• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Favored one proton radioactivity within a one-parameter model*

    2022-11-11 07:53:34YouTianZou鄒有甜XiaoPan潘霄XiaoHuaLi李小華XiJunWu吳喜軍andBiaoHe何彪
    Communications in Theoretical Physics 2022年11期

    You-Tian Zou(鄒有甜),Xiao Pan(潘霄),Xiao-Hua Li(李小華),2,3,**,Xi-Jun Wu(吳喜軍) and Biao He(何彪)

    1 School of Nuclear Science and Technology,University of South China,Hengyang 421001,China

    2 Cooperative Innovation Center for Nuclear Fuel Cycle Technology & Equipment,University of South China,Hengyang 421001,China

    3 Key Laboratory of Low Dimensional Quantum Structures and Quantum Control,Hunan Normal University,Changsha 410081,China

    4 School of Math and Physics,University of South China,Hengyang 421001,China

    5 College of Physics and Electronics,Central South University,Changsha 410083,China

    Abstract In the present work,a phenomenological one-parameter model(OPM)based on the Wentzel-Kramers-Brillouin(WKB)theory is applied to study the favored one proton radioactivity(the orbital angular momentum l taken away by the emitted proton is equal to zero)half-lives.The calculated results can reproduce the experimental data well within a factor of ~3.In addition,we extend the OPM to predict the half-lives of possible favored one proton radioactivity nuclei whose decay is energetically allowed or observed but not quantified in NUBASE2020.For comparison,a universal decay law of one proton radioactivity(UDLP)is also used.It is obviously found that our predicted results are close to the ones using UDLP.The predictions are helpful for searching for the new nuclides with favored one proton radioactivity.

    Keywords:favored one proton radioactivity,one-parameter model,half-lives

    1.Introduction

    The stability of a ground-state atomic nucleus is dependent on the complicated balance between the numbers of protons and neutrons.Especially,in the vicinities of proton and neutron drip lines,where the balance is strongly disturbed,the exotic nucleus with the extreme numbers of nucleons exhibits active radioactivity.The neutron-rich nuclei beyond the neutron drip line can become stable by β-decay,i.e.n →p+e-+.The proton-rich nuclei beyond the proton drip line could naturally emit excess protons to move toward stability via proton radioactivity.Generally,the modes of proton radioactivity include one proton radioactivity and two proton radioactivity.Experimentally,the one proton radioactivity phenomenon was firstly observed from the isomeric state of53Co by Jackson et al in 1970[1,2].Subsequently,Hofmann et al and Klepper et al also discovered the one proton radioactivity from nuclear ground states of151Lu and147Tm in 1982,independently[3,4].With the development of experimental facilities and radioactive beams,there are about 44 one proton emitters from the ground state or isomeric state being detected.Observing these one proton emitters,it is evidently found that the rich-proton odd-Z nuclei between Z=51 and Z=83 are more likely to emit a proton and form a new nucleus[5–10].However,for two proton radioactivity,it was not until 2002 that this exotic phenomenon was firstly observed in experiments performed at GANIL[11]and GSI[12].Up to now,there are 8 two proton radioactivity nuclei being discovered in different experiments[13–18].It is found that the even-Z nuclei beyond the proton drip line are more likely to occur two proton radioactivity.The studies on these two kinds of proton radioactivity can provide important nuclear structure information for the exotic proton-rich nuclei,such as the shell structure and coupling between the bound and unbound nuclear states[19,20].In addition,one proton radioactivity can be treated as the inverse process of rapid proton capture,which is of great importance in the understanding of the origin of elements and the evolution of stars[21].Theoretically,proton radioactivity shares the same decay mechanism as α decay,i.e.quantum tunneling through potential barriers[22–35],the half-lives can be evaluated by the one-dimensional WKB integral approximation.Based on the description,a lot of models and/or formulas were proposed to investigate proton radioactivity.For one proton radioactivity,there is the Woods-Saxon nuclear potential model[36–38],the effective interaction potential model of density-dependent M3Y[39–41],the generalized liquid drop model[42,43],the single fold model[41,44],the modified two-potential approach[8,41]and others[45,46].For two proton radioactivity,there is the Coulomb and proximity potential model[47],the unified fission model[48],the electrostatic screened penetration model[49],the Gamow-like model[50],the two-potential and Skyrme-Hartree–Fock approaches[51],the generalized liquid drop model[52]and others[53].These theoretical studies have improved our understanding of the proton radioactivity phenomenon[54–58].Meanwhile,the new models and/or formulas are also awaiting proposal and/or employment to further research for proton radioactivity.

