• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Searching for isotropic stochastic gravitational-wave background in the international pulsar timing array second data release

    2022-11-10 12:15:14ZuChengChenYuMeiWuandQingGuoHuang
    Communications in Theoretical Physics 2022年10期

    Zu-Cheng Chen,Yu-Mei Wu and Qing-Guo Huang,5

    1 CAS Key Laboratory of Theoretical Physics,Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190,China

    2 School of Physical Sciences,University of Chinese Academy of Sciences,No.19A Yuquan Road,Beijing 100049,China

    3 Department of Astronomy,Beijing Normal University,Beijing 100875,China

    4 Advanced Institute of Natural Sciences,Beijing Normal University,Zhuhai 519087,China

    5 School of Fundamental Physics and Mathematical Sciences,Hangzhou Institute for Advanced Study,UCAS,Hangzhou 310024,China

    Abstract We search for isotropic stochastic gravitational-wave background(SGWB)in the International Pulsar Timing Array second data release.By modeling the SGWB as a power-law,we find very strong Bayesian evidence for a common-spectrum process,and further this process has scalar transverse(ST)correlations allowed in general metric theory of gravity as the Bayes factor in favor of the ST-correlated process versus the spatially uncorrelated common-spectrum process is 30±2.The median and the 90% equal-tail amplitudes of ST mode are or equivalently the energy density parameter per logarithm frequency is at frequency of 1 year?1.However,we do not find any statistically significant evidence for the tensor transverse(TT)mode and then place the 95% upper limits as or equivalently at frequency of 1 year?1.

    Keywords:stochastic gravitational-wave background,pulsar timing array,beyond general relativity

    1.Introduction

    After the direct detection of gravitational waves(GWs)from a binary black hole[1]and a binary neutron star[2]mergers by LIGO-Virgo,other types of GW sources are yet to be identified.Of particular interest is the stochastic gravitationalwave background(SGWB)produced by the superposition of a large number of independent GW signals from compact binary coalescences.While the ground-based interferometers are sensitive to GWs from Hz to kHz,a pulsar timing array(PTA)[3–5],which regularly monitors the time of arrivals(TOAs)of radio pulses from an array of stable millisecond pulsars,offers a unique and powerful probe to correlated signals at low frequencies from nHz to μHz.The SGWB sources for PTAs could come from the inspiral of supermassive black hole binaries(SMBHBs)[6–8],the first-order phase transition[9,10],and the scalar-induced GWs[11–14],etc.It is expected that the SGWB from SMBHBs will be the first GW signal to be detected with PTAs[15].

    There are three major PTAs with accumulated pulsar-timing data of more than a decade,namely the European Pulsar Timing Array(EPTA)[16],the North American Nanoherz Observatory for Gravitational Waves(NANOGrav)[17],and the Parkes Pulsar Timing Array(PPTA)[18].These collaborations support the International Pulsar Timing Array(IPTA)[19,20].Over the last decades,PTAs have accumulated increasingly sensitive data sets,and the null-detection of GWs with PTAs has successfully constrained various astrophysical scenarios,such as cosmic strings[21–24],SGWBs from SMBHBs with power-law spectra[21,22,25],and primordial black holes[26],etc.It is widely expected that the inkling of an SGWB will first manifest as the emergence of a spatially uncorrelated common-spectrum process(UCP)among all pulsars,and culminate in the appearance of the spatial correlations that unambiguously signify the detection of an SGWB.

    In a recent analysis,the NANOGrav collaboration found strong evidence for a stochastic common-spectrum process modeled by a power-law spectrum in their 12.5 year data set[27].However,there was no statistically significant evidence for the tensor transverse(TT)spatial correlations which are deemed to be necessary to claim an SGWB detection consistent with general relativity.Authors in[28]then reanalyzed the NANOGrav 12.5 year data set and found strong Bayesian evidence that the common-spectrum process reported by NANOGrav collaboration has the scalar transverse(ST)spatial correlations which can originate from a general metric theory of gravity.Later on,the PPTA collaboration analyzed their second data release(DR2)and also found a commonspectrum process but without significant evidence for,or against,the TT spatial correlations[29].Furthermore,we[30]searched for the non-tensorial polarizations in the PPTA DR2,and found no significant evidence supporting the existence of alternative polarizations,thus constraining the amplitude of each polarization mode.Note that the 95%upper limit on the amplitude of the ST mode from[30]is consistent with the result from[28].

