• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Favored one proton radioactivity within a one-parameter model*

    2022-11-11 07:53:34YouTianZou鄒有甜XiaoPan潘霄XiaoHuaLi李小華XiJunWu吳喜軍andBiaoHe何彪
    Communications in Theoretical Physics 2022年11期

    You-Tian Zou(鄒有甜),Xiao Pan(潘霄),Xiao-Hua Li(李小華),2,3,**,Xi-Jun Wu(吳喜軍) and Biao He(何彪)

    1 School of Nuclear Science and Technology,University of South China,Hengyang 421001,China

    2 Cooperative Innovation Center for Nuclear Fuel Cycle Technology & Equipment,University of South China,Hengyang 421001,China

    3 Key Laboratory of Low Dimensional Quantum Structures and Quantum Control,Hunan Normal University,Changsha 410081,China

    4 School of Math and Physics,University of South China,Hengyang 421001,China

    5 College of Physics and Electronics,Central South University,Changsha 410083,China

    Abstract In the present work,a phenomenological one-parameter model(OPM)based on the Wentzel-Kramers-Brillouin(WKB)theory is applied to study the favored one proton radioactivity(the orbital angular momentum l taken away by the emitted proton is equal to zero)half-lives.The calculated results can reproduce the experimental data well within a factor of ~3.In addition,we extend the OPM to predict the half-lives of possible favored one proton radioactivity nuclei whose decay is energetically allowed or observed but not quantified in NUBASE2020.For comparison,a universal decay law of one proton radioactivity(UDLP)is also used.It is obviously found that our predicted results are close to the ones using UDLP.The predictions are helpful for searching for the new nuclides with favored one proton radioactivity.

    Keywords:favored one proton radioactivity,one-parameter model,half-lives

    1.Introduction

    The stability of a ground-state atomic nucleus is dependent on the complicated balance between the numbers of protons and neutrons.Especially,in the vicinities of proton and neutron drip lines,where the balance is strongly disturbed,the exotic nucleus with the extreme numbers of nucleons exhibits active radioactivity.The neutron-rich nuclei beyond the neutron drip line can become stable by β-decay,i.e.n →p+e-+.The proton-rich nuclei beyond the proton drip line could naturally emit excess protons to move toward stability via proton radioactivity.Generally,the modes of proton radioactivity include one proton radioactivity and two proton radioactivity.Experimentally,the one proton radioactivity phenomenon was firstly observed from the isomeric state of53Co by Jackson et al in 1970[1,2].Subsequently,Hofmann et al and Klepper et al also discovered the one proton radioactivity from nuclear ground states of151Lu and147Tm in 1982,independently[3,4].With the development of experimental facilities and radioactive beams,there are about 44 one proton emitters from the ground state or isomeric state being detected.Observing these one proton emitters,it is evidently found that the rich-proton odd-Z nuclei between Z=51 and Z=83 are more likely to emit a proton and form a new nucleus[5–10].However,for two proton radioactivity,it was not until 2002 that this exotic phenomenon was firstly observed in experiments performed at GANIL[11]and GSI[12].Up to now,there are 8 two proton radioactivity nuclei being discovered in different experiments[13–18].It is found that the even-Z nuclei beyond the proton drip line are more likely to occur two proton radioactivity.The studies on these two kinds of proton radioactivity can provide important nuclear structure information for the exotic proton-rich nuclei,such as the shell structure and coupling between the bound and unbound nuclear states[19,20].In addition,one proton radioactivity can be treated as the inverse process of rapid proton capture,which is of great importance in the understanding of the origin of elements and the evolution of stars[21].Theoretically,proton radioactivity shares the same decay mechanism as α decay,i.e.quantum tunneling through potential barriers[22–35],the half-lives can be evaluated by the one-dimensional WKB integral approximation.Based on the description,a lot of models and/or formulas were proposed to investigate proton radioactivity.For one proton radioactivity,there is the Woods-Saxon nuclear potential model[36–38],the effective interaction potential model of density-dependent M3Y[39–41],the generalized liquid drop model[42,43],the single fold model[41,44],the modified two-potential approach[8,41]and others[45,46].For two proton radioactivity,there is the Coulomb and proximity potential model[47],the unified fission model[48],the electrostatic screened penetration model[49],the Gamow-like model[50],the two-potential and Skyrme-Hartree–Fock approaches[51],the generalized liquid drop model[52]and others[53].These theoretical studies have improved our understanding of the proton radioactivity phenomenon[54–58].Meanwhile,the new models and/or formulas are also awaiting proposal and/or employment to further research for proton radioactivity.

