• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved Harmony Search with Optimal Deep Learning Enabled Classification Model

    2022-11-10 02:32:08MahmoudRagabandAdelBahaddad
    Computers Materials&Continua 2022年10期

    Mahmoud Ragaband Adel A.Bahaddad

    1Information Technology Department,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    2Centre for Artificial Intelligence in Precision Medicines,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    3Mathematics Department,Faculty of Science,Al-Azhar University,Naser City,11884,Cairo,Egypt

    4Information Systems Department,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    Abstract:Due to drastic increase in the generation of data,it is tedious to examine and derive high level knowledge from the data.The rising trends of high dimension data gathering and problem representation necessitates feature selection process in several machine learning processes.The feature selection procedure establishes a generally encountered issue of global combinatorial optimization.The FS process can lessen the number of features by the removal of unwanted and repetitive data.In this aspect,this article introduces an improved harmony search based global optimization for feature selection with optimal deep learning (IHSFS-ODL) enabled classification model.The proposed IHSFS-ODL technique intends to reduce the curse of dimensionality and enhance classification outcomes.In addition,the IHSFSODL technique derives an IHSFS technique by the use of local search method with traditional harmony search algorithm (HSA) for global optimization.Besides,ODL based classifier including quantum behaved particle swarm optimization (QPSO) with gated recurrent unit (GRU) is applied for data classification process.The utilization of HSA for the choice of features and QPSO algorithm for hyper parameter tuning processes helps to accomplish maximum classification performance.In order to demonstrate the enhanced outcomes of the IHSFS-ODL technique,a series of simulations were carried out and the results reported the betterment over its recent state of art approaches.

    Keywords:Data classification;feature selection;global optimization;deep learning;metaheuristics

    1 Introduction

    Due to the tremendous growth of advanced technologies,new internet,and computer applications have created massive number of information at a rapid speed,like text,video,voice,photo,and data attained from social relationships and the growth of cloud computing and Internet of things[1].Such information frequently has the features of higher dimensions that possess a higher problem for decision-making and data analysis.The feature selection(FS)method has proved practice and theory efficient in processing higher-dimension data and enhances learning efficacy[2,3].Machine learning(ML)is the widely employed method for addressing large and complicated tasks through examining the pertinent data previously existing in dataset[4].The ML method is programming computers to enhance an efficiency standard with past experience or example data.The election of pertinent features and removal of unrelated ones is an important problem in ML that become a public challenge in the area of ML[5].FS is commonly employed as a pre-processing stage to ML which selects a set of features from the innovative subset of features creating patterns in trained data.Recently,FS method was effectively employed in classifier problems,for example,data retrieval processing,pattern classification,and data mining(DM)applications[6].

    Recently,FS become a study of area of interest.The FS is a pre-processing method for efficient data investigation in the emergent area of DM that focuses on selecting a set of unique features thus the feature space is minimized optimally based on the predefined target[7].FS is the essential method that could enhance the prediction performance of algorithm by minimizing the dimensionality and impact the classification performance rate,reducing the number of information required for the learning procedure,and removing inappropriate features[8,9].FS is a significant area of study and progress since 1970 and proved to be efficient in eliminating inappropriate features,minimizing the cost of dimensionality and feature measurement,increasing classification performance and classifier performance rate,and enhancing understandability of learned results[10].

    Nahar et al.[11]proposed an ML based detection of Parkinson’s disease.Classification and FS methods are utilized in the presented recognition method.Boruta,Random Forest (RF) Classifier,and Recursive Feature Elimination(RFE)were utilized for the FS process.Four classifier approaches are taken into account for detecting PD that is GB,XGBoost,bagging,and extreme tree.The authors in[12]presented a FS method to detect death events in heart disease patients at the time of treatment for choosing the significant feature.Various ML methods are utilized.Furthermore,the precision attained by this presented method is compared to the classification performance.Zhang et al.[13]developed a correlation reduction system with private FS to consider the problem of privacy loss once the information has correlation in ML task.The presented system includes five phases for the purpose of preserving privacy,supporting precision in the predictive outcomes,and handling the extension of data correlation.In this method,the effect of data correlation is comforted by the presented approach and furthermore,the security problem of data correlation in learning is assured.

    Chiew et al.[14]developed an FS architecture for ML-based phishing detective scheme named the Hybrid Ensemble FS (HEFS).Initially,a Cumulative Distribution Function gradient (CDF-g)approach is utilized for producing primary feature set that is later given to the data perturbation ensemble for yielding second feature sub sets.Khamparia et al.[15]designed an FS technique that employs deep learning (DL) approach to group the output created by different classifications.The FS method can be implemented by integrating genetic algorithm(GA)and Bhattacharya coefficient whereby fitness is calculated according to ensemble output of different classification that is implemented by DL approaches.The suggested technique has been exploited on two commercially presented neuromuscular disorder data sets.