    In 2005,based on the WKB theory,Tavares et al firstly proposed an OPM to calculate α decay half-lives of bismuth isotopes[59].Their calculated results can reproduce the experimental data well,especially the predicted half-life for naturally occurring α emitter209Bi has been confirmed by the experiment within a factor of ~2.Moreover,in 2006,Medeiros et al used the OPM to systematically study α decay half-lives of 320 favored α decay nuclei[60].The calculated results are in great agreement with the experimental data with the standard deviation σ=0.317.Recently,using the OPM,we systematically investigate the α decay half-lives of neptunium isotopes[61].The results indicate that the neutron number N=126 shell effect is still robust in neptunium.Since one proton radioactivity shares the same mechanism of tunneling effect with α decay,whether the OPM can be extended to study the one proton radioactivity is an interesting issue.So in this article,using the OPM,we systematically investigate the favored one proton radioactivity half-lives of proton-rich nuclei with 51 ≤Z ≤83.The calculated results show a good consistency with the experimental data.

    This article is organized as follows.In the next section,the theoretical framework of OPM is briefly described.The detailed calculations and discussion are presented in section 3.Finally,a summary is given in section 4.

    2.Theoretical framework

    The one proton radioactivity half-life is generally calculated by

    where mz,mdand meare the atomic mass of the emitted one proton,daughter nucleus and electron,respectively.Ad,Zdand ΔMdare the mass number,proton number and the mass excess of the daughter nucleus,respectively.F=931.494009 MeV u-1is the mass-energy conversion factor.The value of k=8.7 eV,β=2.517 for Z ≥60,and k=13.6 eV,β=2.408 for Z ≤60[64].

    The penetration factor P given in equation(1)can be calculated by

    where G is the Gamow factor,s and μ(s)are the centre distance and reduced mass between the emitted one proton and daughter nucleus,respectively.V(s)is the emitted one protondaughter nucleus interaction potential.a and b are the classical inner and outer turning points of a potential barrier satisfying the conditions V(a)=V(b)=Qp.Here Qpis the one proton radioactivity released energy.It can be expressed as[65]

    where ΔMpand ΔMzare the mass excess of the parent nucleus and emitted one proton,respectively,which can be obtained from the evaluated nuclear properties table NUBASE2020[66].In the OPM,a=Rp- Rzis the difference between the radius of the parent nucleus and the emitted one proton.c=Rd+ Rzis the centre distance between the daughter nucleus and emitted proton at the touching configuration point.Rz=0.8409 fm is the radius of one proton in this work[67].Rpand Rdare the radii of the parent nucleus and daughter nucleus,respectively.They are calculated by the droplet model of an atomic nucleus and expressed as[68,69]

    where rjirepresent the equivalent sharp radius of a proton(j=p)or neutron(j=n)density distribution of a parent nucleus(i=p)or daughter nucleus(i=d),respectively.According to the finite-range droplet model theory of nuclei proposed by M?ller et al[69],the equivalent sharp radius can be expressed as

    where

    The emitted one proton-daughter nucleus interaction potential V(s)appears in equation(6)including the Coulomb VCand centrifugal Vlpart,which are expressed as

    where Zz=1 is the charge number of one proton,e2=1.4399652 MeV fm is the square of the electronic elementary charge.l is the angular momentum taken by the emitted one proton.It can be obtained by spin-parity conservation laws[70].In the process of emitting one proton preformed at the parent nucleus surface,the interaction potential between the emitted one proton and the daughter nucleus is denoted as inner potential Vin.Therefore,the total emitted one proton-daughter nucleus interaction potential V(s),shown in figure 1,is given by

    3.Results and discussion

    Firstly,we systematically investigate the favored one proton radioactivity half-lives within the OPM.From the experimentally discovered 44 one proton emitters,we select the experimental data of 9 favored one proton radioactivity nuclei as a database,and their experimental half-livesare taken from the latest evaluated nuclear properties table NUBASE2020[66]and the related[70].The adjustable parameter g is the coupling term of the reduced mass parameter p and interaction potential parameter q between the preformed one proton and daughter nucleus in inner complex nuclear many-body systems.It is obtained by fitting the experimental half-lives of these favored one proton radioactivity nuclei by minimizing the root mean square difference(rms).The rms σ represents the difference between the experimental one proton radioactivity half-lives and the calculated ones using OPM.In this work,it is defined as