    The IPTA collaboration has published their second data release comprising of 65 pulsars in total with a timespan as long as about three decades[31].The IPTA DR2 is an invaluable complement to the NANOGrav 12.5 year data set and PPTA DR2 in the sense of more pulsars included and a longer timespan.In this letter,we aim to search for the SGWB signal modeled as a power-law spectrum in the IPTA DR2 with a particular interest in exploring if the ST spatial correlations are present in the data set or not.

    2.The data set and methodology

    The IPTA DR2[31]was created by combining published data from individual PTA data releases,including EPTA DR1[32],NANOGrav 9 year data set[33],and PPTA DR1[18].It consists of 65 pulsars and provides a better sky coverage compared to the IPTA DR1[34].There are two data combination versions in the IPTA DR2,namely VersionA and VersionB.The two versions are different in modeling the dispersion measure(DM)variation and handling the noise properties of pulsars[31].In particular,the noise parameters of the pulsars in VersionB are reestimated based on the IPTA data combination,while VersionA uses the previously constrained values from other PTA data sets[31].It has been shown that the overall time-dependent DM variations modeled by these two methods are largely consistent with each other[31].In this work,we use the VersionB data release by choosing only pulsars with a timing baseline greater than three years in our analyses and excluding the pulsar J1939+2134 because of its complicated DM variation and timing noise[18,35,36].Therefore,all results in this work are based on 52 pulsars that meet the requirements.

    The GWs will manifest as the unexplained residuals in the pulsar TOAs after subtracting a deterministic timing model that accounts for the pulsar spin behavior and the geometric effects due to the motion of the pulsar and the Earth[3,5].For two pulsars a and b,the cross-power spectral density of the timing residuals induced by an SGWB at frequency f is[37–39]

    Table 1.Parameters and their prior distributions used in the analyses.

    The first term M∈accounts for the inaccuracies in the subtraction of the timing model(see e.g.[44]),in which M is the timing model design matrix obtained from TEMPO2[45,46]through libstempo6https://vallis.github.io/libstempointerface,and∈is a vector denoting small offsets for the parameters of timing model.The second termδtSNis the stochastic contribution from the red spin noise(SN)intrinsic to each pulsar and is modeled by a power law with 30 frequency components.The third term δtDMdenotes the stochastic contribution from the DM noise which is also modeled by a power law with 30 frequency components.Unlike the SN,the DM noise is dependent upon the radio frequency whose information is added to the Fourier basis components.The fourth term δtyrDMis the stochastic contribution caused by annual DM variation described by a deterministic yearly sinusoid(see e.g.[36]).The fifth term δtWNrepresents the stochastic contribution due to the white noise(WN),including a scale parameter on the TOA uncertainties(EFAC),an added variance(EQUAD),and a perepoch variance(ECORR)for each backend/receiver system(see e.g.[47]).We include separate EFACs and EQUADs for all the backend/receiver-dependent PTA data sets,and separate ECORRs for the backend/receiver-dependent NANOGrav data sets.The last term δtCPis the stochastic contribution due to the common-spectrum process(such as an SGWB)with the cross-power spectral density given by equation(5).In the analyses,we use 10 frequency components roughly starting from 1.09×10?9Hz to 1.09×10?8Hz for the common-spectrum processes.For pulsar J1713+0747,we also include a chromatic exponential dip to model the sudden change in dispersion when the signal passes through the interstellar medium during propagation[36].