    This article introduces an improved harmony search based global optimization for feature selection with optimal deep learning (IHSFS-ODL) enabled classification model.The proposed IHSFSODL technique derives an IHSFS technique with the inclusion of local search method with traditional harmony search algorithm(HSA)for global optimization.Moreover,ODL based classifier including quantum behaved particle swarm optimization(QPSO)with gated recurrent unit(GRU)is applied for data classification process.A wide range of simulations was carried out to demonstrate the enhanced outcomes of the IHSFS-ODL technique interms of different measures.

    2 The Proposed Model

    This article has developed a new IHSFS-ODL approach for reducing the curse of dimensionality and enhancing classification outcomes.The proposed IHSFS-ODL technique contains distinct operations namely Z-score normalization,IHSFS based choice of features,GRU based classification,and QPSO based hyperparameter optimized.The utilization of HSA for the choice of features and QPSO algorithm for hyper parameter tuning processes helps to accomplish maximum classification performance.Fig.1 illustrates the overall process of IHSFS-ODL technique.

    2.1 Pre-Processing

    Initially,the Z-score normalization approach is employed.It is a standard and normalization approach which defines a number of standard deviations[16].It preferably ranges from[-3,+3].It undergoes normalization of the data for transforming the data with distinct scales to the default scale.For z-score based normalization,the difference of the average population from actual data point and partitioned it using the standard deviation that offers a score ranges between[-3,+3].Therefore,reflecting how many standard deviations a point is above or below the mean as determined using Eq.(1),wherexsignifies the value of a specific instance,μdenotes the mean andσsymbolizes the standard deviation.

    2.2 Design of IHSFS Technique

    Next to data pre-processing,the IHSFS technique can be applied for the optimal selection of features from the pre-processed data.During the election of features,the pre-processed data is employed in IHSFS technique for choosing the features.The metaheuristic search on optimization problems that sample rates for the perfect state of harmony by improvising searching method.HS is characterized as a set of solution vector named as a harmony memory (HM),whereby all the individuals(vector or harmony)was analogous to particle in particle swarm optimization(PSO)[17].HM was initialized by an arbitrary solution vector and has upgraded by all the improvisation by some parameter adjustment.The control parameter is pitch adjustment rate(PAR),bandwidth(BW),and harmony memory consideration rate (HMCR).Optimization with harmony search method is given below

    Step1:Initialize Control Parameter

    Step2:Initialize HM.

    Step3:Estimate efficiency of existing harmony.

    Step4:Estimate efficiency of recent sample rated harmony and improvise harmony.

    Step5:Check end condition

    In the system,the length of harmony is count of samples to be elected from the dataset.It employs real encoding system for representing all the bits of the harmony.For harmony vector depiction,all the bits are assigned with real numbers drawn from the searching with lower limit 1 and upper limit with total number of features (TNF) and rounded to integer value representing the feature index.To harmony calculation,related samples a certain harmony contain,the classification error with samples would be lower.Hence,we assume classification error as the FF.Fitness values of harmony are estimated considering classification error as the FF as follows

    The current harmony is improvised as for j=1 to NOF,if(rand(O,1)<HMCR)

    whereasgcharacterizes every sample index andf=1,2,3,···,HMSif(rand(O,1)<PAR)

    Now,the float number optimization approach is utilized to feature depiction.According to the probability of feature in the feature subset,feature index is estimated by the distribution factor in sample ration improvisation asgiven below.

    whilePDj,indicates the amount of times featurejcomes under better subset (the harmony fitness is better than or equivalent to mean fitness) andNDj,shows the amount of times featurejis come under bad subset(the harmony fitness is lesser than equivalent to mean fitness).The high possibility feature has high chance to come in the last subset.Lastly based on the ending conditions(amount of iterations or tolerable classifier error)improvisation was performed and minimized set of features is carefully chosen from this phase.Whenfit(gnew(j)is greater than fir(worst)then update harmony as follow

    After all iterations,the parameter HMCR,PAR,and BW is adopted ad follows

    with Eq.(7) a sigmoidal transformation is employed to this element for bringing the value into a range.These works show a multi-stage FS method executing the benefits of filter and wrapper methodologies.

    In HS technique,the pitch fine-tuning function roles a vital play from the searching method.But,to set an appropriate value of bw is most complex,thus it can be presented a local search approach for replacing the pitch altering function.The local searching work is as follows[18]:

    Step1 Choosemharmony vector arbitrarily and define the existing optimum harmony vectorxbestfrom the HM.

    Step2 for calculating the mean value of these arbitrarily chosen harmony vectors,the calculation formula is demonstrated as:

    2.3 Design of QPSO-GRU Classification Model

    Once the features are chosen,the classification process is concurrently carried out for every instance using the GRU model.Recurrent neural network (RNN) is most appropriate to process sequential data,however,if the input data is much time,it could not resolve the long-term dependence connection,it is effect gradient explosion or disappearance.The GRU has easier than the infrastructure of long short term memory(LSTM)networks,and their effects are same as LSTM[19].It can be select the GRU network for learning the time dependence from the signal.Fig.3 depicts the framework of GRU.There are only 2 gates from the GRU method:the update gate(that is a fusion of forgetting as well as input gates)and reset gate.It can be computed as:

    The update gate has been utilized for controlling the extent to that the state data in the preceding moment was carried as to the present state,and reset gate control that several data in the preceding state was expressed as the present candidate set

    wherernimplies the reset gate,znstands for the update gate,xnrefers the input vector,hndenotes the hidden state at time n,hn-1determines the hidden state in the preceding unit,WandUindicates the weighted matrices,brepresents the deviation parameters.σlogis the logistic sigmoid function.