    In 2005,based on the WKB theory,Tavares et al firstly proposed an OPM to calculate α decay half-lives of bismuth isotopes[59].Their calculated results can reproduce the experimental data well,especially the predicted half-life for naturally occurring α emitter209Bi has been confirmed by the experiment within a factor of ~2.Moreover,in 2006,Medeiros et al used the OPM to systematically study α decay half-lives of 320 favored α decay nuclei[60].The calculated results are in great agreement with the experimental data with the standard deviation σ=0.317.Recently,using the OPM,we systematically investigate the α decay half-lives of neptunium isotopes[61].The results indicate that the neutron number N=126 shell effect is still robust in neptunium.Since one proton radioactivity shares the same mechanism of tunneling effect with α decay,whether the OPM can be extended to study the one proton radioactivity is an interesting issue.So in this article,using the OPM,we systematically investigate the favored one proton radioactivity half-lives of proton-rich nuclei with 51 ≤Z ≤83.The calculated results show a good consistency with the experimental data.

    This article is organized as follows.In the next section,the theoretical framework of OPM is briefly described.The detailed calculations and discussion are presented in section 3.Finally,a summary is given in section 4.

    2.Theoretical framework

    The one proton radioactivity half-life is generally calculated by

    where mz,mdand meare the atomic mass of the emitted one proton,daughter nucleus and electron,respectively.Ad,Zdand ΔMdare the mass number,proton number and the mass excess of the daughter nucleus,respectively.F=931.494009 MeV u-1is the mass-energy conversion factor.The value of k=8.7 eV,β=2.517 for Z ≥60,and k=13.6 eV,β=2.408 for Z ≤60[64].

    The penetration factor P given in equation(1)can be calculated by

    where G is the Gamow factor,s and μ(s)are the centre distance and reduced mass between the emitted one proton and daughter nucleus,respectively.V(s)is the emitted one protondaughter nucleus interaction potential.a and b are the classical inner and outer turning points of a potential barrier satisfying the conditions V(a)=V(b)=Qp.Here Qpis the one proton radioactivity released energy.It can be expressed as[65]

    where ΔMpand ΔMzare the mass excess of the parent nucleus and emitted one proton,respectively,which can be obtained from the evaluated nuclear properties table NUBASE2020[66].In the OPM,a=Rp- Rzis the difference between the radius of the parent nucleus and the emitted one proton.c=Rd+ Rzis the centre distance between the daughter nucleus and emitted proton at the touching configuration point.Rz=0.8409 fm is the radius of one proton in this work[67].Rpand Rdare the radii of the parent nucleus and daughter nucleus,respectively.They are calculated by the droplet model of an atomic nucleus and expressed as[68,69]

    where rjirepresent the equivalent sharp radius of a proton(j=p)or neutron(j=n)density distribution of a parent nucleus(i=p)or daughter nucleus(i=d),respectively.According to the finite-range droplet model theory of nuclei proposed by M?ller et al[69],the equivalent sharp radius can be expressed as

    where

    The emitted one proton-daughter nucleus interaction potential V(s)appears in equation(6)including the Coulomb VCand centrifugal Vlpart,which are expressed as

    where Zz=1 is the charge number of one proton,e2=1.4399652 MeV fm is the square of the electronic elementary charge.l is the angular momentum taken by the emitted one proton.It can be obtained by spin-parity conservation laws[70].In the process of emitting one proton preformed at the parent nucleus surface,the interaction potential between the emitted one proton and the daughter nucleus is denoted as inner potential Vin.Therefore,the total emitted one proton-daughter nucleus interaction potential V(s),shown in figure 1,is given by