    We use the latest JPL solar system ephemeris(SSE)DE438[48]as the fiducial SSE as opposed to the DE436[49]that was used to create the IPTA DR2.To extract information from the data,we perform similar Bayesian parameter inferences based on the methodology in[22,27].The model parameters and their prior distributions are summarized in table 1.We first perform the parameter estimations for each single pulsar without including the stochastic contribution from the common-spectrum process(i.e.the δtCPterm in equation(7)).To reduce the computational costs,we then fix the white noise parameters to their max likelihood values from single-pulsar analysis.We use enterprise[50]and enterprise_extension[51]software packages to calculate the likelihood and Bayes factors and use PTMCMCSampler[52]package to do the Markov chainMonte Carlo sampling.Similar to[27,53],we use draws from empirical distributions to sample the parameters from SN,DM noise,and annual DM variation,with the distributions based on the posteriors obtained from the single-pulsar Bayesian analysis,thus reducing the number of samples needed for the chains to burn in.

    Table 2.An interpretation of the Bayes factor in determining which model is favored,as given by[54].

    Table 3.The lnBFbetween pairs of models.The digit in the parentheses represents the uncertainty on the last quoted digit.

    Figure 1.One and two-dimensional marginalized posteriors of the amplitude AUCP and the power-index γUCP obtained from the UCP model with γUCP allowed to vary.We show both the 1σ and 2σ contours in the two-dimensional plot.

    3.Results and discussion

    Our analyses are mainly based on the Bayesian inference in which the Bayes factor is used to quantify the model selection scores.The Bayes factor is defined as

    Figure 2.Marginalized posteriors of ATT and AST parameters obtained from the TT and ST models,respectively.

    To evaluate the potential deviation of the ST correlations in IPTA DR2,we also consider a model in which the overlap function is parameterized by the α parameter as equation(4).Specifically,α=0 corresponds to the ST correlations,while α=3 corresponds to the TT correlations.The marginalized posteriors for the α parameter are shown in figure 4,indicating the IPTA DR2 can be very well described by the ST correlations,but TT correlations are excluded by the 90% credible regions.

    Based on the above discussions,we conclude that there is strong Bayesian evidence for the ST correlations that could possibly come from some modified gravities with extra scalar polarization modes(see e.g.[55]),but no significant evidence for the TT7According to the private communication with Boris Goncharov,we acknowledge that the official IPTA DR2 publication on the search for the TTmode SGWB is now being submitted.That publication does not report evidence for spatial correlations.correlations in the IPTA DR2.Therefore,we place 95% upper limits on the amplitude of TT polarization mode asor equivalently,the 95% upper limits for the energy density parameter per logarithm frequency are

    Note added.—Recently the IPTA collaboration also performed a search for the SGWB in their DR2 data set[56],and confirmed our findings that IPTA DR2 has strong evidence for the UCP,but no significant evidence for the TT mode.

    Figure 3.One and two-dimensional marginalized posteriors of ST and TT amplitudes obtained from the ST+TT model.We show both the 1σ and 2σ contours in the two-dimensional plot.

    Figure 4.Bayesian posteriors for the α parameter in the model with a parameterized overlap function of equation(4).We consider the power-law SGWB spectrum with both γ=13/3 and γ=5.The two vertical dashed lines correspond to the TT(α=3)and ST(α=0)overlap functions,respectively.

    Acknowledgments

    We acknowledge the use of HPC Cluster of ITP-CAS and HPC Cluster of Tianhe II in National Supercomputing Center in Guangzhou.This work is supported by the National Key Research and Development Program of China Grant No.2020YFC2201502,grants from NSFC(Grant No.11 975 019,11 991 052,12 047 503),Key Research Program of Frontier Sciences,CAS,Grant NO.ZDBS-LY-7009,CAS Project for Young Scientists in Basic Research YSBR-006,the Key Research Program of the Chinese Academy of Sciences(Grant NO.XDPB15).