    In order to determine the hyperparameters of the GRU model,the QPSO algorithm is applied to it.Sun et al.presented a new different of PSO,called QPSO that executes the typical PSO from searching capability[20].The QPSO algorithm gathers a target point to all the particles;referGi=(gi1,gi2,...,giq)as the target point to particles,of that the co-ordinates are

    where(βij)represents the arbitrary number from the interval zero and one.The trajectory study illustrates thatGiis the local attractor of particles;i.e.,in PSO,particleiconverges to it.The place of particlesihas been upgraded as:

    whereuimplies the arbitrary number from the interval zero and one andC=[c1,c1,...,cq]has recognized as the mean optimum place that is determined as the average of personal optimum place of every particle,so,

    The parameterαis named as Contraction-Expansion Coefficient that is tuned for controlling the convergence speed of techniques.As the iteration of QPSO has been distinct in individuals of PSO,the technique of BPSO could not be executed.The technique of BPSO could not be implemented in QPSO.Sun et al.established the crossover function of genetic algorithm (GA) as to QPSO and presented binary QPSO(BQPSO).During the BQPSO,Xi=(xi1,xi2,...,xiq)until signifies the place of particlesi,however,it can be essential for emphasizing thatXiis a binary string before a vector,andxijis that substring ofXi,not thejthbit from the binary string.Consider that the length of all the substrings arel;afterward the length ofXiislq.

    The target pointGito particlesihave been created with crossover function;i.e.,BQPSO applies crossover function on the personal optimum placePiand the global optimum placePgfor generating 2 offspring binary strings,andGihas arbitrarily chosen in them.

    Define

    To all the bits ofgijifpm >randimplement the functions as follows:when the state of the bit is 1,otherwise fixed their state to 0;then set their state to 0.The QPSO method derives a fitness function to accomplish enhanced classification accuracy.It defines a positive integer for representing the good accuracy of the candidate solution.In the study,the minimization of the classification error rate is taken into account as the fitness function,as follows.The optimum solution has a minimum error rate and the worst solution attains an improved error rate.

    3 Experimental Validation

    The performance validation of the IHSFS-ODL model is tested using four benchmark datasets[21]namely Liver(345 samples with 6 features),WDBC(569 samples with 30 features),soyabean(685 samples with 35 features),and glass(214 samples with 9 features)datasets.

    Tab.1 and Fig.4 report the FS results of the IHSFS-ODL model with recent methods.The results indicated that the IHSFS-ODL model has chosen only minimal number of features.

    Table 1:Result analysis of IHSFS-ODL technique with existing approaches under 4 datasets

    For instance,with liver dataset and 100 iterations,the IHSFS-ODL model has derived only 4 features whereas the support vector machine(SVM),GA,and ICGFSA techniques have provided 6,5,and 5 features respectively.In addition,with WDBC dataset and 100 iterations,the IHSFS-ODL method has derived only 20 features whereas the SVM,GA,and ICGFSA approaches have offered 25,22,and 24 features correspondingly.Followed by,with soybean dataset and 100 iterations,the IHSFSODL algorithm has derived only 27 features whereas the SVM,GA,and ICGFSA techniques have provided 33,30,and 31 features respectively.In line with,with glass dataset and 100 iterations,the IHSFS-ODL technique has derived only 5 features whereas the SVM,GA,and ICGFSA approaches have provided 7,9,and 6 features correspondingly.

    Tab.2 and Figs.5-8 illustrates overall classification results of the IHSFS-ODL model under distinct iterations.The results show that the IHSFS-ODL model has accomplished enhanced classification results on the test datasets applied.

    For instance,with liver dataset and 100 iterations,the IHSFS-ODL model has provided higher accuracy of 74%whereas the SVM,GA,and ICGFSA models have accomplished lower accuracy of 67%,68%,and 69%respectively.Similarly,with 500 iterations,the IHSFS-ODL model has resulted in increased accuracy of 94%whereas the SVM,GA,and ICGFSA models have demonstrated reduced accuracy of 88%,89%,and 91%respectively.

    A detailed running time examination of the IHSFS-ODL model is carried out with recent methods in Tab.3 and Fig.9.The experimental results indicated that the IHSFS-ODL model has accomplished minimal running time over other ones.For example,on liver dataset,the IHSFS-ODL model has obtained reduced running time of 0.149 min whereas the SVM,GA,and ICGFSA techniques have offered increased running time of 0.187,0.185,and 0.205 min respectively.Moreover,on soybean dataset,the IHSFS-ODL method has gained diminished running time of 0.186 min whereas the SVM,GA,and ICGFSA techniques have obtainable higher running times of 0.218,0.245,and 0.220 min correspondingly.Furthermore,on glass dataset,the IHSFS-ODL technique has obtained minimal running time of 0.190 min whereas the SVM,GA,and ICGFSA approaches have offered increased running time of 0.195,0.205,and 0.197 min correspondingly.