    3.Results and discussion

    Firstly,we systematically investigate the favored one proton radioactivity half-lives within the OPM.From the experimentally discovered 44 one proton emitters,we select the experimental data of 9 favored one proton radioactivity nuclei as a database,and their experimental half-livesare taken from the latest evaluated nuclear properties table NUBASE2020[66]and the related[70].The adjustable parameter g is the coupling term of the reduced mass parameter p and interaction potential parameter q between the preformed one proton and daughter nucleus in inner complex nuclear many-body systems.It is obtained by fitting the experimental half-lives of these favored one proton radioactivity nuclei by minimizing the root mean square difference(rms).The rms σ represents the difference between the experimental one proton radioactivity half-lives and the calculated ones using OPM.In this work,it is defined as

    of experimental and calculated one proton radioactivity halflife for the i-th nucleus,respectively.By fitting these 9 experimental favored one proton radioactivity half-lives,the adjustable parameter is determined to be 0.0326 when minimal σ=0.470.The detailed relationship between σ and g is displayed in figure 2.The σ=0.470 means that the calculated results can reproduce the experimental half-lives well and differ from the experiment data by a factor of 2.95 on average.Using the OPM and parameter g,we systematically calculate the favored one proton radioactivity half-lives of these 9 nuclei.For comparison,the Coulomb and proximity potential model(CPPM)with Guo2013 is analyzed from our previous work[74],and the Gamow-like model(GLM)with screened electrostatic barrier[75]and UDLP[76]are used.The detailed results are listed in table 1.In table 1,the first four columns present the experimental data of one proton radioactivity parent nucleus,corresponding to one proton radioactivity released energy Qp,spin-parity transformationand the logarithmic form of experimental one proton radioactivity half-lives(Expt.),respectively.The last four columns represent the logarithmic form of theoretical one proton radioactivity half-lives(s),which are calculated using the CPPM[74],GLM[75],UDLP[76]and OPM,respectively.In order to intuitively give comparisons of the experimental half-lives with the calculated results,we present the individual decimal logarithmic deviation between experimental one proton radioactivity half-lives and calculated results in figure 3.In this figure,the blue regular triangle,green inverted triangle,red circle and purple rhombus denote the decimal logarithm deviations between the experimental one proton radioactivity half-lives and the calculated results using the CPPM,GLM,UDLP and OPM,respectively.From this figure,we can see that all the decimal logarithm deviations are basically within the range of±1,which indicates that OPM can be treated as a great tool to study the favored one proton radioactivity half-lives.Nevertheless,there are large decimal logarithm deviations between the experimental half-lives and calculated ones using the different models and/or formulas for the isomeric-state proton emitters.Taking185Bimas an example,its experimental one proton radioactive half-life is -4.192,but the theoretical calculations using the CPPM,GLM,UDLP and OPM are-5.017,-4.971,-4.759 and -5.064,respectively.The decimal logarithm deviations between the experimental data and the calculated results using these models and formulas are almost an order of magnitude.In fact,the probability of one proton emission depends on the deformation of the system and the effects arising from the deformed shape,especially for the triaxial(see,for example141Ho[77])and oblate deformed(such as the Bi isotopes,see[78–80])one proton emitters.Thus,the deformation effect can not be ignored for further study on one proton radioactivity half-lives of deformed proton emitters.

    To better demonstrate the reproducibility of OPM with other theoretical models and/or formulas for favored one proton radioactivity half-lives,we calculate the root mean square deviations σ by equation(25)and the results are listed in table 2.From table 2,we can see that the σ obtained by OPM is smaller than the ones calculated by the CPPM,which is reduced by 12.3%.

    Finally,we use the OPM to predict the half-lives of possible favored one proton radioactivity nuclei whose decay is energetically allowed or observed but not quantified in NUBASE2020[66]with the proton number region of 67 ≤Z ≤85.The detailed results are listed in table 3.For comparison,the predicted results using UDLP are also listed in table 3,in which the first three columns represent the serial number(S.No.),one proton radioactivity parent nucleus and Qpvalue,respectively.The last two columns are the logarithmic form of one proton radioactivity half-lives calculated by the UDLP and OPM,respectively.Note from table 3 that the predicted one proton radioactivity half-lives using OPM are in reasonable agreement with the ones using UDLP.Moreover,we draw the predicted one proton radioactivity half-lives against the quantity ofi.e.Geiger-Nuttall-like law for one proton radioactivity[70]in figure 4.Note from this figure that the predicted results depict an approximate straight line.These predictions are helpful for searching for the new nuclides with one proton radioactivity.

    Table 1.Comparison of favored experimental one proton radioactivity half-lives with the calculated ones using different theoretical models and/or formulas.The symbol m denotes the isomeric state.The Qp values are calculated by equation(7)using the mass excess.The mass excess values,experimental one proton radioactivity half-lives and spin-parity are taken from the[66],except 177Tl is taken from[70].

    Table 2.The standard deviations σ between favored experimental half-lives and the calculated ones using different theoretical models and/or formulas.