    of experimental and calculated one proton radioactivity halflife for the i-th nucleus,respectively.By fitting these 9 experimental favored one proton radioactivity half-lives,the adjustable parameter is determined to be 0.0326 when minimal σ=0.470.The detailed relationship between σ and g is displayed in figure 2.The σ=0.470 means that the calculated results can reproduce the experimental half-lives well and differ from the experiment data by a factor of 2.95 on average.Using the OPM and parameter g,we systematically calculate the favored one proton radioactivity half-lives of these 9 nuclei.For comparison,the Coulomb and proximity potential model(CPPM)with Guo2013 is analyzed from our previous work[74],and the Gamow-like model(GLM)with screened electrostatic barrier[75]and UDLP[76]are used.The detailed results are listed in table 1.In table 1,the first four columns present the experimental data of one proton radioactivity parent nucleus,corresponding to one proton radioactivity released energy Qp,spin-parity transformationand the logarithmic form of experimental one proton radioactivity half-lives(Expt.),respectively.The last four columns represent the logarithmic form of theoretical one proton radioactivity half-lives(s),which are calculated using the CPPM[74],GLM[75],UDLP[76]and OPM,respectively.In order to intuitively give comparisons of the experimental half-lives with the calculated results,we present the individual decimal logarithmic deviation between experimental one proton radioactivity half-lives and calculated results in figure 3.In this figure,the blue regular triangle,green inverted triangle,red circle and purple rhombus denote the decimal logarithm deviations between the experimental one proton radioactivity half-lives and the calculated results using the CPPM,GLM,UDLP and OPM,respectively.From this figure,we can see that all the decimal logarithm deviations are basically within the range of±1,which indicates that OPM can be treated as a great tool to study the favored one proton radioactivity half-lives.Nevertheless,there are large decimal logarithm deviations between the experimental half-lives and calculated ones using the different models and/or formulas for the isomeric-state proton emitters.Taking185Bimas an example,its experimental one proton radioactive half-life is -4.192,but the theoretical calculations using the CPPM,GLM,UDLP and OPM are-5.017,-4.971,-4.759 and -5.064,respectively.The decimal logarithm deviations between the experimental data and the calculated results using these models and formulas are almost an order of magnitude.In fact,the probability of one proton emission depends on the deformation of the system and the effects arising from the deformed shape,especially for the triaxial(see,for example141Ho[77])and oblate deformed(such as the Bi isotopes,see[78–80])one proton emitters.Thus,the deformation effect can not be ignored for further study on one proton radioactivity half-lives of deformed proton emitters.

    To better demonstrate the reproducibility of OPM with other theoretical models and/or formulas for favored one proton radioactivity half-lives,we calculate the root mean square deviations σ by equation(25)and the results are listed in table 2.From table 2,we can see that the σ obtained by OPM is smaller than the ones calculated by the CPPM,which is reduced by 12.3%.

    Finally,we use the OPM to predict the half-lives of possible favored one proton radioactivity nuclei whose decay is energetically allowed or observed but not quantified in NUBASE2020[66]with the proton number region of 67 ≤Z ≤85.The detailed results are listed in table 3.For comparison,the predicted results using UDLP are also listed in table 3,in which the first three columns represent the serial number(S.No.),one proton radioactivity parent nucleus and Qpvalue,respectively.The last two columns are the logarithmic form of one proton radioactivity half-lives calculated by the UDLP and OPM,respectively.Note from table 3 that the predicted one proton radioactivity half-lives using OPM are in reasonable agreement with the ones using UDLP.Moreover,we draw the predicted one proton radioactivity half-lives against the quantity ofi.e.Geiger-Nuttall-like law for one proton radioactivity[70]in figure 4.Note from this figure that the predicted results depict an approximate straight line.These predictions are helpful for searching for the new nuclides with one proton radioactivity.

    Table 1.Comparison of favored experimental one proton radioactivity half-lives with the calculated ones using different theoretical models and/or formulas.The symbol m denotes the isomeric state.The Qp values are calculated by equation(7)using the mass excess.The mass excess values,experimental one proton radioactivity half-lives and spin-parity are taken from the[66],except 177Tl is taken from[70].

    Table 2.The standard deviations σ between favored experimental half-lives and the calculated ones using different theoretical models and/or formulas.