    Similarly,with WDBC dataset and 100 iterations,the IHSFS-ODL algorithm has obtainable superior accuracy of 71% whereas the SVM,GA,and ICGFSA systems have accomplished lower accuracy of 60%,63%,and 63%respectively.At the same time,with 500 iterations,the IHSFS-ODL system has resulted in maximal accuracy of 87% whereas the SVM,GA,and ICGFSA approaches have outperformed decreased accuracy of 79%,84%,and 85%correspondingly.

    Table 2:Overall classification result analysis of IHSFS-ODL technique with different count of iterations

    Followed by,with soybean dataset and 100 iterations,the IHSFS-ODL method has provided higher accuracy of 67% whereas the SVM,GA,and ICGFSA approaches have accomplished lower accuracy of 51%,58%,and 62%respectively.Besides,with 500 iterations,the IHSFS-ODL model has resulted in increased accuracy of 89% whereas the SVM,GA,and ICGFSA models have exhibited lower accuracy of 78%,85%,and 86%correspondingly.

    Lastly,with glass dataset and 100 iterations,the IHSFS-ODL algorithm has provided maximal accuracy of 83%whereas the SVM,GA,and ICGFSA algorithms have accomplished lower accuracy of 69%,70%,and 80% correspondingly.At last,with 500 iterations,the IHSFS-ODL model has resulted in maximal accuracy of 91%whereas the SVM,GA,and ICGFSA models have demonstrated reduced accuracy of 85%,86%,and 89%correspondingly.

    Table 3:Running time analysis of IHSFS-ODL technique with recent approaches

    Finally,the end FS results of the IHSFS-ODL model are examined with recent methods[22]as demonstrated in Tab.4 and Fig.10.The results show that the IHSFS-ODL model has accomplished effectual outcomes with less number of chosen features.For instance,on Liver dataset,the IHSFSODL model has elected 2 features whereas the SVM,GA,and ICGFSA techniques have chosen 5,4,and 3 features respectively.In addition,on WDBC dataset,the IHSFS-ODL method has elected 7 features whereas the SVM,GA,and ICGFSA algorithms have chosen 16,14,and 10 features correspondingly.Along with that,on Glass dataset,the IHSFS-ODL technique has elected 2 features whereas the SVM,GA,and ICGFSA systems have chosen 5,6,and 4 features correspondingly.

    From the above mentioned results and discussion,it is evident that the IHSFS-ODL model has resulted in maximum classification results over the other existing techniques.

    Table 4:Feature selection analysis of IHSFS-ODL technique with recent methods

    4 Conclusion

    This article has developed a new IHSFS-ODL technique in order to reduce the curse of dimensionality and enhance classification outcomes.The proposed IHSFS-ODL technique contains distinct operations namely Z-score normalization,IHSFS based choice of features,GRU based classification,and QPSO based hyperparameter optimization.The utilization of HSA for the choice of features and QPSO algorithm for hyper parameter tuning processes helps to accomplish maximum classification performance.In order to demonstrate the enhanced outcomes of the IHSFS-ODL technique,a series of simulations were carried out and the results reported the betterment over its recent state of art approaches.Therefore,the IHSFS-ODL technique can be utilized as a proficient tool for global optimization processes.In future,hybrid DL models can be introduced to enhance the classification outcome.

    Acknowledgement:This work was funded by the Deanship of Scientific Research (DSR),King Abdulaziz University,Jeddah,under Grant No.(D-914-611-1443).The authors,therefore,gratefully acknowledge DSR technical and financial support.