    Table 3.Predicted one proton radioactivity half-lives using OPM and UDLP for favored one proton radioactivity nuclei whose decay is energetically allowed or observed but not quantified in NUBASE2020[66]and the related[81,82].The Qp values are calculated by equation(7)using the mass excess values taken from the[66].

    4.Summary

    In summary,a phenomenological OPM based on the WKB theory is applied to systematically study the favored one proton radioactivity half-lives.The only adjustable parameter g is the coupling term of the reduced mass parameter p and the interaction potential parameter q between the preformed proton and daughter nucleus in inner complex nuclear many-body systems.By fitting the 9 favored experimental one proton radioactivity half-lives,we obtain g=0.0326 with theσmin= 0.470.Using the OPM and parameter g,we systematically calculate the one proton radioactivity half-lives of these nuclei.It is found that our results can reproduce the experimental data well.In addition,we extend the OPM to predict the half-lives of possible favored one proton radioactivity nuclei whose decay is energetically allowed or observed but not quantified in NUBASE2020.The predicted results are in reasonable agreement with the ones using the UDLP.These predictions may be useful for future experiments to explore the new possible one proton radioactivity.

    ORCID iDs

    国产淫语在线视频| 国产av码专区亚洲av| 少妇 在线观看| 国产高清有码在线观看视频| 亚洲av电影在线观看一区二区三区| 久久午夜综合久久蜜桃| 97在线视频观看| 欧美日韩视频高清一区二区三区二| 久久午夜综合久久蜜桃| 91在线精品国自产拍蜜月| 国精品久久久久久国模美| 国产成人a∨麻豆精品| 久久 成人 亚洲| 视频中文字幕在线观看| 丰满少妇做爰视频| 日本黄色片子视频| 欧美老熟妇乱子伦牲交| 一区在线观看完整版| 亚洲av电影在线观看一区二区三区| 欧美精品亚洲一区二区| 久久久欧美国产精品| 一级毛片黄色毛片免费观看视频| 草草在线视频免费看| 哪个播放器可以免费观看大片| 欧美日韩精品成人综合77777| 桃花免费在线播放| 激情五月婷婷亚洲| 久久青草综合色| 人人澡人人妻人| 国产黄片视频在线免费观看| 久久 成人 亚洲| 中文字幕精品免费在线观看视频 | 国产白丝娇喘喷水9色精品| 