    亚洲精品美女久久av网站| 欧美成人午夜精品| av卡一久久| 校园人妻丝袜中文字幕| 亚洲内射少妇av| 欧美另类一区| 午夜av观看不卡| 99香蕉大伊视频| 观看av在线不卡| 哪个播放器可以免费观看大片| 免费观看av网站的网址| 在线看a的网站| 十八禁网站网址无遮挡| 亚洲精品一区蜜桃| 久久精品国产鲁丝片午夜精品| 伊人久久大香线蕉亚洲五| 久久久久久人人人人人| 亚洲美女搞黄在线观看| 波多野结衣av一区二区av| 国产在线一区二区三区精| 女人高潮潮喷娇喘18禁视频| 午夜精品国产一区二区电影| videos熟女内射| 亚洲国产看品久久| 国产午夜精品一二区理论片| 久久婷婷青草| 国产精品麻豆人妻色哟哟久久| www.自偷自拍.com| 天天躁狠狠躁夜夜躁狠狠躁| 一个人免费看片子| 秋霞伦理黄片| 久久久久久久亚洲中文字幕| 国产xxxxx性猛交| 亚洲国产精品999| 亚洲经典国产精华液单| 亚洲人成77777在线视频| 国产av精品麻豆| 最近最新中文字幕大全免费视频 | 国产精品成人在线| 少妇被粗大猛烈的视频| 亚洲伊人色综图| 日韩制服丝袜自拍偷拍| 亚洲第一av免费看| 久久精品aⅴ一区二区三区四区 | 亚洲精品自拍成人| 成年女人毛片免费观看观看9 | 国语对白做爰xxxⅹ性视频网站| 在线观看免费视频网站a站| 麻豆乱淫一区二区| 国产精品一区二区在线不卡| 国产av码专区亚洲av| 亚洲三区欧美一区| 国产熟女午夜一区二区三区| 在线精品无人区一区二区三| 人妻少妇偷人精品九色| 丝袜美足系列| 在线观看美女被高潮喷水网站| av福利片在线| 满18在线观看网站| 日韩欧美一区视频在线观看| 亚洲欧美中文字幕日韩二区| 日韩制服骚丝袜av| 精品酒店卫生间| 亚洲精品国产av蜜桃| 黄色怎么调成土黄色| 亚洲天堂av无毛| 成年人免费黄色播放视频| 久久久久久久国产电影| 看免费av毛片| 看非洲黑人一级黄片| 国产一区二区激情短视频 | 婷婷色综合www| 中文字幕色久视频| 国产av码专区亚洲av| 久热这里只有精品99| 麻豆乱淫一区二区| 久久 成人 亚洲| 亚洲伊人久久精品综合| 交换朋友夫妻互换小说| 人人妻人人爽人人添夜夜欢视频| 欧美人与性动交α欧美软件| 又粗又硬又长又爽又黄的视频| 母亲3免费完整高清在线观看 | 精品国产一区二区三区久久久樱花| 久久人人97超碰香蕉20202| 咕卡用的链子| 精品一区在线观看国产| 中文字幕人妻熟女乱码| 免费观看av网站的网址| 国产又色又爽无遮挡免| 黄色 视频免费看| 免费在线观看视频国产中文字幕亚洲 | 水蜜桃什么品种好| 国产日韩一区二区三区精品不卡| 日本av免费视频播放| 国产精品一区二区在线观看99| 在线观看人妻少妇| 日产精品乱码卡一卡2卡三| 亚洲第一青青草原| 亚洲三区欧美一区| 男男h啪啪无遮挡| 国产精品亚洲av一区麻豆 | 大陆偷拍与自拍| 青春草视频在线免费观看| 麻豆乱淫一区二区| 久久午夜福利片| 国产一区亚洲一区在线观看| 这个男人来自地球电影免费观看 | 亚洲少妇的诱惑av| 欧美精品亚洲一区二区| 看免费av毛片| 午夜久久久在线观看| 大香蕉久久成人网| 亚洲人成77777在线视频| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久精品古装| 欧美日韩视频高清一区二区三区二| 国产精品秋霞免费鲁丝片| 制服丝袜香蕉在线| 欧美人与善性xxx| 女人高潮潮喷娇喘18禁视频| 欧美日韩精品网址| 久久午夜福利片| 男女国产视频网站| 亚洲国产av影院在线观看| 亚洲av欧美aⅴ国产| 国产成人精品福利久久| 