• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CNTFET Based Grounded Active Inductor for Broadband Applications

    2022-11-10 02:32:50MuhammadMasudNasirShaikhHusinIqbalKhanandAbuBinAin
    Computers Materials&Continua 2022年10期

    Muhammad I.Masud,Nasir Shaikh-Husin,Iqbal A.Khan and Abu K.Bin A’Ain

    1Department of Electrical Engineering,Umm Al Qura University,Makkah,21955,Saudi Arabia

    2School of Electrical Engineering,Faculty of Engineering,Universiti Teknologi Malaysia,Johor Bahru,81310,Johor,Malaysia

    Abstract:A new carbon nanotube field effect transistor (CNTFET) based grounded active inductor (GAI) circuit is presented in this work.The suggested GAI offers a tunable inductance with a very wide inductive bandwidth,high quality factor (QF) and low power dissipation.The tunability of the realized circuit is achieved through CNTFET based varactor.The proposed topology shows inductive behavior in the frequency range of 0.1-101 GHz and achieves to a maximum QF of 9125.The GAI operates at 0.7 V with 0.337 mW of power consumption.To demonstrate the performance of GAI,a broadband low noise amplifier(LNA)circuit is designed by utilizing the GAI based input matching-network.The realized LNA provides high frequency bandwidth (17.5-57 GHz),low noise figure (<3 dB) and occupies less space due to absence of any spiral inductor.Moreover,it exhibits a flat forward gain of 15.9±0.9 dB,a reverse isolation less than-63 dB and input return loss less than -10 dB over the entire frequency bandwidth.The proposed CNTFET based GAI and LNA circuits are designed and verified by using HSPICE simulations with Stanford CNTFET model at 16 nm technology node.

    Keywords:Active inductor;gyrator-C;CNTFET;quality factor;selfresonance frequency

    1 Introduction

    Inductors are crucial components of many high frequency analog signal processing(ASP)circuits.They are utilized in LNAs,voltage-controlled oscillators,filters,frequency dividers,impedance matching-networks and phase shifters to name a few[1].However,their implementation in integrated circuits (ICs) is a challenging task.An on-chip spiral inductor dominates the die area of the IC,resulting in higher fabrication cost and also presents several disadvantages such as low QF,fixed inductance value and incompatibility with semiconductor fabrication process[2,3].Limitations of spiral on-chip inductor motivates IC designers to opt for active-circuitry for synthesizing the integrated inductors.Comparatively to spiral inductor,an active inductor (AI) offers high tunable inductance,high QF and it requires smaller area[4].However,AIs consume large power and introduce noise[5].

    From technical literature,several GAI topologies have been reported by employing high performance active building blocks(ABBs)like extra-X current controlled current conveyor[6],differential difference current conveyor[7],current feedback operational amplifier[8],current differencing buffered amplifier[9],voltage differencing inverting buffered amplifier[10],inverting voltage buffer[11],dual-X current conveyor transconductance amplifier[12]and four terminal floating nullor transconductance amplifier[13].However,high frequency performance of these GAI topologies is limited due to low self-resonance frequency(SRF),large number of active and passive devices,high power consumption and large chip area.

    Several gyrator-C based compact GAI topologies,utilizing positive transconductance element(PTE) and negative transconductance element (NTE) as an ABB can be found in the technical literature[1-3,5,14-22].However,each of these GAI topologies offers a few desirable specifications such as low power dissipation,wide inductance bandwidth,high QF,large tunable inductance,low noise and ability to work on low voltages.Although most AI circuit topologies presented to date are compact and achieve acceptably larger QF than its spiral counterpart,their application in low voltage,low power broadband ASP modules has been limited because of their narrow inductive bandwidth.As a result,to the best of authors knowledge,AI circuit topology has so far not been utilized in high frequency applications(>11 GHz)and wideband(>7 GHz bandwidth)ASP modules[3].This comparatively limited inductive bandwidth ultimately reduced their feasibility for the design of broadband high frequency ASP modules.

    It is to be noted that GAI topologies proposed in the technical literature[1-3,5-22]are based on bulk semiconductor technology.However,this technology faces numerous challenges below 22 nm technology node[23].The issues include high field effects,short channel control,increased leakage,boron penetration,polysilicon depletion,direct gate tunneling current and lithographic limitations[24-27].Therefore,it is extremely imperative for IC designers to explore new materials and devices for below 22 nm node,that equally works well to keep Moore’s law alive[23].

    To find replacements for CMOS technology,many devices and techniques are being introduced and evaluated by researchers such as double gate field effect transistors (FETs),single electron transistor,fin FETs and CNTFET[25].Among these solutions,the CNTFET has tremendous potential to further continue the feature length down-scaling and extend Moore’s law,due to its near ballistic transport of charge carriers,large thermal conductivity,higher cutoff frequency,smaller size,fast switching speed and low parasitic capacitances[26].These excellent CNTFET features lead it as a suitable candidate for multi GHz frequency applications.Since CNTFET introduction as an alternative to MOSFET,limited studies on CNTFET based AI has been carried out[27].However,the reported CNTFET based GAI topology utilizes large number of active and passive devices and suffers from low SRF,large chip area and high power dissipation.

