• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Method for Thermoelectric Generator Based on Neural Network

    2022-11-10 02:32:48MohammadSarairehMaqablehManarJaradatandOmarSaraereh
    Computers Materials&Continua 2022年10期

    Mohammad Saraireh,A.M.Maqableh,Manar Jaradat and Omar A.Saraereh

    1Mechanical Engineering Department,Faculty of Engineering,Mutah University,Karak,61710,Jordan

    2Electromechanical Engineering Department,Luminus Technical University College,Amman,11118,Jordan

    3Department of Computer Engineering,Faculty of Engineering,The Hashemite University,Zarqa,13133,Jordan

    4Department of Electrical Engineering,Faculty of Engineering,The Hashemite University,Zarqa,13133,Jordan

    Abstract:The growing need for renewable energy and zero carbon dioxide emissions has fueled the development of thermoelectric generators with improved power generating capability.Along with the endeavor to develop thermoelectric materials with greater figures of merit,the geometrical and structural optimization of thermoelectric generators is equally critical for maximum power output and efficiency.Green energy strategies that are constantly updated are a viable option for addressing the global energy issue while also protecting the environment.There have been significant focuses on the development of thermoelectric modules for a range of solar,automotive,military,and aerospace applications in recent years due to various advantages including as low vibration,great reliability and durability,and the absence of moving components.In order to enhance the system performance of the thermoelectric generator,an artificial neural network(ANN)based algorithm is proposed.Furthermore,to achieve high efficiency and system stability,a buck converter is designed and deployed.Simulation and experimental findings demonstrate that the suggested method is viable and available,and that it is almost similar to the real value in the steady state with the least power losses,making it ideal for vehicle exhaust thermoelectric generator applications.Furthermore,the proposed hybrid algorithm has a high reference value for the development of a dependable and efficient car exhaust thermoelectric generating system.

    Keywords:Thermoelectric system;thermodynamics;electromechanics;rotational factors;neural networks

    1 Introduction

    The engine is the core component of traditional fuel vehicles and gasoline-electric hybrid electric vehicles,while only about 30% of the energy of the commonly used gasoline engine is used to drive the vehicle and to be used for on-board electrical appliances during the work process,and about 40%of the energy is in the form of waste heat.The exhaust gas is emitted,and the average temperature of the exhaust pipe exceeds 250°C[1,2].It is particularly important to improve the fuel efficiency of traditional fuel vehicles and hybrid electric vehicles and reduce harmful gas emissions.Therefore,the research on the vehicle exhaust thermoelectric power generation system is of great significance.It is to install a thermoelectric power generation module on the surface of the vehicle exhaust pipe to convert waste heat energy into electricity The DC/DC converter stores the electrical energy in the battery[3].At present,the research on on-board exhaust gas thermoelectric power generation mainly focuses on the modeling of thermoelectric modules[4],the design and improvement of the heat transfer performance of the thermal energy box[5,6],and the improvement of the topological connection of the thermoelectric modules[7].

    The output power of the automotive exhaust thermoelectric generator (AETEG) is mainly affected by the engine operating conditions and external loads.When the engine is working at a stable speed,the power value of the thermoelectric generator increases with the voltage.The growth first increases and then decreases,so there is a maximum power point[8].The research of maximum power tracking (MPPT) focuses on photovoltaic power generation systems,including disturbancebased self-optimization algorithms,intelligent processing methods and the combination of various methods[9].Reference[10]proposed an improved variable-step conductance increment method,using the step-size adjustment coefficientS= |dP/dV|/Ito dynamically adjust the step-size change ΔUref,and at the same time to ensure the convergence of the algorithm ,it is stipulated thatS <1,but the constant ΔUrefcannot be changed once it is selected,and it is only suitable for specific external conditions.Reference[11]proposed a zero-average conductance incremental method,which ensuresdPPV/dVPV= 0 in one switching cycle to reduce oscillation,but the selection of the boundary erroreis a difficult problem,and ifeis too large,the oscillation cannot be reduced.Ifeis too small,it is no different from the traditional conductance increment method.Reference[12]proposed a new BP neural network MPPT algorithm.The simulation results show that compared with the traditional conductance incremental method and disturbance observation method,the proposed algorithm has higher efficiency and smaller oscillation in steady state.But the number of required inputs (light intensity,temperature)is large.Reference[13]proposed a new direct adaptive neural network MPPT method.The online process is a learning algorithm based on theσrule.Compared with the traditional interference observation method,its dynamic performance is greatly improved and the steady state fluctuation is greatly reduced.In addition,some scholars have designed a simple MPPT hardware circuit to reduce the loss of the converter and improve the output power of the system[14,15].

    Literature[9-13]mainly studies the MPPT strategy of photovoltaic systems,but the power-voltage output characteristics of AETEG are quite different from those of photovoltaic cells(its temperature changes slowly).This paper proposes a novel approach method based on the above method.The enhanced conductance increment technique and the adaptive variable step size BP neural network approach are combined in the novel hybrid method.In the first stage,the improved conductance incremental method can quickly run at the reference point near the maximum power point.In the second stage,the MPPT controller of the BP neural network method with adaptive variable step size eliminates the vibration near the maximum power point in steady state.In order to be suitable for the AETEG system,an MPPT two-phase interleaved Buck converter with a series lag link is also designed.Both the Bode diagram and the root locus diagram show that the stable and dynamic performance of the MPPT controller with voltage closed loop is better than before.Simulation and experiments.The results demonstrate that the new hybrid method has fast tracking speed without additional circuitry and no additional power loss.