    Funding Statement:This work was funded by the Deanship of Scientific Research (DSR),King Abdulaziz University,Jeddah,under Grant No.(D-914-611-1443).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    h视频一区二区三区| 又大又黄又爽视频免费| 爱豆传媒免费全集在线观看| 春色校园在线视频观看| 自线自在国产av| 国产高清三级在线| 伦精品一区二区三区| 精品人妻偷拍中文字幕| 少妇人妻久久综合中文| 亚洲成人手机| 超碰97精品在线观看| 亚洲三级黄色毛片| 久久久久久久久久人人人人人人| 日韩伦理黄色片| 国产视频首页在线观看| 秋霞在线观看毛片| 成人午夜精彩视频在线观看| 一级,二级,三级黄色视频| av又黄又爽大尺度在线免费看| 丝袜美足系列| 欧美亚洲日本最大视频资源| 国产一区二区三区综合在线观看 | av天堂久久9| 亚洲精品国产av成人精品| 免费黄网站久久成人精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 熟女电影av网| 成人国产麻豆网| 亚洲 欧美一区二区三区| 青春草国产在线视频| 一二三四在线观看免费中文在 | 人体艺术视频欧美日本| 极品人妻少妇av视频| 亚洲色图综合在线观看| 成年av动漫网址| 久久久久精品人妻al黑| 街头女战士在线观看网站| √禁漫天堂资源中文www| 亚洲欧美日韩卡通动漫| 免费黄色在线免费观看| 在线精品无人区一区二区三| 最黄视频免费看| 人人妻人人添人人爽欧美一区卜| 妹子高潮喷水视频| 日韩,欧美,国产一区二区三区| 免费高清在线观看视频在线观看| 国产综合精华液| 三级国产精品片| 亚洲精品久久成人aⅴ小说| 亚洲欧美精品自产自拍| 视频区图区小说| 国产精品女同一区二区软件| 国产精品久久久久久精品古装| 国产精品人妻久久久久久| 一级片免费观看大全| 国产欧美另类精品又又久久亚洲欧美| 成年人午夜在线观看视频| 又黄又爽又刺激的免费视频.| 色网站视频免费| 国产精品秋霞免费鲁丝片| 日日爽夜夜爽网站| 久久久久久久大尺度免费视频| 精品99又大又爽又粗少妇毛片| 国产在线一区二区三区精| 亚洲欧美色中文字幕在线| 精品人妻熟女毛片av久久网站| 人成视频在线观看免费观看| 免费播放大片免费观看视频在线观看| 日韩制服骚丝袜av| 亚洲精品国产色婷婷电影| 亚洲国产最新在线播放| 91精品国产国语对白视频| 久久这里只有精品19| 亚洲av电影在线观看一区二区三区| 黄色视频在线播放观看不卡| 在线亚洲精品国产二区图片欧美| 国产av一区二区精品久久| 国产欧美亚洲国产| 日产精品乱码卡一卡2卡三| 女人精品久久久久毛片| 一级片'在线观看视频| 久久精品久久久久久噜噜老黄| 日本vs欧美在线观看视频| 久久午夜综合久久蜜桃| 啦啦啦中文免费视频观看日本| 亚洲av电影在线观看一区二区三区| 久热久热在线精品观看| av不卡在线播放| 五月天丁香电影| 一二三四在线观看免费中文在 | 国产免费一区二区三区四区乱码| 国产亚洲一区二区精品| 老女人水多毛片| 九草在线视频观看| 在线精品无人区一区二区三| 伊人亚洲综合成人网| 亚洲色图 男人天堂 中文字幕 | 亚洲婷婷狠狠爱综合网| 王馨瑶露胸无遮挡在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 成人影院久久| 精品少妇久久久久久888优播| 99久国产av精品国产电影| av电影中文网址| 91午夜精品亚洲一区二区三区| 又粗又硬又长又爽又黄的视频| 久久韩国三级中文字幕| 国产成人欧美| 久久久欧美国产精品| 日韩av在线免费看完整版不卡| 国产国拍精品亚洲av在线观看| 亚洲国产av影院在线观看| 美女福利国产在线| 国产爽快片一区二区三区| 伦精品一区二区三区| 欧美变态另类bdsm刘玥| 国产成人精品福利久久| 久久久久久久久久人人人人人人| 超色免费av| 久久久国产一区二区| 亚洲综合精品二区| 欧美成人午夜免费资源| 欧美日本中文国产一区发布| 亚洲一码二码三码区别大吗| 亚洲av.av天堂| 在线观看三级黄色| 国产亚洲最大av| 国语对白做爰xxxⅹ性视频网站| 欧美精品亚洲一区二区| 乱码一卡2卡4卡精品| 国产成人精品一,二区| 亚洲av电影在线进入| 国产高清不卡午夜福利| 婷婷色麻豆天堂久久| 一级毛片电影观看| 久久综合国产亚洲精品| 新久久久久国产一级毛片| 日韩免费高清中文字幕av| 