    In this work,a wide tunable CNTFET based GAI circuit is presented.The realized GAI circuit uses recently proposed PTE along with NTE as an ABB and one CNTFET varactor[28].Tunability of GAI is achieved through the CNTFET varactor.The proposed GAI circuit enjoys higher tunable inductance magnitude over a very wide frequency band along with high QF,high SRF and low power dissipation.To evaluate the performance of the GAI topology,the proposed circuit is utilized in LNA.The GAI based LNA provides high frequency bandwidth,high gain,low noise figure(NF)and low power dissipation.The realized CNTFET based GAI has been studied in detail and the design is validated with HSPICE simulations by utilizing Stanford model[29].

    Subsequent sections are organized as follows.Section 2 discusses CNTFET in detail.The GAI circuit description is given in Section 3.Simulation results of the realized CNTFET based GAI are elaborated in Section 4.Comparison of the proposed GAI with other topologies is presented in Section 5.The application of GAI is demonstrated in Section 6.Lastly,the conclusion is provided in Section 7.

    2 Carbon Nanotube Field Effect Transistor

    Carbon nanotube (CNT),an allotrope of carbon,are graphite cylindrical sheets (GCS) which are rolled into cylindrical shape with diameter in the range of 1 to 50 nm and length of a few micrometers.CNTs are considered as the most attractive nanomaterial for future ASP applications due to its extraordinary electrical,chemical,mechanical,optoelectronics,and thermal properties[23].CNTFET is an important application of CNT.It is realized by replacing the MOSFET conventional channel with an array of isolated and aligned single wall CNTs.The CNTs behave as the medium of conduction between the drain and source terminals as shown in Fig.1.Like MOSFET,CNTFET also works as a voltage controlled active device.The CNTFET channel current is controlled through gate terminal voltage.CNTFET gate is coupled capacitively with the underneath channel that utilizes one or more CNTs[24].In comparison to MOSFET,CNTFET enjoys numerous outstanding advantages like higher temperature resilience,larger transconductance,larger driving current,one-dimensional ballistic transport capability,near ideal subthreshold slope and lower value of intrinsic capacitances[25,26].

    The geometric parametersST,DT,NTandWare the inter-CNT pitch,CNT diameter,number of channels and the transistor gate width respectively.These parameters are important for performance optimization of CNTFET.The parameterDTand threshold voltage (Vth) of a single wall CNT are given by following equations[30].

    wherenandmare the chiral vectors,acis the graphene lattice constant,Egis the band gap energy andqis the electron charge.The CNTFET gate width is given by following equation[24]:

    Thus,the width of CNTFET can be adjusted by selectingST,DTandNTvalues to optimize the circuit performance.

    3 GAI Circuit Description

    The proposed GAI topology with its equivalent RLC circuit is shown in Fig.2.It is based on gyrator-C topology.CNTFETsT1andT4form the NTE and CNTFETsT2,T3,T5andT6constitute the PTE[28].The PTE utilizes CNTFETsT2andT5as an inverting voltage buffer (IVB)[24].The varactorCvarutilized in Fig.2 is based on a single CNTFET,as shown in Fig.3[25].The CNTFET based varactor drain and source are tied together and then connected to control voltageVtune.The varactor capacitanceCvarcan be controlled by varyingVtune.Fig.4 demonstrate the small signal equivalent circuit of the GAI.In Fig.4,each CNTFET is presented bygmi,gdsiandCgsiwhich are the transconductance,output conductance and gate to source capacitance of thei-thtransistor respectively.For simplicity,Cgdis neglected(sinceCgd <<Cgs).

    By using the small signal equivalent model of Fig.4,the input admittance(Yi=1/Zi=Ii/Vi)can be found as.

    where the parameterα,β,γ,δandρa(bǔ)re given as follows:

    By consideringgm5 >>gds2,gm5 >>gds5,gm5 >>gds1,gm5 >>gds4,Cvar >>Cgs3,andCvar >>Cgs5,the equivalent RLC circuit model components of Fig.2b can be derived as:

    It can be seen from Eq.(13)that inductance of GAI can be controlled by adjusting the capacitance of CNTFET varactor.Thus,increasing the value ofVtuneof CNTFET varactor,will increase the magnitude of inductanceL.Moreover,the transconductance ratio of IVB(gm5/gm2),also plays a vital role in the improvement of inductance magnitude.The QF relation derived from the RLC equivalent circuit of Fig.2 is given by:

    The SRF of GAI which determine the circuit inductive behavior upper limit in frequency band can be written as:

    By analyzing Eqs.(13) and (15),it is seen that a tradeoff exists between the GAI inductance magnitude and SRF.With higher transconductance of CNTFETT5,a significant increase in the inductance value can be achieved but the inductance bandwidth will shrink accordingly.The realized GAI utilizes few number of transistors in the main path of signal,which made it suitable for high frequency broadband applications.Moreover,the designed GAI is suitable for low voltage operation as it employs only two CNTFETs between its supply rails.In addition,it is suitable for integration due to absence of any external passive component.