    Table 3.Predicted one proton radioactivity half-lives using OPM and UDLP for favored one proton radioactivity nuclei whose decay is energetically allowed or observed but not quantified in NUBASE2020[66]and the related[81,82].The Qp values are calculated by equation(7)using the mass excess values taken from the[66].

    4.Summary

    In summary,a phenomenological OPM based on the WKB theory is applied to systematically study the favored one proton radioactivity half-lives.The only adjustable parameter g is the coupling term of the reduced mass parameter p and the interaction potential parameter q between the preformed proton and daughter nucleus in inner complex nuclear many-body systems.By fitting the 9 favored experimental one proton radioactivity half-lives,we obtain g=0.0326 with theσmin= 0.470.Using the OPM and parameter g,we systematically calculate the one proton radioactivity half-lives of these nuclei.It is found that our results can reproduce the experimental data well.In addition,we extend the OPM to predict the half-lives of possible favored one proton radioactivity nuclei whose decay is energetically allowed or observed but not quantified in NUBASE2020.The predicted results are in reasonable agreement with the ones using the UDLP.These predictions may be useful for future experiments to explore the new possible one proton radioactivity.

    ORCID iDs

    国产欧美日韩一区二区三区在线| 亚洲伊人色综图| 曰老女人黄片| 91老司机精品| 久久影院123| 国产精品亚洲av一区麻豆| 成年人黄色毛片网站| 天天操日日干夜夜撸| 免费高清在线观看日韩| 欧美变态另类bdsm刘玥| 黑人巨大精品欧美一区二区蜜桃| 一边摸一边抽搐一进一出视频| 午夜福利影视在线免费观看| 在线观看国产h片| 激情五月婷婷亚洲| 国产一区亚洲一区在线观看| 亚洲美女黄色视频免费看| 99国产精品一区二区蜜桃av | 国产一级毛片在线| 国产精品久久久久成人av| 国产免费一区二区三区四区乱码| 午夜免费鲁丝| av片东京热男人的天堂| 这个男人来自地球电影免费观看| 欧美日韩综合久久久久久| 99精国产麻豆久久婷婷| videosex国产| 国产三级黄色录像| 看十八女毛片水多多多| 亚洲国产中文字幕在线视频| 国产不卡av网站在线观看| 国产爽快片一区二区三区| 一区二区三区激情视频| 国语对白做爰xxxⅹ性视频网站| 国产精品麻豆人妻色哟哟久久| 人人澡人人妻人| 国产日韩一区二区三区精品不卡| 