亚洲三级黄色毛片| 如何舔出高潮| 超碰成人久久| 国产日韩一区二区三区精品不卡| 国产一区亚洲一区在线观看| 欧美精品一区二区免费开放| 亚洲第一区二区三区不卡| 国产成人精品一,二区| 日韩中文字幕欧美一区二区 | 久久av网站| 免费少妇av软件| 麻豆乱淫一区二区| 色播在线永久视频| 97精品久久久久久久久久精品| 18禁动态无遮挡网站| 国产xxxxx性猛交| 久久鲁丝午夜福利片| 日本-黄色视频高清免费观看| 久久久久久久久久久久大奶| 视频区图区小说| 免费av中文字幕在线| 少妇猛男粗大的猛烈进出视频| 麻豆精品久久久久久蜜桃| 国产精品久久久av美女十八| 日本黄色日本黄色录像| 国产福利在线免费观看视频| 免费在线观看黄色视频的| 国产片内射在线| 一级毛片我不卡| 在线免费观看不下载黄p国产| 新久久久久国产一级毛片| 亚洲精品美女久久久久99蜜臀 | 女人被躁到高潮嗷嗷叫费观| 亚洲人成网站在线观看播放| 精品国产一区二区三区久久久樱花| 香蕉国产在线看| av网站在线播放免费| 卡戴珊不雅视频在线播放| 久久精品夜色国产| 熟妇人妻不卡中文字幕| 久久av网站| 母亲3免费完整高清在线观看 | 曰老女人黄片| 久久精品国产亚洲av天美| 欧美激情 高清一区二区三区| 边亲边吃奶的免费视频| 精品一区二区免费观看| 久久青草综合色| 韩国av在线不卡| 男女无遮挡免费网站观看| 人人妻人人澡人人爽人人夜夜| 亚洲美女黄色视频免费看| www.精华液| 日韩免费高清中文字幕av| 欧美 日韩 精品 国产| 考比视频在线观看| 高清黄色对白视频在线免费看| 人人妻人人澡人人看| 综合色丁香网| 亚洲欧美精品综合一区二区三区 | 最近最新中文字幕大全免费视频 | 免费大片黄手机在线观看| 久久免费观看电影| 国产成人精品婷婷| 99re6热这里在线精品视频| 交换朋友夫妻互换小说| 亚洲一级一片aⅴ在线观看| 一区二区三区四区激情视频| 久久精品久久久久久久性| 国产xxxxx性猛交| 你懂的网址亚洲精品在线观看| 久久久精品国产亚洲av高清涩受| 看免费av毛片| 亚洲精品在线美女| 国产精品不卡视频一区二区| 亚洲精品aⅴ在线观看| 国产精品亚洲av一区麻豆 | 最近2019中文字幕mv第一页| 午夜福利视频在线观看免费| 夫妻性生交免费视频一级片| 日韩中字成人| 国产成人av激情在线播放| 久久久久国产精品人妻一区二区| tube8黄色片| 免费高清在线观看日韩| 搡女人真爽免费视频火全软件| 校园人妻丝袜中文字幕| 在线观看www视频免费| 久久毛片免费看一区二区三区| 制服丝袜香蕉在线| av又黄又爽大尺度在线免费看| 嫩草影院入口| 国产欧美日韩一区二区三区在线| 欧美人与善性xxx| 久久99蜜桃精品久久| 国产视频首页在线观看| 一级黄片播放器| 国产午夜精品一二区理论片| av.在线天堂| 日韩大片免费观看网站| 好男人视频免费观看在线| 黄色 视频免费看| 久久av网站| 国产黄频视频在线观看| av一本久久久久| 在线免费观看不下载黄p国产| 亚洲少妇的诱惑av| 美女脱内裤让男人舔精品视频| 日日撸夜夜添| 王馨瑶露胸无遮挡在线观看| 男人舔女人的私密视频| 成人免费观看视频高清| 精品国产一区二区久久| 色播在线永久视频| 日日啪夜夜爽| 精品国产露脸久久av麻豆| 日韩一卡2卡3卡4卡2021年| 午夜91福利影院| 99久久人妻综合| 午夜免费男女啪啪视频观看| 欧美精品一区二区大全| 久久久国产一区二区| 97人妻天天添夜夜摸| 韩国精品一区二区三区| 捣出白浆h1v1| 国产精品成人在线| 精品第一国产精品| 美女视频免费永久观看网站| 