    4 GAI Design and Verification

    The proposed GAI of Fig.2 is designed and verified using HSPICE simulation tool with supply voltages VDD=0.7 V and VSS=-0.7 V.All the transistors are modeled using Stanford CNTFET model with transistor parameters mentioned in Tab.1.The diameterDTis set to 3 nm for GAI design.Moreover,with constant pitch ST=10 nm,the major design factor of the CNTFET based GAI is the parameterNT.In this regard,the transconductance ratiogm5/gm2is almost equal toNT5/NT2.

    Table 1:The CNTFET parameters

    The proposed topology is simulated using CNTFET parameters of Tab.1 along with NT1=5,NT2=5,NT3=5,NT4=5,NT5=30,NT6=5 and NT7=157.Initially the varactor tuning voltageVtuneis set to-0.60 V.Figs.5a and 5b show the magnitude and phase response of GAI input impedance.From Figs.5a and 5b,a high SRF equivalent to 101 GHz is observed.Fig.5c shows the GAI inductance plot.The inductance ranges from nearly 47.8 nH to 287.4 nH and can be adjusted to a set value for a specific frequency range.The AI circuit behavior is dominantly inductive in the frequency band,ranging from approximately 0.1 GHz to 101 GHz.The peak inductance value is found at 96.6 GHz.This wide inductive bandwidth makes the proposed GAI an attractive choice for broadband high frequency applications.Fig.5d shows the GAI QF plot.The maximum QF obtained is equivalent to 9125 at 16.6 GHz.This high QF is another advantage of the proposed work.The power dissipation is 0.337 mW.The realized GAI dissipates very small power,even at very high frequency of operation.The equivalent input referred noise for the circuit is 21.5 nV/√Hz,which is adequately a low value.

    The main criterion for selecting an AI for analog system design is its ability to tune to different resonant frequencies.As depicted by Eq.(13),the GAI inductance can be controlled by varying varactor capacitanceCvar.To demonstrate the proposed GAI tunability feature,different tuning voltagesVtuneare applied to the varactor.Fig.6 shows the magnitude response of GAI input impedance,at different values ofVtune.It can be seen that the input impedance frequency band can be tuned to different frequencies by alteringVtune.The SRF are found as 101.2 GHz,131.8 GHz,160.3 GHz,245.5 GHz,319.9 GHz forVtuneequal to-0.60 V,-0.38 V,-0.35 V,-0.30 V,-0.15 V respectively.By varying theVtunefrom-0.60 V to-0.15 V the GAI input impedance magnitude decreases from 351.7 kΩto 34.4 kΩ.This tunable input impedance over a large frequency band makes the proposed work suitable for multi GHz ASP applications.

    Fig.7 shows the frequency response of GAI inductance,at different values ofVtune.The maximum inductance is achieved at-0.60 V,where the inductance value varies in the range of 47.8 nH to 287.4 nH with a SRF of 101 GHz.The minimum inductance is achieved at-0.15 V,where the inductance value varies in the range of 4.4 nH to 9.6 nH with a SRF of 319.9 GHz.It can be seen that a tradeoff exists between the inductance magnitude and inductive bandwidth/SRF.Fig.8a shows the variation of GAI inductancevs.varactor tuning voltageVtuneat a fixed frequency of 40 GHz.Fig.8b demonstrates the variation of SRF versusVtune.As discussed earlier,a trade-off exists between the inductive bandwidth/SRF and inductance magnitude,which is more obvious from Fig.8.

    5 GAI Comparative Study

    Tab.2 summarizes a comparison of the realized GAI circuit with some other gyrator-C based AI topologies in the technical literature[1-2,5,14-22].Except for the proposed topology,which is in CNTFET,the other GAI topologies are based on CMOS technology.For comparison,only GAI circuits suitable for multi-GHz ASP applications are included in Tab.2.Limited works on CNTFET based GAI topology are available in the technical literature[27],however its frequency of operation is limited to MHz range.The GAI performance is compared for the characteristic’s parameters inductive bandwidth,maximum inductance,maximum QF and power dissipation.Comparison results demonstrate that the realized GAI has maximum inductive bandwidth,highest QF,minimum power consumption,and large inductance.The inductive bandwidth of the proposed work is almost 9 times greater than[14].The QF of the proposed work is almost 2 times greater than[22].In comparison to[17],the proposed GAI shows 34%reduction in power dissipation.

    Table 2:GAI performance comparison

    Table 2:Continued

    6 GAI Application

    In this section,the application of the proposed CNTFET GAI is demonstrated.The proposed GAI is utilized in the dual negative feedback common gate (DNFCG) LNA topology[31].For matching-network,LNA topologies usually utilize on chip passive spiral inductors.From Fig.9a,it can be seen that spiral inductorLbiaseis utilized by DNFCG LNA topology for matching.However,this inductor suffers from many drawbacks like low SRF,low QF,fixed and low inductance magnitude,larger chip area and incompatibility with standard CNTFET/CMOS technology.It is then most preferable to utilize AI instead of bulky spiral inductor,for reducing cost and size of LNAs.