    2 System Model

    2.1 General Structure of AETEG’s New Power Supply

    The structure diagram of AETEG system is shown in Fig.1,which includes a thermal energy box,two thermoelectric conversion modules and an independent refrigeration system.Among them,the high temperature side of the thermoelectric module(TEM)is in contact with the thermal energy tank,and the low temperature side is connected with the cooling water tank.The exhaust gas outlet of the engine is connected with the inlet of the thermal energy air box for heat transfer,the exhaust gas passes through the thermal energy air box,and the exhaust pipe is passed into the atmosphere.Meanwhile,the cooling system has a water tank,two valves and an air-cooled water pump.Due to the soft output characteristics of thermoelectric devices,as the output current increases,the output voltage drops sharply,which cannot match the power supply voltage level of the load.A DC/DC converter needs to be connected to 48 V.The battery supplies power to the electrical appliances in the car.

    2.2 TEM Circuit Characteristics

    Fig.2 shows the circuit model of a single thermoelectric power generation device TEM,from which it can be obtained that the open circuit voltage and output power of the TEM are functions of the load and the temperature difference between the hot and cold ends[16],as shown below

    whereαPNis the Seebeck coefficient,which is related to the temperature gradient and installation pressure,ΔT is the temperature difference between the hot and cold ends of the TEM,andnis the number of thermocouples.In Eq.(3),ρis the resistivity,lNandlpare the lengths of the N and P-type galvanic arms of the TEM,respectively,andANandApare the cross-sectional areas of the N and P-type galvanic arms,respectively.Usually,TEMs are connected in series to form a thermoelectric generator(assuming the number of TEMs is M),and the open-circuit voltage and internal resistance are respectively[17].

    According to the power transfer theorem,whenRL=RTEG,the loadRLobtains the maximum power,as shown in Eq.(6)

    In the AETEG test bench,the I-U-P characteristic curve of the thermoelectric generator is shown in Fig.3.When the temperature difference is stable,its output power-current curve has only one extreme point,that is,the maximum power point.

    2.3 TEM Circuit Characteristics

    Generally,the DC/DC converter supplies power to the battery with low voltage and high current.However,high current will cause a series of problems(high current stress,more conduction loss of the switch),and at the same time,the current ripple on the input and output sides will adversely affect the thermoelectric generator and battery.In order to reduce the current ripple on the input side,the inductor should work in the current continuous mode,but the inductor value will be very large,and its weight and volume will increase sharply,so a two-phase interleaved Buck converter is used[18-20].Fig.4 shows that a digitally controlled DC/DC converter is connected between AETEG and a 48 V LiFeO4 battery,and can implement the MPPT algorithm.The driving signals of the two switches Q1 and Q2 are shown in Fig.5.They are generated by the PWM module in the DSP chip TMS320F28335,and the phase angle is staggered by 180°.The inductor currents IL1and IL2are half of the load current Iout,and the inductance values of L1and L2are becomes smaller,and the total current ripple is smaller than the single-phase ripple[18].

    The DC/DC converter system is a nonlinear time-varying system,and the general linear theory cannot be directly applied.In order to carry out dynamic characteristic analysis and related design,the state space averaging method is used[19].Ideally,two-phase interleaved Bucks can be regarded as the addition of two single-phase Bucks.According to the working process of the single Buck circuit,the state vectorx=(UinILUo)is selected,which is the output voltage of the thermoelectric generator,the filter inductor current and the load side voltage.The input vectoru=(Iin)is the output current of the thermoelectric generator.The output vectory=(Uin)is the output voltage of the thermoelectric generator,so the state space expression of the single Buck circuit can be established

    Since the equivalent resistanceRof the filter inductor is very small,its influence can be ignored,so the transfer function of the DC/DC input voltage to the duty cycledis:

    wherea3=IinC2RoL;a2=IinL;a1=2RoIin(2d-1);b3=d2C1C2Ro;b2=d2(C1+2dC2Ro);b1=2d3.

    A PI controller is designed using the converter element parameters shown in Tab.1 and the circuit parameters of the thermoelectric generator at rated power to improve the dynamic stability performance of the feedback MPPT control loop.

    Table 1:Corresponding component parameters of two-phase interleaved parallel Buck DC/DC converters

    Transfer function of DC/DC input voltage to duty cycled

    The transfer function of DC/DC input voltage to duty cycle before and after correction is shown in Fig.6,the cut-off frequency ofGvd(s)before correction is 2.05×103rad/s,the phase angle marginγ=-179°,amplitude marginh=-28 dB,the system is unstable.Design a series lag correction linkGc(s)=(-0.25s+1)/sin MATLAB’s sisotool,whereKp= -0.25,Ti= -0.25,the corrected openloop transfer functionGo(s)=Gc(s)×Gvd(s),h=17.4 dB,γ=44.1°,cutoff frequency 681 rad/s,the steady-state performance of the system is greatly improved.The root locus diagram ofGo(s)is shown in Fig.7,and the adjustment time ists=4.4/σ=0.76 s,indicating that the dynamic performance has been improved.