最近的中文字幕免费完整| 成人18禁高潮啪啪吃奶动态图| 国产免费一区二区三区四区乱码| 亚洲伊人色综图| 亚洲经典国产精华液单| 91国产中文字幕| 国产成人av激情在线播放| 51国产日韩欧美| 国产免费又黄又爽又色| 国产男女超爽视频在线观看| 一区二区av电影网| 精品少妇内射三级| 啦啦啦啦在线视频资源| 久久婷婷青草| 全区人妻精品视频| 91午夜精品亚洲一区二区三区| av片东京热男人的天堂| 色视频在线一区二区三区| 欧美xxxx性猛交bbbb| 精品国产一区二区三区四区第35| 国产精品一区二区在线观看99| 免费高清在线观看视频在线观看| 欧美精品国产亚洲| 黄色毛片三级朝国网站| 国产日韩欧美视频二区| 日本午夜av视频| 七月丁香在线播放| av在线播放精品| 国产精品久久久久久精品古装| 久久久国产欧美日韩av| 岛国毛片在线播放| 精品熟女少妇av免费看| 男人操女人黄网站| 国产极品粉嫩免费观看在线| 两性夫妻黄色片 | 亚洲国产欧美日韩在线播放| 成人综合一区亚洲| 免费黄频网站在线观看国产| 一个人免费看片子| 热99久久久久精品小说推荐| 一级毛片黄色毛片免费观看视频| 久久99精品国语久久久| 亚洲国产av影院在线观看| 久久人人爽av亚洲精品天堂| 男女高潮啪啪啪动态图| 久久热在线av| 国产成人a∨麻豆精品| 亚洲色图综合在线观看| 国产精品久久久久久精品电影小说| 巨乳人妻的诱惑在线观看| 中文字幕人妻丝袜制服| 日韩不卡一区二区三区视频在线| 精品卡一卡二卡四卡免费| 少妇人妻精品综合一区二区| 三上悠亚av全集在线观看| 精品视频人人做人人爽| 成人亚洲精品一区在线观看| 日韩av不卡免费在线播放| 日韩av免费高清视频| 欧美人与性动交α欧美软件 | 18在线观看网站| 亚洲欧洲精品一区二区精品久久久 | 色5月婷婷丁香| 久久久久国产网址| 亚洲av国产av综合av卡| 亚洲伊人久久精品综合| 久久久久人妻精品一区果冻| 亚洲精品乱久久久久久| 精品少妇久久久久久888优播| 最近的中文字幕免费完整| 国产欧美日韩一区二区三区在线| 宅男免费午夜| 亚洲欧美一区二区三区黑人 | 超色免费av| 精品久久蜜臀av无| 人妻人人澡人人爽人人| 日韩一区二区三区影片| 午夜影院在线不卡| 国产精品一区二区在线观看99| 国产黄频视频在线观看| 国产麻豆69| av卡一久久| 欧美 日韩 精品 国产| 18+在线观看网站| 99热国产这里只有精品6| 91国产中文字幕| 成人手机av| 国产男女内射视频| 激情视频va一区二区三区| 成年动漫av网址| 免费观看在线日韩| av片东京热男人的天堂| 国产成人免费无遮挡视频| 18禁动态无遮挡网站| xxxhd国产人妻xxx| 成人无遮挡网站| 水蜜桃什么品种好| kizo精华| 亚洲欧美成人精品一区二区| 女性生殖器流出的白浆| 中文字幕另类日韩欧美亚洲嫩草| 国产黄频视频在线观看| 国产亚洲欧美精品永久| 国产成人a∨麻豆精品| 韩国精品一区二区三区 | av国产精品久久久久影院| 18禁动态无遮挡网站| 韩国精品一区二区三区 | 久久人人爽人人爽人人片va| 伦理电影免费视频| 久久精品熟女亚洲av麻豆精品| 五月玫瑰六月丁香| 日本wwww免费看| 亚洲伊人久久精品综合| 美女主播在线视频| 日韩制服骚丝袜av| 亚洲成国产人片在线观看| 一区二区av电影网| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久久久免| 夜夜爽夜夜爽视频| www.熟女人妻精品国产 | 国产男女内射视频| 天堂中文最新版在线下载| 视频中文字幕在线观看| 色吧在线观看| 日本vs欧美在线观看视频| 久久这里只有精品19| www.色视频.com| 18禁裸乳无遮挡动漫免费视频| 一级毛片电影观看| 黄色怎么调成土黄色| 久久精品久久精品一区二区三区| 亚洲色图综合在线观看| 天堂8中文在线网| 18禁在线无遮挡免费观看视频| a级毛片黄视频| 热re99久久精品国产66热6| 超碰97精品在线观看| 成年av动漫网址| 丝袜喷水一区| 成人午夜精彩视频在线观看| 日韩成人伦理影院| 免费av不卡在线播放| 边亲边吃奶的免费视频| 国产免费一级a男人的天堂| 大话2 男鬼变身卡| 国产永久视频网站| 69精品国产乱码久久久| 亚洲欧美成人综合另类久久久| videosex国产| 性高湖久久久久久久久免费观看| 国产欧美亚洲国产| 免费av不卡在线播放| 高清黄色对白视频在线免费看| 街头女战士在线观看网站| 观看av在线不卡| 国产欧美日韩综合在线一区二区| av免费在线看不卡| 一边亲一边摸免费视频| 夫妻午夜视频| 