    Fig.9b shows the complete GAI based DNFCG LNA,where passive inductorLbiaseof Fig.9a is replaced with the proposed GAI circuit.The common gate impedance matching transistorM1,amplifies the input and provides the main forward signal path.The common source transistorM2along with resistorRbforms the inverting gain block betweenM1source and gate terminals and thus help in boosting the transconductance ofM1.ResistorRbsets the loop gain and supplies the difference in bias current between the source follower transistorM3andM2.The source follower transistorM4works as a buffer.The coupling capacitorsC1,C2,C3,C4,C5and bias resistorsRx1,Rx2,Rx3,Rx4form the bias-network for the respective transistors.For proper operation of GAI based LNA,the zero frequency-ωzand the pole frequency-ωpof the utilized GAI,should be equal to the lowest and highest operating frequency,respectively.

    The input impedance of Fig.9 can be derived as:

    whereCpis the total parasitic capacitance at the input due to transistorM1andM2.The input matching-network is thus a parallel resonance,where GAI can be used to cancel the capacitive effects at the input-terminal.Thus,the parasiticCpis absorbed into the LC-network and the imaginary part ofZinis insignificant within the intended bandwidth[3,31].The voltage gainAcan be calculated as.

    The total NF is given by following relation.

    whereHmiare the CNTFET coefficients with magnitude less than one[30].The LNA circuit with gain much greater than unity will reduce the noise impact ofRband transistorsM1,M2,M3,M4on the NF.Tab.3 shows the important design parameters for DNFCG LNA.It is to be noted that theNT2of Common source transistorM2is set to sufficiently greater thanNT3to fulfill the primary assumptions[gm3Rb(gm1RL+1)]<<1andgm3 <<gm2.For GAI the CNTFET parameters of Tab.1 are used along with NT7=157,NTi=10,whereNT7is the number of tubes of the CNTFET varactorT7andNTiis the number of tubes utilized by all other CNTFETs.

    Table 3:Design parameters for DNFCG LNA

    Fig.10 shows the forward-gain(S21)and NF.It can be seen that the simulated gain is equivalent to 15.9 dB over the frequency range of 17.5 GHz to 57 GHz and drops by just 0.9 dB over the entire bandwidth.One of the important design considerations of broadband LNA is to keep the NF magnitude lower than 3 dB for frequency range of interest.It can be seen that over the entire bandwidth(17.5 GHz to 57 GHz),the NF magnitude is less than 3 db.

    Fig.11 demonstrates theS11,S12andS22simulation results for the realized GAI based LNA.Magnitude ofS11ranges from -16.8 dB to -11.4 dB over the bandwidth (17.5 GHz to 57 GHz).The power dissipation of GAI based LNA is 6.961 mW.In summary,the realized GAI based LNA provides very high frequency bandwidth (17.5 GHz to 57 GHz),low NF (<3 dB),occupy less space due to absence of any spiral inductor and consumes only 6.961 mW.

    Tab.4 demonstrates the comparison of proposed CNTFET GAI based DNFCG LNA with other DNFCG LNA topologies.It can be seen that GAI based LNA design offers larger bandwidth and lower power dissipation.It is also important to mention that the tunability feature of GAI is useful for compensating the undesirable parameter effects due to process,voltage,temperature variations.Moreover,it can easily help to adopt specification of other broadband high frequency ASP applications.Due to wide inductive bandwidth,high QF,low power dissipation and large tunable inductance,the proposed GAI circuit can be utilized as a potential candidate for 5G/6G communication ASP modules.

    Table 4:DNFCG LNA performance comparison

    7 Conclusion

    In this work,a CNTFET based GAI is presented.The proposed GAI circuit is free from external passive components and thus it is suitable for integrated circuit implementation.The realized AI is based on gyrator-C topology and employs only a few CNTFETs in the main path of signal which made it suitable for multi GHz broadband ASP applications.Simulation results demonstrate that the realized circuit consumes small power and provides high inductance,high QF,and large inductive bandwidth.These advantages make the proposed GAI an attractive candidate for low power,low voltage and high frequency broadband applications.Application of GAI is demonstrated in the design of broadband CNTFET based DNFCG LNA.Using the realized GAI in the input matching-network reduces the chip area.The realized GAI based LNA provides high gain,high frequency bandwidth,low NF and low power dissipation.The GAI and LNA circuit simulation outcomes based on CNTFET Stanford model using 16 nm technology node confirm the theoretical predictions.