    3 Proposed Algorithm

    3.1 Modified Conductance Incremental Method

    Usually,the incremental conductance method adopts a fixed-step strategy,and the selection of the step change ΔDis blind.As shown in Fig.8,Reference[21]proposed thatD(k+1)=D(k)±N.|ΔP/ΔV|,and the scale factorsN1andN2are determined according to curves 1 and 2 in turn.WhenN1is used,curve 1 runs with a fixed step size ΔDmaxmost of the time,if the temperature of the thermoelectric generator changes,the system will oscillate violently,affecting the tracking efficiency.WhenN2is used,most of the curve 1 runs with variable step sizeN.|ΔP/ΔV|,and the response speed is slow,so there is a“dead zone”space for this method.

    In order to solve the problem of the proportional coefficientNof the traditional variablestep conductance increment algorithm,this paper proposes a new improved conductance increment method in the first stage of MPPT.It can be seen from Fig.9,the curveCn=Pn||ΔP/ΔV(n=1,2,3,...)is symmetrical about the maximum power point of PV curve 1,and the change trend on MPP is to increase first and then decrease.At the same time,with the increase ofn,the extreme point ofCnis closer to the maximum power point of curve 1,but the amount of calculation increases exponentially.Whenn= 3,the algorithm tracks the maximum power better,and requires the DSP chip TMS320F28335 to calculate moderately.The specific process is as follows

    In the formula,ΔDmaxis the maximum step size change in the MPPT process,andΔDANN is the output value of the second-stage adaptive variable step size BP neural network method.

    3.2 Adaptive Variable Step Size BP Neural Network Method

    The advantage of a neural network is that it does not require an accurate mathematical model,but it can establish complex nonlinear relationships between input and output.In this paper,the feedforward BP-ANN method is adopted.There are three-layer networks.The transfer functions of the hidden layer and the output layer are tansig and purelin.The neural structure is trained by the gradient descent method.The input layer has two neurons,the hidden layer has 5 neurons,and the output layer consists of only one neuron.As shown in Fig.10,the two input quantities are the change dV of the output voltage of the thermoelectric generator and the change dPof the output power,and the output quantity is the increase or decrease of the normalized duty cycle(±1).

    In order to adjust the weights,according to the gradient descent method,the formula is as follows

    whereηis the learning rate;Eis the error between the actual output and the expected output;netj,netkare the input of neurons in the hidden layer and output layer respectively;oiandokare the outputs of neurons in the input layer and hidden layer,respectively.

    The neural network established in MATLAB is shown in Fig.11.After 444 training iterations,the root mean square error(RMSE)can reach 6.86×103.

    The adopted BP neural network method operates in two modes:Offline and online.Firstly,in offline mode,collect 200 sets of experimental data of the conductance incremental method with a fixed step size ΔD= 0.001 under a fixed external condition,use the back-propagation algorithm to train the data,and find a suitable neural network structure.Then,the online mode uses the offline BP neural network for MPPT.The basic principle of MPPT of BP neural network method is shown in the following formula

    When the on-board thermoelectric generator is running in a steady state,the temperature of the exhaust pipe and the output power of the thermoelectric generator do not change or change slowly.When the operating conditions of the engine suddenly change,the temperature and flow rate of the exhaust gas will change drastically,resulting in a sudden change in the output power of the thermoelectric generator.If the traditional fixed-step BP neural network method is used to find the new maximum power point,the dilemma of slow convergence speed and steady-state oscillation will occur.Because choosing a larger step size can ensure that the dynamic time is shortened,but steadystate oscillation is inevitable.Choosing a smaller step size can reduce steady-state oscillation,but it will be accompanied by the problem of poor dynamic performance.In order to account for the on-board thermoelectric generator’s tracking speed and steady-state accuracy,this paper proposes an adaptive variable step size adjustment strategy according to the power variation characteristics of the on-board thermoelectric generator,as shown below.

    In the formula,D(K)andD(K- 1)are the duty ratios of the switches at timeKandK- 1,respectively.e-|dP|2is the step size change dimension factor;αmaxandαminare the upper and lower thresholds of the set dimensioning factor,respectively;Cis the step change adjustment factor;CmaxandCminare the maximum and minimum adjustment factors,respectively.The adaptive variable step size adjustment strategy proposed in this paper is more reliable than the online mode variable step size method proposed by[22].If the second stage of the maximum power tracking of the onboard thermoelectric power generation adopts the online mode variable step method[22],that is,ΔD=E+M.dP,whereEis the fixed step value,andMis the proportional coefficient.With the change of engine operating conditions,the output power of the thermoelectric generator also changes,which leads to blindness in the selection ofM.In addition,the step size change dimensionalization factore-|dP|2used in this paper replaces the power change dPof[22],and the value range of the adjustment factorCis narrowed,which can avoid the divergence of the MPPT controller.

    In the adaptive variable step size adjustment strategy,the dimensioning factore-|dP|2can reflect the change speed of the output power of the on-board thermoelectric power generation in real time.When the dimensioning factore-|dP|2is between the upper thresholdαmaxand the lower thresholdαmin,it is considered that the state of the thermoelectric generator has undergone a moderate change,and the adjustment factorCcan be adaptively changed according to the speed of the output power change.

    To sum up,a new hybrid MPPT algorithm is proposed as shown in Fig.12.

    4 Simulation and Experimental Analysis

    4.1 MATLAB/Simulink Modeling

    The equivalent circuit model of a single thermoelectric module is a voltage source connected in series with a resistor,and its output is related to the temperature difference between the hot and cold ends.As shown in Fig.13,the Simulink model of the thermoelectric generator consists of 60 thermoelectric modules(Bi2Te3)connected in series.