老汉色∧v一级毛片| 日日夜夜操网爽| 啦啦啦在线观看免费高清www| 操美女的视频在线观看| 午夜老司机福利片| 十八禁人妻一区二区| 老司机影院毛片| 欧美黄色片欧美黄色片| 国产亚洲av片在线观看秒播厂| 水蜜桃什么品种好| 日本欧美国产在线视频| 男女高潮啪啪啪动态图| 狂野欧美激情性xxxx| 国产极品粉嫩免费观看在线| 大型av网站在线播放| 亚洲成色77777| 亚洲精品美女久久久久99蜜臀 | 国产成人影院久久av| 男女边摸边吃奶| 精品国产乱码久久久久久男人| 叶爱在线成人免费视频播放| 欧美日本中文国产一区发布| 考比视频在线观看| 免费黄频网站在线观看国产| 亚洲图色成人| 男人舔女人的私密视频| 国产一级毛片在线| 亚洲中文字幕日韩| 欧美国产精品va在线观看不卡| 免费在线观看日本一区| 精品第一国产精品| 国产精品一区二区免费欧美 | 操出白浆在线播放| 后天国语完整版免费观看| 国产黄频视频在线观看| a级毛片在线看网站| 免费观看av网站的网址| 久久精品国产亚洲av涩爱| 亚洲,欧美精品.| 久久毛片免费看一区二区三区| 在线观看免费视频网站a站| 亚洲国产毛片av蜜桃av| 女人高潮潮喷娇喘18禁视频| 伊人久久大香线蕉亚洲五| 午夜精品国产一区二区电影| 久久久久久人人人人人| 婷婷成人精品国产| 婷婷成人精品国产| 纯流量卡能插随身wifi吗| 在线亚洲精品国产二区图片欧美| 大码成人一级视频| 在线天堂中文资源库| 一级毛片电影观看| 精品国产乱码久久久久久男人| 久久天堂一区二区三区四区| av在线app专区| 老司机亚洲免费影院| 91老司机精品| 国产人伦9x9x在线观看| 免费久久久久久久精品成人欧美视频| 亚洲熟女精品中文字幕| 91国产中文字幕| 国产精品久久久久久人妻精品电影 | 欧美黄色淫秽网站| 欧美人与性动交α欧美精品济南到| 在线看a的网站| 久久99一区二区三区| 电影成人av| 亚洲七黄色美女视频| 精品久久久久久久毛片微露脸 | 午夜福利影视在线免费观看| 啦啦啦中文免费视频观看日本| 夫妻午夜视频| 国产男人的电影天堂91| 精品一区二区三区四区五区乱码 | 黑人猛操日本美女一级片| 中文字幕色久视频| 少妇人妻久久综合中文| 99香蕉大伊视频| 国产极品粉嫩免费观看在线| 中文欧美无线码| 欧美日韩视频精品一区| 国产熟女午夜一区二区三区| 美女主播在线视频| av片东京热男人的天堂| 爱豆传媒免费全集在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久久精品94久久精品| 成人18禁高潮啪啪吃奶动态图| 人人妻人人添人人爽欧美一区卜| 黄色毛片三级朝国网站| 女人爽到高潮嗷嗷叫在线视频| 色婷婷久久久亚洲欧美| a级毛片黄视频| 亚洲精品一卡2卡三卡4卡5卡 | 2018国产大陆天天弄谢| 久久影院123| 色播在线永久视频| 咕卡用的链子| 狂野欧美激情性bbbbbb| 亚洲精品国产区一区二| 午夜精品国产一区二区电影| 男人舔女人的私密视频| 久久久欧美国产精品| 精品一区二区三卡| 乱人伦中国视频| 新久久久久国产一级毛片| 久久国产精品男人的天堂亚洲| 国产免费又黄又爽又色| h视频一区二区三区| 宅男免费午夜| 日本黄色日本黄色录像| 国产高清不卡午夜福利| 亚洲一区二区三区欧美精品| 久久久精品国产亚洲av高清涩受| 亚洲精品国产一区二区精华液| 久久久久久久久免费视频了| 王馨瑶露胸无遮挡在线观看| 一级黄色大片毛片| 欧美成人精品欧美一级黄| av天堂在线播放| 亚洲成人国产一区在线观看 | 青春草亚洲视频在线观看| 精品第一国产精品| 美女福利国产在线| 国产一区二区 视频在线| 中文字幕高清在线视频| 一二三四在线观看免费中文在| 欧美日韩亚洲高清精品| 伊人久久大香线蕉亚洲五| 丁香六月天网| 一区二区日韩欧美中文字幕| 欧美av亚洲av综合av国产av| 美女午夜性视频免费| 久热这里只有精品99| 18禁国产床啪视频网站| 一二三四社区在线视频社区8| 久久人妻福利社区极品人妻图片 | 大片免费播放器 马上看| 国产日韩欧美亚洲二区| 亚洲精品日本国产第一区| 久热爱精品视频在线9| 18禁观看日本| 日韩 欧美 亚洲 中文字幕| 赤兔流量卡办理| 宅男免费午夜| 