久久99一区二区三区| 欧美亚洲 丝袜 人妻 在线| 久久精品国产自在天天线| 国产成人免费观看mmmm| 精品午夜福利在线看| 国产男女内射视频| 欧美性感艳星| 午夜91福利影院| 国产黄色视频一区二区在线观看| 国产美女午夜福利| 蜜桃久久精品国产亚洲av| 午夜影院在线不卡| 免费少妇av软件| 亚洲不卡免费看| 噜噜噜噜噜久久久久久91| 日本vs欧美在线观看视频 | 亚洲精品乱码久久久v下载方式| 久久久久久久亚洲中文字幕| 国产又色又爽无遮挡免| 久久精品国产亚洲av涩爱| 九九在线视频观看精品| 日日啪夜夜撸| 国产成人91sexporn| 成人影院久久| 成人18禁高潮啪啪吃奶动态图 | 亚洲国产精品成人久久小说| 欧美老熟妇乱子伦牲交| 日本av免费视频播放| 综合色丁香网| 久久精品国产a三级三级三级| 久久久久久久久久久免费av| 草草在线视频免费看| videossex国产| av黄色大香蕉| 亚洲av日韩在线播放| 国产精品人妻久久久影院| 欧美 亚洲 国产 日韩一| 一级爰片在线观看| 91午夜精品亚洲一区二区三区| 色哟哟·www| 狂野欧美激情性bbbbbb| 在线精品无人区一区二区三| 国产黄频视频在线观看| 毛片一级片免费看久久久久| 精品久久久噜噜| 午夜福利网站1000一区二区三区| 久久国产乱子免费精品| 欧美日韩精品成人综合77777| 国产在线一区二区三区精| 国产乱人偷精品视频| 亚洲精品456在线播放app| 夜夜爽夜夜爽视频| 欧美+日韩+精品| 国产免费福利视频在线观看| 欧美亚洲 丝袜 人妻 在线| 女人精品久久久久毛片| 丰满人妻一区二区三区视频av| 国产精品国产三级国产av玫瑰| 久久影院123| 久久国内精品自在自线图片| 一级av片app| 国产免费又黄又爽又色| 色5月婷婷丁香| 制服丝袜香蕉在线| 一级片'在线观看视频| 女性被躁到高潮视频| 日韩电影二区| 国产精品福利在线免费观看| 18禁在线无遮挡免费观看视频| 97在线人人人人妻| 日韩一本色道免费dvd| 精品一区在线观看国产| 免费看av在线观看网站| 亚洲成色77777| 亚洲精品乱久久久久久| 国产片特级美女逼逼视频| 99久久精品一区二区三区| 亚洲av中文av极速乱| 人人澡人人妻人| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看 | 中文字幕久久专区| 国产极品天堂在线| 男男h啪啪无遮挡| videos熟女内射| 制服丝袜香蕉在线| 嫩草影院新地址| 丝瓜视频免费看黄片| 国产有黄有色有爽视频| 男女国产视频网站| 国产爽快片一区二区三区| 大陆偷拍与自拍| 亚洲av福利一区| 久久精品夜色国产| 成人免费观看视频高清| 精品久久久久久久久av| 极品教师在线视频| 欧美xxⅹ黑人| 久久精品久久精品一区二区三区| 涩涩av久久男人的天堂| 夜夜看夜夜爽夜夜摸| 国产精品免费大片| 国产精品久久久久久精品古装| 亚洲av二区三区四区| 一本色道久久久久久精品综合| 亚洲国产色片| 岛国毛片在线播放| 少妇的逼好多水| 日本黄色片子视频| 亚洲欧美精品自产自拍| 在线观看美女被高潮喷水网站| 黑人巨大精品欧美一区二区蜜桃 | 波野结衣二区三区在线| 欧美另类一区| 91成人精品电影| 久久热精品热| 精品少妇内射三级| 国产又色又爽无遮挡免| 国产成人91sexporn| 夜夜骑夜夜射夜夜干| 欧美日韩亚洲高清精品| 大话2 男鬼变身卡| 欧美国产精品一级二级三级 | 汤姆久久久久久久影院中文字幕| 好男人视频免费观看在线| 成年女人在线观看亚洲视频| 一区二区av电影网| 久久精品国产亚洲网站| 免费观看在线日韩| 久久精品久久精品一区二区三区| h视频一区二区三区| 91aial.com中文字幕在线观看| 亚洲高清免费不卡视频| 成年av动漫网址| 国产成人精品福利久久| 99精国产麻豆久久婷婷| 亚洲第一av免费看| 成年人免费黄色播放视频 | 黄片无遮挡物在线观看| 中文精品一卡2卡3卡4更新| 岛国毛片在线播放| 国产有黄有色有爽视频| 3wmmmm亚洲av在线观看| 噜噜噜噜噜久久久久久91| 国产淫片久久久久久久久| av黄色大香蕉| 