    Set the initial temperature difference of the thermoelectric generator ΔT1= 198.7oC,change to ΔT2=94.7oC at 3 s,then jump to ΔT3=198.7oC at 6 s,and finally change to ΔT1=57.9oC at t=10 s.In order to compare the performance of each method more precisely,this paper uses three criteria that is,MPPT tracking accuracy,response time,and overshoot.

    4.2 Simulation Results

    The simulation results of the proposed algorithm,the separate improved conductance incremental method (SIINC) and the separate BP artificial neural network method (SBP-ANN) are shown in Figs.14-16.Fig.14 shows the simulation waveforms of the tracking accuracy of the three MPPT algorithms.It can be seen that when the temperature difference of the thermoelectric generator is ΔT= 198.7°C,the average tracking powers of HM,SBP-ANN and SIINC are 205.3,205.2,and 203.6 W in turn.At the same time,when the thermoelectric generator temperature difference ΔT=94.7°C,the average power values of HM,SBP-ANN and SIINC tracking are 97.9,97.7,95.3 W in turn.

    It shows that the HM and SBP-ANN search for the maximum power is very close to the theoretical value,and the steady-state accuracy is very high.However,when SIINC tracks the maximum power,the duty cycle of the DC/DC converter changes drastically,resulting in a lot of power loss,so its steadystate accuracy is not high.

    As shown in Fig.15,whenΔT is from 0°C to 198.7°C,the response times of HM,SIINC and SBP-ANN for tracking the maximum power are 1.8 s,0.84 s and 2 s respectively.It shows that in each switching cycle,the SIINC adopts the largest step size change,so the startup time and response time are the shortest,and the HM proposed in this paper combines the advantages of SBP-ANN and SIINC,and has good startup speed and response speed.However,the SBP-ANN collects the experimental data of the conductance increment method with a fixed step size ΔD= 0.001,and the duty cycle of the DC/DC converter changes the slowest,so its response time is the longest.

    As shown in Fig.16,when ΔTis from 198.7°C to 57.9°C,the overshoot of HM tracking the maximum power(43.9 W)is 2.01 times that of SIINC(21.8 W)and 0.95 times that of SBP-ANN(46 W).It shows that the dynamic performance of the proposed HM algorithm is worse than that of SBPANN,but not as good as SIINC.For SIINC,when the temperature is abruptly changed,its step size change ΔDis the smallest,so its overshoot is the smallest and the dynamic performance is the best.

    4.3 Test Results Evaluation

    In order to verify the effectiveness of the proposed HM algorithm,a test bench was created for AETEG which is depicted in Fig.17,the car engine model is Citroen Sega 2.0 PSA RFN 10LH3X,the capacity is 1997 mL,the maximum power is 108 kW (6000 r/min),the maximum Torque 200 NM (4000 r/min).The heat conduction area of the heat energy air box is 542 mm × 280 mm,and the cooling area of the cold source water tank is also 542 mm × 280 mm.The material of the thermoelectric module is Bi2Te3,and the number is 60.The rated power of the DC/DC converter is 1 kW,and the specific parameters are shown in Tab.1.Following the steady-state tracking test,the thermoelectric generator is directly connected to the electronic load,and the true maximum power of the thermoelectric generator is determined using the current sweep method.The thermoelectric generator is then linked to the 48 V battery through the DC/DC converter included into the MPPT algorithm.Secondly,we performed dynamic tracking experiment.At 1.6 s,the speed and torque of the car engine jump from 3000 r/min@65NM to 2600 r/min@58NM.The proposed HM algorithm and the traditional SIINC,SBP-ANN algorithms are embedded into the digital controller TMS320F28335,its PWM module outputs the drive signal to the IGBT device to realize the MPPT algorithm.

    When the automobile engine runs in two stable conditions (3000 r/min@65NM,2600 r/min@58NM),the results are shown in Tabs.2 and 3 and Figs.18 and 19.As shown in Fig.18,the maximum tracking powers of HM,SIINC and SBP-ANN are 114.87 W,110.49 W and 112.45 W in turn,and the deviation rate of the proposed algorithm is the smallest (1.53%),indicating that it’s steady-state accuracy is the highest and consistent with the simulation results.Due to the existence of actual circuit losses(switching losses of switching tubes,impedance losses of wires),the MPPT result has a certain error with the actual value.

    Table 2:Comparison of algorithms results under 3000 r/min@65NM conditions

    Table 3:Comparison of algorithms results at 2600 r/min@58NM

    As shown in Fig.19,the HM,SIINC and SBP-ANN algorithms find the maximum powers to be 39.2,35.9 and 37.9 W respectively.In addition,when the engine speed and torque suddenly change from 0 to 3000r/min@65NM,the maximum power tracking start time of the proposed algorithm is 2 s,which is 0.4 s more than SIINC but 0.8 s less than the SBP-ANN algorithm,indicating that the starting speed and response speed of the suggested approach is a hybrid of SIINC and SBP-ANN,which matches the simulation findings.Since BP-ANN is used in the second stage of the proposed algorithm,its step size change is smaller than theΔDof SIINC method,so the startup time is not as good as SIINC(See Fig.20).

    Among them,the response times of proposed,SIINC and SBP-ANN algorithms are 2.4,2 and 3.2 s,indicating that SIINC has the shortest dynamic response time,but its overshoot of 5.9 W is greater than 2.1 W of proposed algorithm and 3.8 W of SBP-ANN algorithm,causing great damage to the circuit components of the DC/DC converter.The experimental results show that the proposed algorithm outperforms the traditional SIINC and SBP-ANN algorithms in terms of stability and dynamic performance.