人人妻人人澡人人爽人人夜夜| 在线看a的网站| 两性夫妻黄色片| 人人妻人人澡人人看| 中文精品一卡2卡3卡4更新| 日本猛色少妇xxxxx猛交久久| 50天的宝宝边吃奶边哭怎么回事| 黄色a级毛片大全视频| 王馨瑶露胸无遮挡在线观看| 狂野欧美激情性bbbbbb| 亚洲伊人色综图| 黄片小视频在线播放| 性色av乱码一区二区三区2| 日本av免费视频播放| xxx大片免费视频| 脱女人内裤的视频| 一本久久精品| 国产精品99久久99久久久不卡| 另类亚洲欧美激情| 亚洲专区中文字幕在线| 久久亚洲精品不卡| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久久久久婷婷小说| 国产成人欧美在线观看 | 午夜激情久久久久久久| 校园人妻丝袜中文字幕| 2021少妇久久久久久久久久久| 丰满饥渴人妻一区二区三| 少妇被粗大的猛进出69影院| 男女下面插进去视频免费观看| 99久久精品国产亚洲精品| 久久青草综合色| 亚洲精品在线美女| 岛国毛片在线播放| 黄色片一级片一级黄色片| 一级毛片我不卡| 一个人免费看片子| 国产成人一区二区在线| 国产高清不卡午夜福利| 婷婷色麻豆天堂久久| 日韩制服骚丝袜av| 欧美少妇被猛烈插入视频| 在线观看免费高清a一片| 亚洲一区中文字幕在线| 日韩制服丝袜自拍偷拍| 久久精品aⅴ一区二区三区四区| 国产在线免费精品| 人成视频在线观看免费观看| 少妇人妻久久综合中文| 久久影院123| 9热在线视频观看99| 国产精品久久久久久精品古装| 国产又爽黄色视频| 国产三级黄色录像| 国产熟女午夜一区二区三区| 最新在线观看一区二区三区 | 老司机影院成人| 国产高清视频在线播放一区 | 国产淫语在线视频| 久久中文字幕一级| 91国产中文字幕| 婷婷色综合大香蕉| 91麻豆av在线| 亚洲成人手机| 国产精品久久久久久精品古装| 热99久久久久精品小说推荐| 国产女主播在线喷水免费视频网站| 国产精品秋霞免费鲁丝片| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲av高清不卡| 狠狠精品人妻久久久久久综合| 亚洲第一青青草原| 久久精品国产亚洲av高清一级| 视频区图区小说| 欧美少妇被猛烈插入视频| 欧美日韩av久久| 男女无遮挡免费网站观看| 免费女性裸体啪啪无遮挡网站| 久久精品久久久久久噜噜老黄| 久久青草综合色| 国产亚洲av高清不卡| 国产淫语在线视频| 国产成人精品久久久久久| 久久久精品国产亚洲av高清涩受| 我的亚洲天堂| 久久久久国产精品人妻一区二区| 亚洲国产看品久久| 欧美在线一区亚洲| 中文精品一卡2卡3卡4更新| 欧美国产精品va在线观看不卡| 纯流量卡能插随身wifi吗| 欧美人与善性xxx| 香蕉国产在线看| 国产精品一区二区免费欧美 | 久久人人爽人人片av| 久久天堂一区二区三区四区| 国产免费福利视频在线观看| 国产成人欧美在线观看 | 精品福利观看| 午夜免费观看性视频| 亚洲av日韩在线播放| 电影成人av| 视频在线观看一区二区三区| 国产成人欧美在线观看 | 精品少妇一区二区三区视频日本电影| 日韩视频在线欧美| 精品福利永久在线观看| 亚洲精品国产一区二区精华液| 国产精品久久久久久精品电影小说| 青春草视频在线免费观看| 亚洲欧美一区二区三区黑人| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美清纯卡通| videos熟女内射| 国产精品一区二区在线观看99| 99久久精品国产亚洲精品| 最近手机中文字幕大全| 国产在线观看jvid| 欧美日韩亚洲综合一区二区三区_| 女人精品久久久久毛片| 最近手机中文字幕大全| 女人高潮潮喷娇喘18禁视频| 黑丝袜美女国产一区| 两人在一起打扑克的视频| 女性被躁到高潮视频| 国产精品香港三级国产av潘金莲 | 免费在线观看视频国产中文字幕亚洲 | 亚洲精品国产色婷婷电影| 一边摸一边抽搐一进一出视频| 在线观看免费视频网站a站| 久久免费观看电影| 亚洲精品国产色婷婷电影| 热re99久久精品国产66热6| 1024香蕉在线观看| 亚洲美女黄色视频免费看| 久久国产亚洲av麻豆专区| 国产在线一区二区三区精| 人体艺术视频欧美日本| 18禁裸乳无遮挡动漫免费视频| 