久久久久久久久久久免费av| 婷婷色麻豆天堂久久| 激情五月婷婷亚洲| 精品久久久精品久久久| av在线app专区| 制服丝袜香蕉在线| 99久久中文字幕三级久久日本| 国模一区二区三区四区视频| 亚洲无线观看免费| 亚洲自偷自拍三级| 亚洲美女搞黄在线观看| 国产午夜精品久久久久久一区二区三区| 一区二区三区免费毛片| 国产探花极品一区二区| 国产精品免费大片| 免费黄频网站在线观看国产| 欧美日韩精品成人综合77777| 欧美 亚洲 国产 日韩一| 人妻一区二区av| 亚洲怡红院男人天堂| 熟女人妻精品中文字幕| 最近中文字幕2019免费版| 成人影院久久| 青春草视频在线免费观看| 如日韩欧美国产精品一区二区三区 | 91午夜精品亚洲一区二区三区| 久久韩国三级中文字幕| 色5月婷婷丁香| 一本色道久久久久久精品综合| 久久精品久久久久久久性| 国产av码专区亚洲av| 美女xxoo啪啪120秒动态图| 乱人伦中国视频| 精品国产一区二区三区久久久樱花| 日本色播在线视频| 午夜免费男女啪啪视频观看| 三级经典国产精品| 日本av免费视频播放| 国产精品三级大全| 亚洲国产精品成人久久小说| 国产日韩欧美在线精品| 国产免费福利视频在线观看| 亚洲av电影在线观看一区二区三区| 亚洲图色成人| 久久久久久久久久久久大奶| 精品少妇久久久久久888优播| 91成人精品电影| 2022亚洲国产成人精品| 人人妻人人添人人爽欧美一区卜| 亚洲国产成人一精品久久久| 人体艺术视频欧美日本| 高清av免费在线| 亚洲av成人精品一二三区| 如日韩欧美国产精品一区二区三区 | 80岁老熟妇乱子伦牲交| 日日啪夜夜撸| 色视频在线一区二区三区| 久久精品久久久久久久性| 高清视频免费观看一区二区| av播播在线观看一区| 欧美精品国产亚洲| 99久国产av精品国产电影| 国产一区有黄有色的免费视频| 免费大片黄手机在线观看| 最黄视频免费看| 久久国产亚洲av麻豆专区| 中文字幕亚洲精品专区| 成人免费观看视频高清| 久久久久久久久大av| 久久午夜福利片| 内地一区二区视频在线| 黄色日韩在线| 99热网站在线观看| 一本久久精品| 国产一区有黄有色的免费视频| 美女脱内裤让男人舔精品视频| 亚洲精品乱久久久久久| 自线自在国产av| 在线观看免费日韩欧美大片 | 在线观看人妻少妇| 视频区图区小说| 国产日韩欧美视频二区| 22中文网久久字幕| 久久久久网色| 夜夜看夜夜爽夜夜摸| 一区二区三区四区激情视频| 国产伦在线观看视频一区| 亚洲av福利一区| 久久久久久久久久久丰满| 欧美日韩在线观看h| 乱系列少妇在线播放| 亚洲成人av在线免费| 久久99热这里只频精品6学生| 成年女人在线观看亚洲视频| 自拍欧美九色日韩亚洲蝌蚪91 | 色哟哟·www| 丁香六月天网| 国产一区二区在线观看av| 国产无遮挡羞羞视频在线观看| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 大陆偷拍与自拍| 在线观看美女被高潮喷水网站| 久热这里只有精品99| 日韩伦理黄色片| 毛片一级片免费看久久久久| 欧美+日韩+精品| 大码成人一级视频| 国产亚洲一区二区精品| 欧美精品一区二区大全| 久久久久网色| 两个人的视频大全免费| 久久国内精品自在自线图片| 中文字幕人妻丝袜制服| 婷婷色综合www| h日本视频在线播放| 观看美女的网站| 蜜桃在线观看..| 五月玫瑰六月丁香| 免费黄频网站在线观看国产| 我的女老师完整版在线观看| 精品亚洲成a人片在线观看| 日本午夜av视频| 国产中年淑女户外野战色| 亚洲av日韩在线播放| 黄色毛片三级朝国网站 | 亚洲va在线va天堂va国产| 国产精品99久久久久久久久| 七月丁香在线播放| 亚洲精品成人av观看孕妇| 久久狼人影院| 久久精品夜色国产| 精品少妇黑人巨大在线播放| 美女国产视频在线观看| av女优亚洲男人天堂| 少妇的逼水好多| 交换朋友夫妻互换小说| 天美传媒精品一区二区| 日本猛色少妇xxxxx猛交久久| 人妻少妇偷人精品九色| 亚洲精品一二三| 少妇人妻 视频| 精品国产国语对白av| 精品视频人人做人人爽| 免费观看在线日韩| 国产日韩一区二区三区精品不卡 | 亚洲情色 制服丝袜| 蜜桃久久精品国产亚洲av| 我的老师免费观看完整版| 久久99热这里只频精品6学生| 久久久a久久爽久久v久久| 亚洲国产av新网站| 高清毛片免费看| 久久精品久久久久久噜噜老黄| 日本黄色片子视频| 成人黄色视频免费在线看| 久久精品国产亚洲网站| 久久久午夜欧美精品| 51国产日韩欧美| 成人毛片a级毛片在线播放| 老司机影院成人| 99视频精品全部免费 在线| 毛片一级片免费看久久久久| 夫妻性生交免费视频一级片| 18禁在线无遮挡免费观看视频| 国产精品.