国产在线视频一区二区| 男人操女人黄网站| 久久久久久久久免费视频了| 美女视频免费永久观看网站| www.av在线官网国产| 日本av免费视频播放| 久久青草综合色| 伊人久久大香线蕉亚洲五| 女性生殖器流出的白浆| 精品一区二区免费观看| 一区二区三区乱码不卡18| 久久久久久久亚洲中文字幕| 男女下面插进去视频免费观看| 国产男人的电影天堂91| 亚洲精品日本国产第一区| 亚洲精品久久成人aⅴ小说| 日韩人妻精品一区2区三区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩av久久| 国产又色又爽无遮挡免| 青草久久国产| 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 国产熟女欧美一区二区| 日韩精品有码人妻一区| 久久 成人 亚洲| 国产亚洲精品第一综合不卡| 亚洲欧美一区二区三区黑人 | 日韩电影二区| 18在线观看网站| 久久久久久久精品精品| 伊人久久大香线蕉亚洲五| 人体艺术视频欧美日本| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美一区二区三区国产| 亚洲国产精品999| 亚洲熟女精品中文字幕| 丝袜美足系列| 国产精品久久久av美女十八| 男的添女的下面高潮视频| 亚洲精品国产色婷婷电影| 亚洲成人一二三区av| 国产成人精品福利久久| 色吧在线观看| 人妻少妇偷人精品九色| 久久av网站| 精品国产一区二区久久| 欧美 亚洲 国产 日韩一| 午夜免费观看性视频| 黄片无遮挡物在线观看| 亚洲,一卡二卡三卡| 新久久久久国产一级毛片| 国产成人精品久久二区二区91 | 一级毛片 在线播放| 高清欧美精品videossex| 成人午夜精彩视频在线观看| 亚洲色图 男人天堂 中文字幕| 日日摸夜夜添夜夜爱| 波多野结衣av一区二区av| 日韩人妻精品一区2区三区| 国产精品女同一区二区软件| 亚洲国产成人一精品久久久| 中文字幕另类日韩欧美亚洲嫩草| 国产精品三级大全| 国产精品久久久久久精品古装| 久久久国产精品麻豆| 日本vs欧美在线观看视频| 18禁裸乳无遮挡动漫免费视频| 色婷婷久久久亚洲欧美| 国产又色又爽无遮挡免| 五月伊人婷婷丁香| 好男人视频免费观看在线| 男人添女人高潮全过程视频| 汤姆久久久久久久影院中文字幕| 国产综合精华液| 久久久久久人妻| 国产成人精品无人区| 黄片播放在线免费| 熟妇人妻不卡中文字幕| 寂寞人妻少妇视频99o| 欧美另类一区| 亚洲国产成人一精品久久久| 欧美激情高清一区二区三区 | 在线观看免费高清a一片| 久久久国产欧美日韩av| 天天躁夜夜躁狠狠久久av| 啦啦啦中文免费视频观看日本| 精品亚洲成国产av| 日产精品乱码卡一卡2卡三| 久久青草综合色| 国产成人精品一,二区| 大香蕉久久成人网| 9191精品国产免费久久| 亚洲三级黄色毛片| 日本午夜av视频| 国产精品熟女久久久久浪| 深夜精品福利| 少妇的丰满在线观看| 天堂俺去俺来也www色官网| 90打野战视频偷拍视频| av网站在线播放免费| 国产一级毛片在线| 制服丝袜香蕉在线| 人人妻人人添人人爽欧美一区卜| 日日啪夜夜爽| freevideosex欧美| 91精品伊人久久大香线蕉| 日韩一区二区视频免费看| 亚洲熟女精品中文字幕| 国产精品熟女久久久久浪| 精品少妇黑人巨大在线播放| 国产精品人妻久久久影院| 另类精品久久| 午夜福利在线观看免费完整高清在| 国产亚洲最大av| 国产乱人偷精品视频| 麻豆av在线久日| 美女福利国产在线| 两个人免费观看高清视频| 国产熟女午夜一区二区三区| 国产精品嫩草影院av在线观看| 国产在线视频一区二区| 一级片'在线观看视频| 久久久久久人人人人人| 精品福利永久在线观看| av在线播放精品| 国产精品久久久av美女十八| 男人操女人黄网站| 在线 av 中文字幕| 国产成人精品福利久久| www.