老熟妇仑乱视频hdxx| 性欧美人与动物交配| 日韩制服骚丝袜av| 国产精品野战在线观看| 女人十人毛片免费观看3o分钟| 国产亚洲精品久久久久久毛片| 国产精品美女特级片免费视频播放器| 2021天堂中文幕一二区在线观| 亚洲精品乱码久久久v下载方式| 十八禁网站免费在线| 中文资源天堂在线| 亚洲精品影视一区二区三区av| av中文乱码字幕在线| 精品久久久久久成人av| 99在线人妻在线中文字幕| 伦精品一区二区三区| 18禁在线无遮挡免费观看视频 | 久久99热6这里只有精品| 国产高清激情床上av| 大又大粗又爽又黄少妇毛片口| 日韩欧美免费精品| 国产精品久久久久久久电影| a级毛色黄片| 菩萨蛮人人尽说江南好唐韦庄 | 久久人人爽人人片av| 成人国产麻豆网| 免费人成在线观看视频色| 久久综合国产亚洲精品| 中文亚洲av片在线观看爽| 久久人人爽人人片av| 男女做爰动态图高潮gif福利片| 亚洲成人久久性| 国产精品美女特级片免费视频播放器| 色噜噜av男人的天堂激情| 国产色婷婷99| а√天堂www在线а√下载| 成年女人看的毛片在线观看| a级毛色黄片| 搡女人真爽免费视频火全软件 | 婷婷六月久久综合丁香| 麻豆一二三区av精品| 亚洲七黄色美女视频| 国产成人精品久久久久久| 日本撒尿小便嘘嘘汇集6| 丰满的人妻完整版| 在线国产一区二区在线| 欧美成人一区二区免费高清观看| 亚洲精品日韩在线中文字幕 | 小说图片视频综合网站| 99热全是精品| 91麻豆精品激情在线观看国产| 免费av观看视频| 毛片一级片免费看久久久久| 又粗又爽又猛毛片免费看| 高清毛片免费看| 久久久久久国产a免费观看| 国产伦一二天堂av在线观看| 俺也久久电影网| 国产精品福利在线免费观看| 十八禁国产超污无遮挡网站| 一级毛片久久久久久久久女| 国产午夜福利久久久久久| 国产单亲对白刺激| 欧美精品国产亚洲| 亚洲国产精品合色在线| 麻豆国产av国片精品| 国产 一区精品| 国产色婷婷99| 99国产精品一区二区蜜桃av| 精品人妻偷拍中文字幕| 色尼玛亚洲综合影院| 久久久久久大精品| 欧美区成人在线视频| 亚洲成a人片在线一区二区| 国产精品,欧美在线| 伦精品一区二区三区| 99久国产av精品国产电影| 精品人妻视频免费看| 成人综合一区亚洲| 日韩av在线大香蕉| 亚洲精品亚洲一区二区| 亚洲天堂国产精品一区在线| 少妇裸体淫交视频免费看高清| 成人特级黄色片久久久久久久| 欧美中文日本在线观看视频| 天堂√8在线中文| 亚洲av五月六月丁香网| 好男人在线观看高清免费视频| 嫩草影视91久久| 国产单亲对白刺激| 国产伦精品一区二区三区四那| 亚洲欧美日韩无卡精品| 精品99又大又爽又粗少妇毛片| 丰满的人妻完整版| 天堂网av新在线| 亚洲精品国产成人久久av| 久久亚洲国产成人精品v| 欧美性感艳星| 午夜免费男女啪啪视频观看 | 少妇熟女欧美另类| 99国产极品粉嫩在线观看| 色视频www国产| 一级a爱片免费观看的视频| 一卡2卡三卡四卡精品乱码亚洲| 香蕉av资源在线| 99热精品在线国产| 听说在线观看完整版免费高清| 少妇熟女aⅴ在线视频| 中国美女看黄片| 麻豆久久精品国产亚洲av| 少妇熟女欧美另类| 色噜噜av男人的天堂激情| 老师上课跳d突然被开到最大视频| 九色成人免费人妻av| 国产伦在线观看视频一区| 欧美成人a在线观看| 三级国产精品欧美在线观看| 午夜激情欧美在线| 精品久久久久久久久亚洲| 国产又黄又爽又无遮挡在线| 久久精品影院6| 亚洲无线观看免费| 丝袜美腿在线中文| 国产一级毛片七仙女欲春2| 国产中年淑女户外野战色| 亚洲成人精品中文字幕电影| 日本三级黄在线观看| 国产男人的电影天堂91| 免费av观看视频| 国产精品久久视频播放| 深夜a级毛片| 看片在线看免费视频| 亚洲欧美清纯卡通| 3wmmmm亚洲av在线观看| 18+在线观看网站| 久久久色成人| 精品一区二区免费观看| 不卡视频在线观看欧美| 狂野欧美白嫩少妇大欣赏| 亚洲av美国av| 婷婷精品国产亚洲av| 女人被狂操c到高潮| 欧美一区二区国产精品久久精品|