    5 Conclusion

    This paper proposed a novel algorithm for thermoelectric generator based on neural networks.

    (1)The AETEG system based on the 48 V electrical architecture is proposed,which can improve the fuel economy of the vehicle and achieve the effect of energy saving and emission reduction.

    (2)The design and implementation of the double closed-loop interleaved Buck converter ensures the high efficiency and stability of the AETEG system.

    (3)Based on the maximum power tracking strategy,the improved conductance increment method can be used when far from the maximum power point,which can improve the dynamic performance of the system.When approaching the maximum power point,the adaptive variable step size BP neural network method can reduce the steady-state oscillation.

    (4)Simulation and experimental results show that the hybrid method proposed in this paper can not only improve the output power of the on-board thermoelectric generator,but also reduce the response time of the system.

    Acknowledgement:The authors would like to thanks the editors and reviewers for their review and recommendations.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久香蕉精品热| 欧美在线黄色| 久久久久久九九精品二区国产| 精品一区二区三区视频在线观看免费| 亚洲人成网站在线播放欧美日韩| 国产一级毛片七仙女欲春2| 久久精品91蜜桃| 国产精品一区二区性色av| 精品一区二区三区视频在线观看免费| 亚洲一区二区三区色噜噜| 国产精品综合久久久久久久免费| 自拍偷自拍亚洲精品老妇| 久久国产乱子伦精品免费另类| www.色视频.com| 久久这里只有精品中国| 日韩欧美免费精品| 色视频www国产| 亚洲中文日韩欧美视频| 亚洲乱码一区二区免费版| 久久久久久久午夜电影| 麻豆成人午夜福利视频| 美女被艹到高潮喷水动态| 在线观看66精品国产| 午夜a级毛片| 九九热线精品视视频播放| 色播亚洲综合网| 亚洲最大成人手机在线| 99热这里只有是精品在线观看 | 天堂av国产一区二区熟女人妻| 看片在线看免费视频| 亚洲av免费高清在线观看| 美女 人体艺术 gogo| 日本在线视频免费播放| 亚洲第一电影网av| 窝窝影院91人妻| 在线十欧美十亚洲十日本专区| 波野结衣二区三区在线| 12—13女人毛片做爰片一| 精品久久久久久,| 又粗又爽又猛毛片免费看| 日韩中字成人| av国产免费在线观看| 黄色视频,在线免费观看| 一进一出抽搐动态| 中文资源天堂在线| 神马国产精品三级电影在线观看| 丰满的人妻完整版| 久久久久久大精品| 深爱激情五月婷婷| 性插视频无遮挡在线免费观看| 成年人黄色毛片网站| 欧美色欧美亚洲另类二区| 亚洲美女搞黄在线观看 | 免费观看人在逋| 在线观看午夜福利视频| 欧美日韩福利视频一区二区| 老司机午夜福利在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 真人做人爱边吃奶动态| 黄色一级大片看看| 欧美+亚洲+日韩+国产| 久久亚洲精品不卡| 99riav亚洲国产免费| 99久久成人亚洲精品观看| 一个人看的www免费观看视频| 3wmmmm亚洲av在线观看| 欧美激情在线99| 校园春色视频在线观看| 亚洲成人免费电影在线观看| 久久久久久国产a免费观看| 亚洲五月婷婷丁香| 波多野结衣巨乳人妻| 亚洲 国产 在线| 国产精品自产拍在线观看55亚洲| 蜜桃亚洲精品一区二区三区| 亚洲经典国产精华液单 | 精品国内亚洲2022精品成人| 久久欧美精品欧美久久欧美| 69人妻影院| 特大巨黑吊av在线直播| 激情在线观看视频在线高清| 黄片小视频在线播放| 