亚洲精品国产av成人精品| 久久精品熟女亚洲av麻豆精品| 十八禁人妻一区二区| 久久精品久久精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 国产亚洲欧美在线一区二区| 久久这里只有精品19| 精品少妇内射三级| 午夜免费成人在线视频| 香蕉丝袜av| 国产亚洲午夜精品一区二区久久| 亚洲五月色婷婷综合| 亚洲精品美女久久久久99蜜臀 | a 毛片基地| 国产欧美日韩一区二区三 | 19禁男女啪啪无遮挡网站| 又大又黄又爽视频免费| 亚洲av片天天在线观看| 国产野战对白在线观看| cao死你这个sao货| 成人影院久久| 飞空精品影院首页| 亚洲av日韩精品久久久久久密 | 欧美乱码精品一区二区三区| 搡老岳熟女国产| 国产精品 国内视频| 91老司机精品| 丝瓜视频免费看黄片| 51午夜福利影视在线观看| 精品一区在线观看国产| 蜜桃国产av成人99| 国产精品一区二区在线观看99| 大片电影免费在线观看免费| 2021少妇久久久久久久久久久| 久久精品aⅴ一区二区三区四区| 超色免费av| 美女福利国产在线| 日韩 欧美 亚洲 中文字幕| 国产色视频综合| 在现免费观看毛片| 99re6热这里在线精品视频| 午夜老司机福利片| 免费在线观看视频国产中文字幕亚洲 | 无限看片的www在线观看| 日本欧美视频一区| 超色免费av| 91精品伊人久久大香线蕉| 国产日韩欧美在线精品| 视频在线观看一区二区三区| av在线播放精品| 天天影视国产精品| 18在线观看网站| 真人做人爱边吃奶动态| 国产又爽黄色视频| 一区二区三区精品91| 精品少妇内射三级| 各种免费的搞黄视频| av网站在线播放免费| 国产爽快片一区二区三区| 丰满迷人的少妇在线观看| 一区二区日韩欧美中文字幕| 妹子高潮喷水视频| 建设人人有责人人尽责人人享有的| 黄色一级大片看看| 精品欧美一区二区三区在线| 亚洲欧美激情在线| 久久鲁丝午夜福利片| 久久久久视频综合| 韩国高清视频一区二区三区| 免费高清在线观看日韩| 国产片内射在线| 国产野战对白在线观看| 亚洲人成电影观看| 国语对白做爰xxxⅹ性视频网站| 日韩精品免费视频一区二区三区| 麻豆国产av国片精品| 一级毛片我不卡| 精品亚洲成a人片在线观看| 日韩一本色道免费dvd| 亚洲av片天天在线观看| 亚洲,欧美,日韩| 操出白浆在线播放| 手机成人av网站| 五月开心婷婷网| 精品久久蜜臀av无| 妹子高潮喷水视频| 永久免费av网站大全| 国产精品免费大片| 热re99久久精品国产66热6| 欧美xxⅹ黑人| 黄色a级毛片大全视频| 巨乳人妻的诱惑在线观看| 免费观看a级毛片全部| 久久精品亚洲熟妇少妇任你| www.999成人在线观看| 亚洲免费av在线视频| 韩国高清视频一区二区三区| 久久中文字幕一级| 国产精品 欧美亚洲| 黑人巨大精品欧美一区二区蜜桃| 久久精品成人免费网站| 咕卡用的链子| 亚洲国产毛片av蜜桃av| 在线观看免费日韩欧美大片| 一区二区三区乱码不卡18| 国产不卡av网站在线观看| 亚洲伊人久久精品综合| 秋霞在线观看毛片| 久久国产精品大桥未久av| 亚洲av电影在线观看一区二区三区| 欧美 日韩 精品 国产| a级片在线免费高清观看视频| 亚洲av男天堂| 午夜视频精品福利| 亚洲天堂av无毛| 啦啦啦啦在线视频资源| 亚洲精品日韩在线中文字幕| 777米奇影视久久| 免费日韩欧美在线观看| 亚洲精品美女久久久久99蜜臀 | 成年av动漫网址| 久久天躁狠狠躁夜夜2o2o | 一本一本久久a久久精品综合妖精| 色婷婷av一区二区三区视频| 手机成人av网站| 99精国产麻豆久久婷婷| 欧美大码av| 日韩精品免费视频一区二区三区| 国产国语露脸激情在线看| 一级黄片播放器| 少妇裸体淫交视频免费看高清 | 我的亚洲天堂| av欧美777| 亚洲国产av影院在线观看| 少妇 在线观看| 久久精品国产亚洲av高清一级| 丁香六月欧美| 1024香蕉在线观看| 精品欧美一区二区三区在线| 狠狠精品人妻久久久久久综合| 亚洲黑人精品在线| netflix在线观看网站| 91精品三级在线观看| 爱豆传媒免费全集在线观看| 天天躁夜夜躁狠狠躁躁| 青草久久国产| 日韩 亚洲 欧美在线| 丝袜美腿诱惑在线| 国产av国产精品国产| kizo精华| 精品国产一区二区久久| 精品国产超薄肉色丝袜足j| 亚洲黑人精品在线| 免费在线观看视频国产中文字幕亚洲 | 丰满饥渴人妻一区二区三| 欧美在线一区亚洲| 精品国产国语对白av| 亚洲国产日韩一区二区| 天堂8中文在线网| 亚洲少妇的诱惑av| 麻豆av在线久日| 高清欧美精品videossex| 国产精品.