国产白丝娇喘喷水9色精品| 夜夜爽夜夜爽视频| 国产精品人妻久久久久久| 十八禁网站网址无遮挡| 亚洲av日韩在线播放| 欧美人与性动交α欧美精品济南到 | 你懂的网址亚洲精品在线观看| 99精国产麻豆久久婷婷| 国产av精品麻豆| freevideosex欧美| √禁漫天堂资源中文www| 下体分泌物呈黄色| 午夜影院在线不卡| 久久久久久久久久久免费av| 极品人妻少妇av视频| 青春草亚洲视频在线观看| 最后的刺客免费高清国语| 嫩草影院入口| 国产 精品1| 飞空精品影院首页| 丁香六月天网| 18+在线观看网站| 免费女性裸体啪啪无遮挡网站| 母亲3免费完整高清在线观看 | 999精品在线视频| 国产精品麻豆人妻色哟哟久久| 日韩欧美一区视频在线观看| 十八禁网站网址无遮挡| 亚洲av欧美aⅴ国产| 亚洲欧美成人综合另类久久久| 亚洲精品国产色婷婷电影| av卡一久久| 亚洲欧美日韩另类电影网站| 久久人人97超碰香蕉20202| 国产淫语在线视频| 亚洲国产精品一区二区三区在线| 黄片无遮挡物在线观看| 免费播放大片免费观看视频在线观看| 国产极品粉嫩免费观看在线| 黑人猛操日本美女一级片| 热re99久久国产66热| 久久久久国产精品人妻一区二区| 亚洲国产欧美日韩在线播放| 成人午夜精彩视频在线观看| 99国产综合亚洲精品| 一区二区三区精品91| 久久人人爽人人爽人人片va| av国产精品久久久久影院| 中文乱码字字幕精品一区二区三区| 纯流量卡能插随身wifi吗| 80岁老熟妇乱子伦牲交| 色94色欧美一区二区| 日产精品乱码卡一卡2卡三| 狠狠婷婷综合久久久久久88av| 香蕉国产在线看| 中文字幕人妻丝袜制服| 五月伊人婷婷丁香| 国产视频首页在线观看| 在现免费观看毛片| 久久精品国产a三级三级三级| 久久久国产精品麻豆| 视频区图区小说| 91精品伊人久久大香线蕉| 亚洲国产成人一精品久久久| 欧美激情极品国产一区二区三区 | 欧美人与性动交α欧美软件 | 成人国产麻豆网| 国产成人免费无遮挡视频| 精品99又大又爽又粗少妇毛片| 亚洲在久久综合| 精品国产乱码久久久久久小说| 91在线精品国自产拍蜜月| 亚洲精品456在线播放app| 国产欧美亚洲国产| 最黄视频免费看| 久久精品国产综合久久久 | 精品国产乱码久久久久久小说| 日日摸夜夜添夜夜爱| 亚洲美女搞黄在线观看| 国产高清不卡午夜福利| 少妇的逼好多水| 日韩一区二区三区影片| 在线精品无人区一区二区三| 五月伊人婷婷丁香| 一区二区三区乱码不卡18| 久久精品国产亚洲av天美| 国产av码专区亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品性色| 日韩精品免费视频一区二区三区 | 我的女老师完整版在线观看| 99久久精品国产国产毛片| 久热这里只有精品99| 亚洲av国产av综合av卡| 一区二区三区四区激情视频| 成年av动漫网址| 全区人妻精品视频| 高清av免费在线| 亚洲成人一二三区av| 久久精品国产亚洲av涩爱| 26uuu在线亚洲综合色| 亚洲精品国产av成人精品| 久久狼人影院| 这个男人来自地球电影免费观看 | 免费在线观看完整版高清| 国产一区二区在线观看日韩| 欧美日韩国产mv在线观看视频| 国产一区有黄有色的免费视频| 亚洲av中文av极速乱| 热re99久久国产66热| 国产又爽黄色视频| 91国产中文字幕| 18禁在线无遮挡免费观看视频| 亚洲欧美色中文字幕在线| 午夜日本视频在线| 久久综合国产亚洲精品| 国产 一区精品| 久久精品久久精品一区二区三区| 丁香六月天网| 日韩人妻精品一区2区三区| 在线观看美女被高潮喷水网站| 亚洲国产欧美日韩在线播放| 亚洲经典国产精华液单| 亚洲精品乱久久久久久| 国产 精品1| 日韩,欧美,国产一区二区三区| 国产精品国产三级国产av玫瑰| 国产无遮挡羞羞视频在线观看| 免费观看av网站的网址| 91在线精品国自产拍蜜月| 久久这里有精品视频免费| 国产麻豆69| 国产精品国产三级国产专区5o| 女人久久www免费人成看片| 欧美另类一区| 天天影视国产精品| 日本av免费视频播放| av女优亚洲男人天堂| 人人妻人人澡人人爽人人夜夜| 两个人看的免费小视频| 亚洲第一av免费看| 亚洲熟女精品中文字幕| 女性被躁到高潮视频| 亚洲人成77777在线视频| av天堂久久9| 国产色婷婷99| 69精品国产乱码久久久| 亚洲精品成人av观看孕妇| 男女免费视频国产| 免费观看无遮挡的男女| 日本91视频免费播放| 久久人妻熟女aⅴ| 99久久综合免费| 99国产精品免费福利视频| 国产精品一区二区在线不卡| 国产亚洲av片在线观看秒播厂| 