午夜福利视频1000在线观看| 真人做人爱边吃奶动态| 日韩欧美精品v在线| 精品免费久久久久久久清纯| 亚洲第一电影网av| 午夜福利高清视频| 国产精品精品国产色婷婷| 成人鲁丝片一二三区免费| 欧美乱色亚洲激情| 在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 国产乱人伦免费视频| 少妇被粗大猛烈的视频| 日本一二三区视频观看| 内地一区二区视频在线| 亚洲成人久久性| 国产亚洲欧美在线一区二区| 成年女人毛片免费观看观看9| 757午夜福利合集在线观看| 午夜a级毛片| 18美女黄网站色大片免费观看| 99久久成人亚洲精品观看| 亚洲电影在线观看av| 亚洲av免费在线观看| 久久久久国内视频| 免费一级毛片在线播放高清视频| 美女大奶头视频| 日韩av在线大香蕉| 天堂网av新在线| 久久久久久九九精品二区国产| 亚洲av电影在线进入| 日本黄色片子视频| 成年版毛片免费区| 欧美精品国产亚洲| 在线看三级毛片| 成人高潮视频无遮挡免费网站| 久久精品久久久久久噜噜老黄 | 日韩欧美在线二视频| 一级黄色大片毛片| 亚洲av日韩精品久久久久久密| 欧美色欧美亚洲另类二区| 少妇熟女aⅴ在线视频| 久久精品久久久久久噜噜老黄 | 久久国产精品人妻蜜桃| 精品人妻1区二区| 午夜亚洲福利在线播放| 乱码一卡2卡4卡精品| 1000部很黄的大片| 欧美成人性av电影在线观看| 又爽又黄a免费视频| 精品一区二区三区人妻视频| 一级毛片久久久久久久久女| 国产成人a区在线观看| 成人国产一区最新在线观看| 国产精品久久视频播放| 国产亚洲精品综合一区在线观看| 久久婷婷人人爽人人干人人爱| 禁无遮挡网站| 国产伦在线观看视频一区| eeuss影院久久| 国模一区二区三区四区视频| 人人妻人人看人人澡| 亚洲成人中文字幕在线播放| 18禁裸乳无遮挡免费网站照片| 中文字幕久久专区| 婷婷色综合大香蕉| 亚洲最大成人手机在线| 国产精品亚洲美女久久久| 国内揄拍国产精品人妻在线| 热99re8久久精品国产| 天天一区二区日本电影三级| 亚洲激情在线av| 久久久色成人| 老熟妇乱子伦视频在线观看| 国产黄a三级三级三级人| 两人在一起打扑克的视频| 激情在线观看视频在线高清| 有码 亚洲区| 性欧美人与动物交配| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 成年免费大片在线观看| 麻豆成人av在线观看| 国产欧美日韩精品亚洲av| 久久久久性生活片| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区三区四区久久| 中出人妻视频一区二区| 动漫黄色视频在线观看| 国内毛片毛片毛片毛片毛片| 尤物成人国产欧美一区二区三区| 波多野结衣高清无吗| av视频在线观看入口| 观看免费一级毛片| 搡老岳熟女国产| 禁无遮挡网站| 欧美激情国产日韩精品一区| 长腿黑丝高跟| 亚洲美女搞黄在线观看 | 亚洲中文字幕日韩| 天美传媒精品一区二区| 丁香六月欧美| 久久久久久久久大av| 欧美xxxx性猛交bbbb| 国产精品一区二区三区四区免费观看 | 看黄色毛片网站| av欧美777| 亚洲欧美日韩高清专用| 内射极品少妇av片p| 黄片小视频在线播放| 国产亚洲欧美98| 三级男女做爰猛烈吃奶摸视频| 色哟哟·www| 亚洲第一欧美日韩一区二区三区| 悠悠久久av| 超碰av人人做人人爽久久| 午夜久久久久精精品| 国产精品久久久久久亚洲av鲁大| 亚洲最大成人手机在线| 精品福利观看| 黄色视频,在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 欧美高清成人免费视频www| 12—13女人毛片做爰片一| 免费av毛片视频| 亚洲欧美日韩卡通动漫| 成人无遮挡网站| 国产真实伦视频高清在线观看 | 他把我摸到了高潮在线观看| 99久久无色码亚洲精品果冻| 久久草成人影院| 黄色一级大片看看| 国产主播在线观看一区二区| 99国产精品一区二区蜜桃av| 高清在线国产一区| 精品一区二区三区视频在线观看免费| 国产一区二区三区在线臀色熟女| 欧美色欧美亚洲另类二区| 十八禁国产超污无遮挡网站| 日韩中文字幕欧美一区二区| 有码 亚洲区| 一级黄片播放器| 国产精品野战在线观看| 99久久久亚洲精品蜜臀av| 一a级毛片在线观看| 老熟妇乱子伦视频在线观看| 无遮挡黄片免费观看| 精品免费久久久久久久清纯| 老司机福利观看| 国产午夜精品论理片| 自拍偷自拍亚洲精品老妇| 日本a在线网址| 午夜福利成人在线免费观看| 亚洲欧美日韩东京热| 亚洲精品成人久久久久久| 亚洲七黄色美女视频| 校园春色视频在线观看| av天堂中文字幕网| 88av欧美| 最近在线观看免费完整版| 99精品在免费线老司机午夜| 国产乱人视频| 性色avwww在线观看| 好看av亚洲va欧美ⅴa在| 精品午夜福利在线看| 亚洲avbb在线观看| 午夜福利18| 久久性视频一级片| 变态另类成人亚洲欧美熟女| av视频在线观看入口| 精品久久久久久久人妻蜜臀av| 国产精品一及| 亚洲美女搞黄在线观看 | 不卡一级毛片| 