久久久| 高潮久久久久久久久久久不卡| 另类亚洲欧美激情| 大片电影免费在线观看免费| 欧美+亚洲+日韩+国产| 免费人妻精品一区二区三区视频| 精品福利观看| 欧美xxⅹ黑人| 午夜91福利影院| 国产精品九九99| 黄片播放在线免费| 51午夜福利影视在线观看| 国产精品一区二区免费欧美 | 亚洲精品久久成人aⅴ小说| 在线av久久热| 午夜免费成人在线视频| 欧美日韩一级在线毛片| 激情视频va一区二区三区| 日韩av不卡免费在线播放| 中文乱码字字幕精品一区二区三区| 大陆偷拍与自拍| 美女福利国产在线| 国产在线免费精品| 黄片播放在线免费| kizo精华| 欧美精品av麻豆av| av视频免费观看在线观看| 亚洲国产中文字幕在线视频| 欧美97在线视频| 首页视频小说图片口味搜索 | 久久精品久久久久久噜噜老黄| 超碰97精品在线观看| 欧美亚洲 丝袜 人妻 在线| 午夜激情av网站| 亚洲一码二码三码区别大吗| 不卡av一区二区三区| 久久中文字幕一级| 咕卡用的链子| 国产成人精品在线电影| 啦啦啦视频在线资源免费观看| 99国产精品免费福利视频| 黑人欧美特级aaaaaa片| 1024香蕉在线观看| 夫妻午夜视频| 午夜免费观看性视频| 又粗又硬又长又爽又黄的视频| 丁香六月天网| 在线av久久热| tube8黄色片| 狂野欧美激情性xxxx| 一个人免费看片子| 久久久久视频综合| 国产又爽黄色视频| 色综合欧美亚洲国产小说| 欧美97在线视频| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 飞空精品影院首页| 99精品久久久久人妻精品| 久久久久久久国产电影| 国产极品粉嫩免费观看在线| 久久久久久久国产电影| 日韩伦理黄色片| 亚洲国产成人一精品久久久| 日本午夜av视频| 狠狠精品人妻久久久久久综合| 国产欧美日韩综合在线一区二区| 国产成人欧美| 69精品国产乱码久久久| 免费在线观看影片大全网站 | 国产成人av激情在线播放| 熟女av电影| 一区二区三区四区激情视频| 看免费成人av毛片| 91精品伊人久久大香线蕉| 狠狠婷婷综合久久久久久88av| 中文乱码字字幕精品一区二区三区| 母亲3免费完整高清在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲av电影在线进入| 免费在线观看视频国产中文字幕亚洲 | 宅男免费午夜| 一级毛片女人18水好多 | 我要看黄色一级片免费的| 亚洲欧美精品自产自拍| 一级黄片播放器| 欧美日韩福利视频一区二区| 精品亚洲成a人片在线观看| 国产精品免费大片| 中文字幕人妻丝袜一区二区| 99久久综合免费| 欧美在线一区亚洲| 啦啦啦啦在线视频资源| 国产成人一区二区三区免费视频网站 | 青春草视频在线免费观看| 欧美国产精品一级二级三级| a级片在线免费高清观看视频| 久久99热这里只频精品6学生| 久久久精品免费免费高清| 搡老乐熟女国产| 99国产精品免费福利视频| av在线播放精品| 国产精品一区二区在线观看99| 午夜福利影视在线免费观看| 亚洲七黄色美女视频| 下体分泌物呈黄色| 婷婷色麻豆天堂久久| 一区二区三区激情视频| 免费观看a级毛片全部| 成人国产一区最新在线观看 | 好男人电影高清在线观看| 免费不卡黄色视频| 免费少妇av软件| 多毛熟女@视频| 亚洲成人国产一区在线观看 | 黄片小视频在线播放| 亚洲 欧美一区二区三区| 成人免费观看视频高清| 91九色精品人成在线观看| 男女下面插进去视频免费观看| 97人妻天天添夜夜摸| 免费人妻精品一区二区三区视频| 亚洲精品中文字幕在线视频| 国产成人一区二区三区免费视频网站 | 午夜免费成人在线视频| 首页视频小说图片口味搜索 | 欧美日韩亚洲国产一区二区在线观看 | 91精品国产国语对白视频| 亚洲av电影在线进入| 2021少妇久久久久久久久久久| 色精品久久人妻99蜜桃|