久久久| 亚洲色图综合在线观看| h日本视频在线播放| 一二三四中文在线观看免费高清| 精品酒店卫生间| 亚洲欧美日韩卡通动漫| 亚洲av二区三区四区| 男男h啪啪无遮挡| 五月开心婷婷网| 亚洲,一卡二卡三卡| 国产成人freesex在线| 黄色怎么调成土黄色| 欧美激情国产日韩精品一区| 国产av国产精品国产| 亚洲欧美日韩东京热| 免费观看性生交大片5| 国产一区二区三区综合在线观看 | 大码成人一级视频| 亚洲人成网站在线播| 制服丝袜香蕉在线| h日本视频在线播放| 五月伊人婷婷丁香| 日韩免费高清中文字幕av| 日本欧美视频一区| 国产精品福利在线免费观看| 黄色毛片三级朝国网站 | 少妇被粗大猛烈的视频| 欧美日韩av久久| 精品少妇黑人巨大在线播放| 丰满人妻一区二区三区视频av| 国产日韩欧美视频二区| kizo精华| 久久久久久伊人网av| 99热6这里只有精品| 亚洲成人av在线免费| 一级毛片久久久久久久久女| 精品亚洲成a人片在线观看| 久久久午夜欧美精品| 六月丁香七月| av专区在线播放| 色婷婷av一区二区三区视频| 51国产日韩欧美| 人妻夜夜爽99麻豆av| 久久久久网色| 最新的欧美精品一区二区| 国产乱来视频区| 国产精品偷伦视频观看了| 亚洲成人一二三区av| 69精品国产乱码久久久| 亚洲国产精品国产精品| 777米奇影视久久| 黄色欧美视频在线观看| 国产视频首页在线观看| 十八禁网站网址无遮挡 | 国产成人精品久久久久久| 久久久久网色| 免费高清在线观看视频在线观看| 国产精品久久久久久精品古装| 美女主播在线视频| 日日啪夜夜爽| 一边亲一边摸免费视频| 国产精品国产av在线观看| 久久久久人妻精品一区果冻| 一个人看视频在线观看www免费| 国产av国产精品国产| 人人妻人人澡人人爽人人夜夜| 成人无遮挡网站| 欧美三级亚洲精品| 最近的中文字幕免费完整| 国产精品偷伦视频观看了| 久热久热在线精品观看| 久久久久久久久大av| 国产日韩欧美在线精品| 伦理电影免费视频| 国产欧美亚洲国产| 国产在视频线精品| 日韩一本色道免费dvd| 丰满饥渴人妻一区二区三| 国产真实伦视频高清在线观看| 晚上一个人看的免费电影| 亚洲怡红院男人天堂| 又黄又爽又刺激的免费视频.| 一级片'在线观看视频| 一级毛片aaaaaa免费看小| 久久久精品94久久精品| 国产在线视频一区二区| 一区二区三区乱码不卡18| 精品熟女少妇av免费看| 少妇 在线观看| 深夜a级毛片| 九九爱精品视频在线观看| 97超视频在线观看视频| 两个人免费观看高清视频 | 久久久国产精品麻豆| 能在线免费看毛片的网站| 我的老师免费观看完整版| 亚洲精品成人av观看孕妇| 亚洲精品日韩av片在线观看| videos熟女内射| 日韩av免费高清视频| 91精品一卡2卡3卡4卡| 一级毛片久久久久久久久女| 99re6热这里在线精品视频| 久久综合国产亚洲精品| 久久久久久久久久久免费av| 大香蕉97超碰在线| 日韩av不卡免费在线播放| 亚洲欧美一区二区三区国产| 深夜a级毛片| 亚洲精品一区蜜桃| 日本猛色少妇xxxxx猛交久久| 尾随美女入室| 午夜91福利影院| 91久久精品电影网| 亚洲精品中文字幕在线视频 | 午夜激情福利司机影院| 少妇被粗大猛烈的视频| 国产日韩欧美在线精品| 欧美性感艳星| av天堂中文字幕网| 日韩 亚洲 欧美在线| 成人黄色视频免费在线看| 97在线人人人人妻| a级毛片免费高清观看在线播放| 麻豆成人av视频| 六月丁香七月| 精品人妻偷拍中文字幕| 久久久久久久大尺度免费视频| 一级毛片 在线播放| 人妻 