    Funding Statement:The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4320299DSR01).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    美女视频免费永久观看网站| 欧美xxⅹ黑人| 亚洲少妇的诱惑av| 久久久亚洲精品成人影院| 男女边摸边吃奶| 精品国产露脸久久av麻豆| 欧美激情高清一区二区三区 | 亚洲精品国产一区二区精华液| 中国国产av一级| 日日摸夜夜添夜夜爱| 日日爽夜夜爽网站| 亚洲欧美日韩另类电影网站| 精品人妻一区二区三区麻豆| 亚洲中文av在线| 国产男女超爽视频在线观看| 久久99蜜桃精品久久| 亚洲欧美成人综合另类久久久| 精品一区在线观看国产| av不卡在线播放| 黄色 视频免费看| 丝袜美腿诱惑在线| 日韩人妻精品一区2区三区| 久久精品久久久久久噜噜老黄| 午夜久久久在线观看| 天堂8中文在线网| 女性被躁到高潮视频| 亚洲国产欧美日韩在线播放| 亚洲精品一二三| 纵有疾风起免费观看全集完整版| 久久久久视频综合| 美国免费a级毛片| 国产乱来视频区| 欧美在线黄色| 国产精品.久久久| 丝袜人妻中文字幕| 亚洲国产欧美在线一区| 丝袜美足系列| 国产精品蜜桃在线观看| 伦精品一区二区三区| 国产精品 国内视频| 亚洲av男天堂| 久久精品国产综合久久久| 婷婷色av中文字幕| 免费在线观看完整版高清| 国产成人精品无人区| 精品一区二区免费观看| 午夜日韩欧美国产| 老熟女久久久| 欧美最新免费一区二区三区| 美女国产视频在线观看| 亚洲色图综合在线观看| 亚洲国产欧美日韩在线播放| 黄色一级大片看看| 精品国产乱码久久久久久小说| 久久ye,这里只有精品| 男人爽女人下面视频在线观看| 国产在线一区二区三区精| 在线精品无人区一区二区三| 街头女战士在线观看网站| 97在线视频观看| 曰老女人黄片| 亚洲人成网站在线观看播放| 欧美日韩成人在线一区二区| 黄色怎么调成土黄色| 卡戴珊不雅视频在线播放| 在线观看一区二区三区激情| 国产精品久久久久久久久免| 在线 av 中文字幕| 美女福利国产在线| 亚洲内射少妇av| 丰满乱子伦码专区| xxxhd国产人妻xxx| av国产久精品久网站免费入址| 色婷婷久久久亚洲欧美| 成人二区视频| 波多野结衣av一区二区av| 两个人免费观看高清视频| 制服人妻中文乱码| 最近最新中文字幕免费大全7| 久久久精品94久久精品| 国产1区2区3区精品| 中文字幕精品免费在线观看视频| 三级国产精品片| 伊人久久大香线蕉亚洲五| 国产成人精品久久久久久| 老汉色av国产亚洲站长工具| 国产精品久久久久久久久免| 天天躁日日躁夜夜躁夜夜| 亚洲欧洲精品一区二区精品久久久 | 精品视频人人做人人爽| 欧美亚洲日本最大视频资源| 亚洲精品成人av观看孕妇| 亚洲精品国产av成人精品| 午夜免费鲁丝| 大片免费播放器 马上看| 国产成人免费无遮挡视频| 美女脱内裤让男人舔精品视频| 在线观看人妻少妇| 一边摸一边做爽爽视频免费| www日本在线高清视频| 亚洲精品日本国产第一区| 五月天丁香电影| √禁漫天堂资源中文www| 亚洲精品国产色婷婷电影| 精品一区在线观看国产| 人妻少妇偷人精品九色| 青春草国产在线视频| 伦理电影大哥的女人| 国产亚洲av片在线观看秒播厂| 成年女人在线观看亚洲视频| 免费在线观看完整版高清| 欧美日韩综合久久久久久| 欧美日本中文国产一区发布| 午夜福利一区二区在线看| 午夜福利视频在线观看免费| 老女人水多毛片| 日韩中文字幕欧美一区二区 | 精品久久久久久电影网| 国产精品三级大全| 丰满乱子伦码专区| 在线观看三级黄色| 国产男人的电影天堂91| 国产亚洲最大av| 丰满迷人的少妇在线观看| 久久精品久久精品一区二区三区| 一区二区三区乱码不卡18| 一级a爱视频在线免费观看| 三上悠亚av全集在线观看| 精品一区二区三卡| 亚洲中文av在线| 1024视频免费在线观看| 亚洲综合色惰| 搡老乐熟女国产| 欧美日韩国产mv在线观看视频| 建设人人有责人人尽责人人享有的| 18禁观看日本| 国产又色又爽无遮挡免| 亚洲一码二码三码区别大吗| 国产极品粉嫩免费观看在线| 涩涩av久久男人的天堂| 一本色道久久久久久精品综合| 日本午夜av视频| 国产一区二区在线观看av| 在线观看三级黄色| 久久av网站| 久久这里有精品视频免费| 秋霞伦理黄片| 女的被弄到高潮叫床怎么办| 国产一区有黄有色的免费视频| 欧美日韩精品网址| 