视频区图区小说| 丰满饥渴人妻一区二区三| 捣出白浆h1v1| 国产视频首页在线观看| 亚洲第一av免费看| 色吧在线观看| 高清毛片免费看| 成人黄色视频免费在线看| 亚洲欧美日韩另类电影网站| 狠狠婷婷综合久久久久久88av| 少妇猛男粗大的猛烈进出视频| 久久av网站| 一级毛片电影观看| 日韩精品免费视频一区二区三区 | 18禁在线无遮挡免费观看视频| 国产伦理片在线播放av一区| 一本—道久久a久久精品蜜桃钙片| 亚洲精品456在线播放app| 亚洲精品日韩在线中文字幕| 日本欧美国产在线视频| 国产成人精品在线电影| 人人妻人人添人人爽欧美一区卜| a级片在线免费高清观看视频| 国产欧美另类精品又又久久亚洲欧美| 十八禁高潮呻吟视频| 成人国产麻豆网| 国产成人欧美| 中文天堂在线官网| 老司机影院成人| 天堂中文最新版在线下载| 精品久久久精品久久久| 欧美变态另类bdsm刘玥| 亚洲av福利一区| 丝袜喷水一区| 99热网站在线观看| 亚洲精品中文字幕在线视频| 国产精品偷伦视频观看了| 国产精品久久久久久精品电影小说| 肉色欧美久久久久久久蜜桃| 王馨瑶露胸无遮挡在线观看| 久久久久久久久久久免费av| 中文字幕av电影在线播放| 国产毛片在线视频| 黑人欧美特级aaaaaa片| 午夜免费男女啪啪视频观看| 大码成人一级视频| 精品亚洲成国产av| 亚洲熟女精品中文字幕| 亚洲av综合色区一区| freevideosex欧美| 最近2019中文字幕mv第一页| 天堂中文最新版在线下载| 中文字幕精品免费在线观看视频 | 久久韩国三级中文字幕| 久久久久久久久久成人| 亚洲精品国产色婷婷电影| 久久毛片免费看一区二区三区| 夫妻午夜视频| 免费人成在线观看视频色| 十分钟在线观看高清视频www| 久久人人97超碰香蕉20202| 伦理电影免费视频| 99久久精品国产国产毛片| 老司机影院毛片| 18禁在线无遮挡免费观看视频| videosex国产| av国产久精品久网站免费入址| 亚洲精品美女久久av网站| 欧美性感艳星| 日韩电影二区| 中国三级夫妇交换| 亚洲av在线观看美女高潮| 国产成人91sexporn| 日日啪夜夜爽| 成人国产av品久久久| 亚洲少妇的诱惑av| 少妇人妻 视频| 国产深夜福利视频在线观看| 少妇人妻 视频| 乱人伦中国视频| 亚洲欧洲国产日韩| 亚洲美女搞黄在线观看| 少妇被粗大猛烈的视频| 久久久久久久国产电影| 成人黄色视频免费在线看| 成人二区视频| 日韩中字成人| 国产深夜福利视频在线观看| 少妇人妻 视频| 97在线人人人人妻| 成人国产av品久久久| 国产毛片在线视频| 免费观看性生交大片5| 性高湖久久久久久久久免费观看| 亚洲精品av麻豆狂野| 色94色欧美一区二区| 精品久久久精品久久久| 亚洲欧美一区二区三区黑人 | 99热全是精品| 超色免费av| 亚洲av综合色区一区| 两性夫妻黄色片 | 国产精品.久久久| 一本久久精品| 久久人妻熟女aⅴ| 精品一区二区三区视频在线| 亚洲激情五月婷婷啪啪| 国产精品一二三区在线看| 国产精品偷伦视频观看了| 热re99久久精品国产66热6| 香蕉国产在线看| 欧美日韩亚洲高清精品| 一区二区av电影网| av在线app专区| 精品久久蜜臀av无| 在线观看一区二区三区激情| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产毛片av蜜桃av| 五月玫瑰六月丁香| 免费人成在线观看视频色| 一级毛片电影观看| 久久亚洲国产成人精品v| 亚洲精品久久午夜乱码| 久久久久精品人妻al黑| 久久97久久精品| 成人免费观看视频高清| 成人无遮挡网站| 肉色欧美久久久久久久蜜桃| 国产精品嫩草影院av在线观看| 日本黄大片高清| 久久精品夜色国产| 免费人妻精品一区二区三区视频| 亚洲精品456在线播放app| 精品国产一区二区久久| 亚洲国产精品国产精品| 各种免费的搞黄视频| 亚洲丝袜综合中文字幕| 久久午夜综合久久蜜桃| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 亚洲经典国产精华液单| 亚洲四区av| 天天躁夜夜躁狠狠久久av| 韩国高清视频一区二区三区| 国产极品粉嫩免费观看在线| 极品少妇高潮喷水抽搐| 九色成人免费人妻av| 免费在线观看完整版高清| 免费观看无遮挡的男女| 香蕉丝袜av| 黄色视频在线播放观看不卡| 超色免费av| 天天躁夜夜躁狠狠躁躁| 99热网站在线观看| 久久精品熟女亚洲av麻豆精品| 青春草亚洲视频在线观看| 人妻一区二区av| 亚洲成人手机| 欧美日韩一区二区视频在线观看视频在线| 成年人午夜在线观看视频|