一边摸一边抽搐一进一小说| 亚洲va日本ⅴa欧美va伊人久久| 精品久久国产蜜桃| 国产aⅴ精品一区二区三区波| 91av网一区二区| 精品人妻熟女av久视频| 一个人看的www免费观看视频| 久久久久久久久久黄片| 久9热在线精品视频| 啦啦啦韩国在线观看视频| 永久网站在线| 国产一区二区激情短视频| 欧美色欧美亚洲另类二区| netflix在线观看网站| 日韩精品青青久久久久久| 国产一区二区三区在线臀色熟女| 可以在线观看的亚洲视频| 91在线观看av| 九九久久精品国产亚洲av麻豆| 亚洲aⅴ乱码一区二区在线播放| 国产精品永久免费网站| 亚洲中文字幕一区二区三区有码在线看| 天堂√8在线中文| 一进一出抽搐动态| 搞女人的毛片| avwww免费| 久久久久九九精品影院| 啦啦啦观看免费观看视频高清| 91字幕亚洲| 男女之事视频高清在线观看| 欧美高清性xxxxhd video| 国产黄片美女视频| 国产精品一区二区三区四区久久| 亚洲欧美激情综合另类| 黄色一级大片看看| 亚洲18禁久久av| 成年女人毛片免费观看观看9| 欧美+亚洲+日韩+国产| 成年人黄色毛片网站| av福利片在线观看| 嫩草影院新地址| 小蜜桃在线观看免费完整版高清| 国产三级黄色录像| 看免费av毛片| 少妇的逼好多水| 十八禁国产超污无遮挡网站| 久久中文看片网| 91麻豆av在线| 中文字幕人成人乱码亚洲影| 一级av片app| 午夜福利在线在线| 午夜激情欧美在线| 国产精品久久久久久亚洲av鲁大| 午夜激情福利司机影院| 老熟妇仑乱视频hdxx| 国产亚洲精品久久久com| 老熟妇乱子伦视频在线观看| 日韩av在线大香蕉| 757午夜福利合集在线观看| 日韩欧美免费精品| 搞女人的毛片| а√天堂www在线а√下载| 国内精品久久久久精免费| 18禁黄网站禁片免费观看直播| 十八禁人妻一区二区| 少妇的逼水好多| 亚洲国产精品999在线| 69av精品久久久久久| 国产色爽女视频免费观看| 亚洲 国产 在线| 国内毛片毛片毛片毛片毛片| 免费黄网站久久成人精品 | 在线观看午夜福利视频| 日韩大尺度精品在线看网址| 人人妻人人澡欧美一区二区| av视频在线观看入口| 国产久久久一区二区三区| 动漫黄色视频在线观看| 18禁在线播放成人免费| 国产在视频线在精品| 日本免费一区二区三区高清不卡| 在线观看美女被高潮喷水网站 | 精品午夜福利在线看| 久久久久精品国产欧美久久久| 欧美bdsm另类| 亚洲avbb在线观看| 婷婷六月久久综合丁香| 精品人妻一区二区三区麻豆 | 欧美最新免费一区二区三区 | 亚洲无线观看免费| 欧美性猛交黑人性爽| 国产精品野战在线观看| 国产精品爽爽va在线观看网站| 天堂av国产一区二区熟女人妻| 床上黄色一级片| 国产色婷婷99| 床上黄色一级片| 国产精品电影一区二区三区| 久久久久久久午夜电影| 亚洲国产日韩欧美精品在线观看| 亚洲av一区综合| 91狼人影院| 久久久精品欧美日韩精品| 色综合婷婷激情| 亚洲无线在线观看| 91在线观看av| 搡老妇女老女人老熟妇| 婷婷亚洲欧美| 久久久久国内视频| 日本黄大片高清| 毛片女人毛片| 国产爱豆传媒在线观看| 非洲黑人性xxxx精品又粗又长| 国产精品综合久久久久久久免费| 午夜激情欧美在线| 亚洲成人精品中文字幕电影| 如何舔出高潮| 精华霜和精华液先用哪个| 男人狂女人下面高潮的视频| 男人舔女人下体高潮全视频| 欧美高清性xxxxhd video| 国产高清激情床上av| 色尼玛亚洲综合影院| 国产高清激情床上av| 丰满人妻熟妇乱又伦精品不卡| 一进一出好大好爽视频| 夜夜躁狠狠躁天天躁| 亚洲18禁久久av| 中文字幕久久专区| a级毛片a级免费在线| 看黄色毛片网站| 国产精品自产拍在线观看55亚洲| 内射极品少妇av片p| 亚洲色图av天堂| 国产精品日韩av在线免费观看| 午夜福利成人在线免费观看| 久久精品人妻少妇| 毛片一级片免费看久久久久 | 色av中文字幕| 亚洲成人久久性| 69人妻影院| 国产在线男女| 99久久精品热视频| 久久久久性生活片| 九九在线视频观看精品| 偷拍熟女少妇极品色| 天堂网av新在线| 国产高清激情床上av| bbb黄色大片| 女同久久另类99精品国产91| 国产精品女同一区二区软件 | 欧美高清成人免费视频www| 国产91精品成人一区二区三区| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av在线| 99热这里只有是精品在线观看 | 级片在线观看| 一二三四社区在线视频社区8| 脱女人内裤的视频| a级毛片a级免费在线| 国产精品亚洲美女久久久| 岛国在线免费视频观看| 国产亚洲精品久久久久久毛片| 午夜免费激情av| 亚洲一区二区三区色噜噜| 可以在线观看的亚洲视频| 精品人妻1区二区| 成年女人毛片免费观看观看9| 午夜a级毛片| 日韩欧美国产在线观看| 国产国拍精品亚洲av在线观看| 久久久久久久久中文| 一个人免费在线观看电影| 赤兔流量卡办理| 久久久久久久久久黄片| 久久久久精品国产欧美久久久| 日韩中字成人| 很黄的视频免费| 亚洲乱码一区二区免费版| 欧美极品一区二区三区四区| 免费电影在线观看免费观看| 啦啦啦韩国在线观看视频| 久久久精品欧美日韩精品| 日本熟妇午夜| 午夜免费激情av| ponron亚洲| 亚洲成a人片在线一区二区| 中文字幕人成人乱码亚洲影| 国产高清三级在线| 90打野战视频偷拍视频| 黄色一级大片看看| 亚洲最大成人手机在线| 日本五十路高清| 久久草成人影院| 丰满的人妻完整版| 免费一级毛片在线播放高清视频| 搡老妇女老女人老熟妇| 九九在线视频观看精品| 三级毛片av免费| 亚洲国产精品999在线| 日本在线视频免费播放| 精品久久久久久久久av| 两性午夜刺激爽爽歪歪视频在线观看| 嫩草影院入口| 精品一区二区三区人妻视频| 最新在线观看一区二区三区| www.