嫩草影院入口| 一级毛片我不卡| 观看美女的网站| 国产男女内射视频| 一级毛片电影观看| 久久ye,这里只有精品| 日韩三级伦理在线观看| 色吧在线观看| 久久久a久久爽久久v久久| 国产成人精品在线电影| 日本色播在线视频| 91久久精品国产一区二区三区| 下体分泌物呈黄色| 久久久欧美国产精品| 亚洲av欧美aⅴ国产| 最近最新中文字幕免费大全7| 国产精品熟女久久久久浪| 九九爱精品视频在线观看| 宅男免费午夜| 91aial.com中文字幕在线观看| 久久久久久久精品精品| 伊人久久大香线蕉亚洲五| 久久久久国产网址| 成人毛片a级毛片在线播放| 亚洲天堂av无毛| 五月伊人婷婷丁香| 久久久久久久精品精品| 韩国精品一区二区三区| 天堂中文最新版在线下载| 国产97色在线日韩免费| 一本久久精品| 午夜福利视频在线观看免费| 精品少妇黑人巨大在线播放| 一级,二级,三级黄色视频| 七月丁香在线播放| 高清不卡的av网站| 极品少妇高潮喷水抽搐| 亚洲国产日韩一区二区| 国产极品天堂在线| 色婷婷av一区二区三区视频| 丝袜美足系列| 日本欧美视频一区| 满18在线观看网站| 美女主播在线视频| 啦啦啦在线免费观看视频4| 日韩一区二区三区影片| 欧美日韩亚洲高清精品| 中文精品一卡2卡3卡4更新| 成人影院久久| 18禁裸乳无遮挡动漫免费视频| 高清黄色对白视频在线免费看| 亚洲精品美女久久av网站| 国产探花极品一区二区| 精品视频人人做人人爽| 纯流量卡能插随身wifi吗| 亚洲美女搞黄在线观看| 国产精品不卡视频一区二区| 国产福利在线免费观看视频| 亚洲综合色惰| 亚洲国产欧美网| 三上悠亚av全集在线观看| 九草在线视频观看| 少妇被粗大猛烈的视频| 美女国产视频在线观看| av天堂久久9| 亚洲 欧美一区二区三区| 热re99久久精品国产66热6| 亚洲精品久久成人aⅴ小说| 伊人亚洲综合成人网| av一本久久久久| 中文字幕另类日韩欧美亚洲嫩草| 国产欧美日韩一区二区三区在线| 亚洲国产看品久久| 久久免费观看电影| 国产综合精华液| 97人妻天天添夜夜摸| 久久狼人影院| 一级毛片黄色毛片免费观看视频| 男女下面插进去视频免费观看| 日韩av不卡免费在线播放| 日韩制服骚丝袜av| 黄色怎么调成土黄色| 免费观看性生交大片5| 2021少妇久久久久久久久久久| 超碰97精品在线观看| 久久婷婷青草| 亚洲一码二码三码区别大吗| av网站在线播放免费| 亚洲精品日本国产第一区| www.自偷自拍.com| 1024香蕉在线观看| 青草久久国产| 色哟哟·www| 在线 av 中文字幕| 少妇精品久久久久久久| 香蕉丝袜av| 亚洲精品国产一区二区精华液| a级毛片黄视频| 自线自在国产av| 久久国产精品大桥未久av| 日韩制服骚丝袜av| 国产1区2区3区精品| 纯流量卡能插随身wifi吗| 色94色欧美一区二区| 极品人妻少妇av视频| 高清欧美精品videossex| 日本欧美视频一区| 边亲边吃奶的免费视频| 欧美国产精品一级二级三级| 国产在线一区二区三区精| 91国产中文字幕| 又黄又粗又硬又大视频| 久久久久久久久久久免费av| 久久精品久久精品一区二区三区| 蜜桃在线观看..| 国产成人免费观看mmmm| 欧美成人午夜免费资源| 欧美精品人与动牲交sv欧美| 9191精品国产免费久久| 亚洲成av片中文字幕在线观看 | 丝袜美足系列| 大香蕉久久网| 欧美中文综合在线视频| 国产野战对白在线观看| 婷婷色麻豆天堂久久| 久久97久久精品| 国产精品 国内视频| 亚洲精品久久久久久婷婷小说| 91久久精品国产一区二区三区| 亚洲精品中文字幕在线视频| 在线精品无人区一区二区三| 亚洲美女视频黄频| 色播在线永久视频| 日本91视频免费播放| 成人毛片60女人毛片免费| 国产精品三级大全| 国产精品久久久久久精品古装| 深夜精品福利| 日韩av不卡免费在线播放| 中文字幕最新亚洲高清| 天天躁夜夜躁狠狠躁躁| av.在线天堂| 国产片内射在线| 中文字幕制服av| 成年美女黄网站色视频大全免费| 久久久久国产一级毛片高清牌| 国产精品免费视频内射| 人妻一区二区av| 欧美精品一区二区免费开放| 久久久久久久精品精品| 97在线人人人人妻| 日韩人妻精品一区2区三区| 国产av国产精品国产| 在线观看一区二区三区激情| 91aial.com中文字幕在线观看| 春色校园在线视频观看| 亚洲男人天堂网一区| 国产97色在线日韩免费| 亚洲精品成人av观看孕妇| 国产男女超爽视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久久久免| 国产精品 国内视频| av电影中文网址| 亚洲欧美成人精品一区二区| 欧美+日韩+精品| 宅男免费午夜| 亚洲精品视频女| 亚洲色图综合在线观看| 亚洲精品中文字幕在线视频| av.