亚洲 视频| 久久99热这里只频精品6学生| 亚洲成色77777| 国产淫片久久久久久久久| 中文欧美无线码| 乱人伦中国视频| 国产男女内射视频| 欧美日本中文国产一区发布| 久久久久人妻精品一区果冻| 啦啦啦在线观看免费高清www| 亚洲精品乱码久久久v下载方式| 少妇被粗大猛烈的视频| 美女视频免费永久观看网站| 欧美精品一区二区免费开放| 2022亚洲国产成人精品| 国产成人aa在线观看| 两个人的视频大全免费| 日韩亚洲欧美综合| 寂寞人妻少妇视频99o| 国产在视频线精品| 国产有黄有色有爽视频| 日韩免费高清中文字幕av| 免费观看在线日韩| 亚洲va在线va天堂va国产| 黑丝袜美女国产一区| 国产精品久久久久久精品电影小说| 欧美日韩在线观看h| 精品亚洲成国产av| 国产视频首页在线观看| .国产精品久久| 熟女人妻精品中文字幕| 国产极品粉嫩免费观看在线 | 亚洲av在线观看美女高潮| 国产精品三级大全| 日韩,欧美,国产一区二区三区| 夜夜骑夜夜射夜夜干| 亚洲真实伦在线观看| 国产乱人偷精品视频| 一级毛片电影观看| 国产精品一区二区在线观看99| a 毛片基地| 26uuu在线亚洲综合色| 国产一区有黄有色的免费视频| 亚洲精品国产色婷婷电影| 国产成人一区二区在线| 人妻人人澡人人爽人人| 欧美亚洲 丝袜 人妻 在线| 高清在线视频一区二区三区| 国产高清国产精品国产三级| 99精国产麻豆久久婷婷| 建设人人有责人人尽责人人享有的| 搡女人真爽免费视频火全软件| 午夜免费观看性视频| 久久97久久精品| 日韩欧美 国产精品| 中文字幕制服av| 一级片'在线观看视频| 久久鲁丝午夜福利片| 国产亚洲精品久久久com| 国产精品无大码| 午夜影院在线不卡| 国产高清有码在线观看视频| 中文天堂在线官网| 免费黄网站久久成人精品| 高清av免费在线| 大香蕉久久网| 狂野欧美白嫩少妇大欣赏| 亚洲怡红院男人天堂| 人人妻人人看人人澡| 欧美日韩国产mv在线观看视频| 国产黄色免费在线视频| 精品亚洲成国产av| 校园人妻丝袜中文字幕| 人妻夜夜爽99麻豆av| 国产欧美日韩一区二区三区在线 | 一级黄片播放器| 亚洲国产精品专区欧美| 久久国产精品男人的天堂亚洲 | 青青草视频在线视频观看| 秋霞伦理黄片| 高清av免费在线| 日韩一区二区视频免费看| 日韩成人av中文字幕在线观看| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲高清精品| √禁漫天堂资源中文www| h日本视频在线播放| 免费在线观看成人毛片| 最近最新中文字幕免费大全7| 午夜视频国产福利| 久久韩国三级中文字幕| 2022亚洲国产成人精品| 国产一区有黄有色的免费视频| 久久精品久久精品一区二区三区| 欧美精品人与动牲交sv欧美| 国产乱人偷精品视频| 美女xxoo啪啪120秒动态图| 国产成人精品久久久久久| 国产欧美日韩一区二区三区在线 | 午夜激情福利司机影院| 女人精品久久久久毛片| 亚洲在久久综合| 亚洲国产精品成人久久小说| 国产伦精品一区二区三区视频9| 国产精品不卡视频一区二区| 18禁在线无遮挡免费观看视频| 亚洲激情五月婷婷啪啪| 久久久国产欧美日韩av| 青春草亚洲视频在线观看| 黄色配什么色好看| 男人爽女人下面视频在线观看| 一区二区av电影网| 麻豆成人av视频| 久久久久精品性色| 欧美日韩视频精品一区| a级一级毛片免费在线观看| 人妻人人澡人人爽人人| 观看av在线不卡| 另类亚洲欧美激情| 亚洲四区av| 最新中文字幕久久久久| 日日摸夜夜添夜夜添av毛片| 热99国产精品久久久久久7| 久久精品久久久久久噜噜老黄| 国产精品人妻久久久久久| av不卡在线播放| 国产极品粉嫩免费观看在线 | 人体艺术视频欧美日本| 香蕉精品网在线| 男女国产视频网站| 亚洲第一区二区三区不卡| 狠狠精品人妻久久久久久综合| 久久影院123| 国产女主播在线喷水免费视频网站| 亚洲不卡免费看| 少妇裸体淫交视频免费看高清| 国产成人精品无人区| 女的被弄到高潮叫床怎么办| 国产极品粉嫩免费观看在线 | 全区人妻精品视频| 女的被弄到高潮叫床怎么办| 狂野欧美激情性xxxx在线观看|