色视频.com| 成人一区二区视频在线观看| 美女xxoo啪啪120秒动态图 | 青草久久国产| 成人国产一区最新在线观看| 波多野结衣巨乳人妻| 最近视频中文字幕2019在线8| 国产精品99久久久久久久久| 性色avwww在线观看| 精品人妻偷拍中文字幕| 亚洲av不卡在线观看| 色综合亚洲欧美另类图片| 天堂网av新在线| 国产一区二区亚洲精品在线观看| 亚洲欧美日韩高清在线视频| 亚洲av成人av| 啦啦啦韩国在线观看视频| 欧美黑人欧美精品刺激| 九色国产91popny在线| 国产免费av片在线观看野外av| 国产精品亚洲av一区麻豆| 国产一区二区三区视频了| 午夜免费激情av| 国产精品亚洲一级av第二区| 一个人观看的视频www高清免费观看| 日本熟妇午夜| 一区二区三区四区激情视频 | www日本黄色视频网| 成年免费大片在线观看| 国产午夜精品久久久久久一区二区三区 | 亚洲avbb在线观看| 国内揄拍国产精品人妻在线| 一级av片app| 久久人人精品亚洲av| 午夜激情欧美在线| 村上凉子中文字幕在线| 人妻久久中文字幕网| 久久久成人免费电影| 观看免费一级毛片| 国产成年人精品一区二区| 老司机午夜福利在线观看视频| 亚洲乱码一区二区免费版| 午夜激情福利司机影院| 深夜a级毛片| 色av中文字幕| 久久国产乱子免费精品| 欧美丝袜亚洲另类 | 国内少妇人妻偷人精品xxx网站| 精品熟女少妇八av免费久了| 91字幕亚洲| 夜夜夜夜夜久久久久| 亚洲精品成人久久久久久| 老司机福利观看| 搡女人真爽免费视频火全软件 | 亚州av有码| 免费人成在线观看视频色| 精品久久国产蜜桃| 国产伦在线观看视频一区| 男女视频在线观看网站免费| 国产探花极品一区二区| 一区二区三区四区激情视频 | 嫩草影视91久久| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩无卡精品| 免费观看人在逋| 欧美不卡视频在线免费观看| 久久久久国内视频| 国产高清视频在线播放一区| 午夜激情欧美在线| 一进一出抽搐gif免费好疼| 国产真实乱freesex| 一进一出抽搐gif免费好疼| 精品一区二区三区视频在线| 大型黄色视频在线免费观看| 亚洲成人久久爱视频| ponron亚洲| 最新在线观看一区二区三区| 国产主播在线观看一区二区| 国产aⅴ精品一区二区三区波| 久久人人爽人人爽人人片va | 日韩中字成人| 日本在线视频免费播放| 五月玫瑰六月丁香| 看免费av毛片| 制服丝袜大香蕉在线| 黄色日韩在线| 一级作爱视频免费观看| 亚洲美女黄片视频| 色尼玛亚洲综合影院| 五月玫瑰六月丁香| 赤兔流量卡办理| 欧美成人性av电影在线观看| 久久人人精品亚洲av| 给我免费播放毛片高清在线观看| 麻豆久久精品国产亚洲av| 国产中年淑女户外野战色| 欧美最新免费一区二区三区 | 国产又黄又爽又无遮挡在线| 亚洲国产欧洲综合997久久,| 中文字幕高清在线视频| 亚洲av第一区精品v没综合| 亚洲av五月六月丁香网| 日韩欧美精品免费久久 | 午夜精品在线福利| 日韩精品青青久久久久久| 极品教师在线视频| 他把我摸到了高潮在线观看| 成人美女网站在线观看视频| 久久久久久国产a免费观看| 亚洲一区二区三区不卡视频| 日韩av在线大香蕉| 国产亚洲精品久久久久久毛片| 久久午夜亚洲精品久久| 精品人妻偷拍中文字幕| 桃色一区二区三区在线观看| 日韩成人在线观看一区二区三区| 中文在线观看免费www的网站| 亚洲无线在线观看| h日本视频在线播放| 亚洲欧美日韩高清专用| 国产高潮美女av| 欧美3d第一页| 久久久成人免费电影| 国产在线男女| 91在线精品国自产拍蜜月| 人妻制服诱惑在线中文字幕| 亚洲精品影视一区二区三区av| 午夜福利在线观看免费完整高清在 | 一本一本综合久久| 久久欧美精品欧美久久欧美| 亚洲久久久久久中文字幕| 国产精品免费一区二区三区在线| 可以在线观看毛片的网站| 极品教师在线免费播放| 网址你懂的国产日韩在线| 欧美日韩福利视频一区二区| av在线观看视频网站免费| 久久99热6这里只有精品| 久久精品国产亚洲av香蕉五月| 怎么达到女性高潮| 亚洲狠狠婷婷综合久久图片| 在线十欧美十亚洲十日本专区| 十八禁人妻一区二区| 久久热精品热| 老司机午夜福利在线观看视频| 黄片小视频在线播放| 久久久久久久久中文| 18禁在线播放成人免费| 亚洲人成网站在线播放欧美日韩| 久久久久性生活片| 久久精品人妻少妇| 如何舔出高潮| 一二三四社区在线视频社区8|