在线天堂| 国产精品女同一区二区软件| 男人舔女人的私密视频| 电影成人av| av在线播放精品| 免费黄频网站在线观看国产| 免费女性裸体啪啪无遮挡网站| 日韩 亚洲 欧美在线| 久久国产精品男人的天堂亚洲| 国产成人精品久久二区二区91 | 一级爰片在线观看| 国产成人精品久久久久久| 极品人妻少妇av视频| 看免费av毛片| 热re99久久精品国产66热6| 久久婷婷青草| 一级,二级,三级黄色视频| 青春草亚洲视频在线观看| 999精品在线视频| 精品人妻熟女毛片av久久网站| 亚洲成人av在线免费| 国产亚洲欧美精品永久| 亚洲精品第二区| 亚洲精品第二区| 欧美人与善性xxx| 各种免费的搞黄视频| 国产日韩欧美视频二区| 亚洲av电影在线进入| 亚洲精品国产一区二区精华液| 国产乱来视频区| 色网站视频免费| 国产亚洲最大av| 国产在线一区二区三区精| 日韩人妻精品一区2区三区| 卡戴珊不雅视频在线播放| 久久婷婷青草| 免费在线观看黄色视频的| 老司机亚洲免费影院| 在线精品无人区一区二区三| 欧美日韩亚洲国产一区二区在线观看 | 国精品久久久久久国模美| 亚洲精华国产精华液的使用体验| 久久ye,这里只有精品| 精品人妻在线不人妻| 欧美另类一区| 午夜福利一区二区在线看| 日韩av免费高清视频| 成年女人在线观看亚洲视频| 多毛熟女@视频| 久久精品aⅴ一区二区三区四区 | 黑人巨大精品欧美一区二区蜜桃| 99热网站在线观看| 精品亚洲成国产av| 亚洲av男天堂| 国产色婷婷99| 国产男女内射视频| 久久婷婷青草| 久久影院123| 人妻一区二区av| 在线观看美女被高潮喷水网站| 高清视频免费观看一区二区| 看免费av毛片| 亚洲经典国产精华液单| 日韩免费高清中文字幕av| 黑丝袜美女国产一区| 日日爽夜夜爽网站| 亚洲经典国产精华液单| 一本大道久久a久久精品| 日本-黄色视频高清免费观看| av电影中文网址| 免费女性裸体啪啪无遮挡网站| 2021少妇久久久久久久久久久| 最近最新中文字幕大全免费视频 | 亚洲国产欧美网| 黑丝袜美女国产一区| 美国免费a级毛片| 久久人妻熟女aⅴ| 中文乱码字字幕精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| www日本在线高清视频| 免费女性裸体啪啪无遮挡网站| 日韩欧美精品免费久久| 成人毛片60女人毛片免费| 人人澡人人妻人| 十八禁高潮呻吟视频| 国产 一区精品| 建设人人有责人人尽责人人享有的| 街头女战士在线观看网站| 天堂俺去俺来也www色官网| 欧美日韩视频精品一区| 天天躁夜夜躁狠狠躁躁| 搡女人真爽免费视频火全软件| 免费黄网站久久成人精品| 少妇被粗大猛烈的视频| 国产深夜福利视频在线观看| av免费在线看不卡| 国产又爽黄色视频| 色哟哟·www| a级片在线免费高清观看视频| 91久久精品国产一区二区三区| 午夜福利,免费看| 啦啦啦中文免费视频观看日本| 成人免费观看视频高清| 啦啦啦在线免费观看视频4| 国产精品.久久久| 嫩草影院入口| 美女高潮到喷水免费观看| 成人影院久久| 久久国产精品男人的天堂亚洲| 看非洲黑人一级黄片| 亚洲欧美清纯卡通| 男女无遮挡免费网站观看| 26uuu在线亚洲综合色| 成年人午夜在线观看视频| 国产精品二区激情视频| 黑人猛操日本美女一级片| 一级爰片在线观看| 搡女人真爽免费视频火全软件| 天堂俺去俺来也www色官网| 亚洲精品aⅴ在线观看| 午夜福利视频精品| 国产成人午夜福利电影在线观看| 七月丁香在线播放| 曰老女人黄片| 97精品久久久久久久久久精品| 国产av一区二区精品久久| 免费久久久久久久精品成人欧美视频| 亚洲av免费高清在线观看| 亚洲精品美女久久av网站| 男女高潮啪啪啪动态图| 建设人人有责人人尽责人人享有的| 国产成人精品在线电影| 啦啦啦在线免费观看视频4| 久久精品国产亚洲av涩爱| 日韩成人av中文字幕在线观看| 国产伦理片在线播放av一区| 久久精品国产综合久久久| av天堂久久9| tube8黄色片| 最黄视频免费看| 国产成人aa在线观看| 制服丝袜香蕉在线| 少妇猛男粗大的猛烈进出视频| 欧美黄色片欧美黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人精品欧美一级黄| 天堂中文最新版在线下载| 精品少妇内射三级| 久久av网站| 成人漫画全彩无遮挡| 国产午夜精品一二区理论片| 欧美精品国产亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 最新中文字幕久久久久| 超碰97精品在线观看| 街头女战士在线观看网站| 久久久久久免费高清国产稀缺| 亚洲av国产av综合av卡| 男人爽女人下面视频在线观看| 国产有黄有色有爽视频| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看| 国产综合精华液| 国产伦理片在线播放av一区| 国产高清国产精品国产三级| 午夜福利一区二区在线看| √禁漫天堂资源中文www| 日韩精品免费视频一区二区三区| 又粗又硬又长又爽又黄的视频| 久久久久久久亚洲中文字幕| 少妇的丰满在线观看| 老女人水多毛片| 美女国产视频在线观看| 国产乱人偷精品视频| 国产97色在线日韩免费| 日本91视频免费播放| 爱豆传媒免费全集在线观看| 一个人免费看片子| 精品久久蜜臀av无| 国产又爽黄色视频| av网站在线播放免费| 国产精品香港三级国产av潘金莲 | 日韩精品免费视频一区二区三区| 人妻一区二区av| 制服人妻中文乱码| av视频免费观看在线观看| 国产一区亚洲一区在线观看| 在线观看人妻少妇| 十分钟在线观看高清视频www| 丁香六月天网| 国产97色在线日韩免费| 国产亚洲精品第一综合不卡| 亚洲av.av天堂| 欧美成人午夜免费资源| 亚洲国产av新网站| 新久久久久国产一级毛片| 国产成人91sexporn| 91成人精品电影| 爱豆传媒免费全集在线观看| 日韩视频在线欧美| 一本色道久久久久久精品综合| 国产精品麻豆人妻色哟哟久久| 亚洲av福利一区| 国产一区有黄有色的免费视频| 可以免费在线观看a视频的电影网站 | 王馨瑶露胸无遮挡在线观看| 欧美日韩综合久久久久久| 又黄又粗又硬又大视频| 国产免费福利视频在线观看| 欧美日韩av久久| 亚洲av中文av极速乱| 国产精品国产三级国产专区5o| 日本vs欧美在线观看视频| 午夜免费男女啪啪视频观看| videossex国产| 亚洲av国产av综合av卡| 精品人妻一区二区三区麻豆| 亚洲国产精品一区三区| 免费女性裸体啪啪无遮挡网站| 久久久久久免费高清国产稀缺| 一本色道久久久久久精品综合| 亚洲男人天堂网一区| 一本大道久久a久久精品| 国产精品成人在线| 高清在线视频一区二区三区| 亚洲av电影在线观看一区二区三区| 久久精品人人爽人人爽视色| 在线免费观看不下载黄p国产| 菩萨蛮人人尽说江南好唐韦庄| 一区二区日韩欧美中文字幕| 大片免费播放器 马上看| 视频在线观看一区二区三区| 极品少妇高潮喷水抽搐| 久久综合国产亚洲精品| 国产免费福利视频在线观看| 国产精品蜜桃在线观看| 午夜久久久在线观看| 看十八女毛片水多多多| 精品少妇一区二区三区视频日本电影 | 欧美日韩成人在线一区二区| 丁香六月天网| 黄色怎么调成土黄色| 国产成人精品久久二区二区91 | 国产xxxxx性猛交| 亚洲精品av麻豆狂野| 国产精品 国内视频| 亚洲伊人色综图| 2018国产大陆天天弄谢| 国产一区二区激情短视频 | 一区在线观看完整版| 日韩电影二区| 大片免费播放器 马上看| 18在线观看网站| av在线老鸭窝| 一区二区三区四区激情视频| 日韩人妻精品一区2区三区| 亚洲伊人色综图| 9色porny在线观看| 亚洲国产精品一区二区三区在线| 天天躁夜夜躁狠狠躁躁| av天堂久久9| 亚洲第一区二区三区不卡| 欧美日韩亚洲高清精品| 丰满乱子伦码专区| 国产有黄有色有爽视频| 国产无遮挡羞羞视频在线观看| 久久久久久伊人网av| 久久狼人影院| 青青草视频在线视频观看| 亚洲国产欧美网| 欧美日本中文国产一区发布| 91在线精品国自产拍蜜月| 黄色一级大片看看| 亚洲精品国产av成人精品| 亚洲av欧美aⅴ国产| 侵犯人妻中文字幕一二三四区| 成年美女黄网站色视频大全免费| 2021少妇久久久久久久久久久| 成人毛片a级毛片在线播放| 黄网站色视频无遮挡免费观看| 欧美日韩一级在线毛片| 亚洲美女搞黄在线观看| 国产精品亚洲av一区麻豆 | 色婷婷久久久亚洲欧美| 国产女主播在线喷水免费视频网站| 欧美精品亚洲一区二区| 久久精品国产亚洲av高清一级| 欧美日韩精品网址| 日产精品乱码卡一卡2卡三| 中文字幕亚洲精品专区| 中国三级夫妇交换| 亚洲欧美成人精品一区二区| 久久久久久久久免费视频了| 91精品三级在线观看| av卡一久久|