精华液| 亚洲国产精品国产精品| 国产精品国产三级专区第一集| 欧美日韩国产mv在线观看视频| 午夜福利一区二区在线看| 色婷婷av一区二区三区视频| 少妇 在线观看| 国产av码专区亚洲av| 国产一区二区 视频在线| 国产精品久久久av美女十八| 观看av在线不卡| av女优亚洲男人天堂| 女性生殖器流出的白浆| 男女国产视频网站| 精品亚洲成a人片在线观看| 免费高清在线观看视频在线观看| 美国免费a级毛片| 精品人妻熟女毛片av久久网站| 亚洲美女黄色视频免费看| 啦啦啦视频在线资源免费观看| 少妇被粗大的猛进出69影院| 日韩伦理黄色片| 精品少妇一区二区三区视频日本电影 | 国产成人免费观看mmmm| 丰满少妇做爰视频| 免费看不卡的av| 日韩三级伦理在线观看| 久久久久久久大尺度免费视频| a级毛片在线看网站| 一区二区三区乱码不卡18| 亚洲男人天堂网一区| 国产精品人妻久久久影院| 亚洲精品国产av蜜桃| 18在线观看网站| 欧美国产精品va在线观看不卡| 久久鲁丝午夜福利片| www.熟女人妻精品国产| 高清在线视频一区二区三区| 国产精品成人在线| 亚洲精品日本国产第一区| 日韩熟女老妇一区二区性免费视频| 男女高潮啪啪啪动态图| 伊人久久国产一区二区| 亚洲色图 男人天堂 中文字幕| 国产 精品1| 久久国产精品大桥未久av| 午夜免费鲁丝| 亚洲精品久久成人aⅴ小说| 99热网站在线观看| 香蕉精品网在线| 电影成人av| 不卡av一区二区三区| 精品酒店卫生间| 久久久久人妻精品一区果冻| 亚洲三级黄色毛片| 美女国产视频在线观看| 丝袜在线中文字幕| 久久久亚洲精品成人影院| av不卡在线播放| 久久国产精品大桥未久av| 亚洲 欧美一区二区三区| 国产精品国产av在线观看| 18禁裸乳无遮挡动漫免费视频| 熟妇人妻不卡中文字幕| 国产精品无大码| 侵犯人妻中文字幕一二三四区| 国产免费福利视频在线观看| 99久久综合免费| 捣出白浆h1v1| 两个人看的免费小视频| 80岁老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲少妇的诱惑av| 久久久久精品久久久久真实原创| 国产亚洲一区二区精品| 人成视频在线观看免费观看| 亚洲精品久久午夜乱码| 观看美女的网站| 性色av一级| 欧美精品一区二区大全| 我要看黄色一级片免费的| 亚洲人成77777在线视频| 久久青草综合色| 中文字幕人妻丝袜一区二区 | 色视频在线一区二区三区| 一区二区日韩欧美中文字幕| av免费在线看不卡| 精品99又大又爽又粗少妇毛片| 超色免费av| a 毛片基地| 久久99一区二区三区| 亚洲精品国产av成人精品| 国产精品.久久久| 青青草视频在线视频观看| a级片在线免费高清观看视频| 啦啦啦在线观看免费高清www| 久久久国产欧美日韩av| 国产成人91sexporn| 黑人巨大精品欧美一区二区蜜桃| 街头女战士在线观看网站| 久久人人爽人人片av| 久久久久久久久久久久大奶| 国产精品嫩草影院av在线观看| 你懂的网址亚洲精品在线观看| 99九九在线精品视频| 国产一区二区三区综合在线观看| 国产精品女同一区二区软件| 蜜桃在线观看..| 国产精品三级大全| 午夜福利乱码中文字幕| 国产男女内射视频| 国产成人精品一,二区| 一本—道久久a久久精品蜜桃钙片| 男人舔女人的私密视频| 日韩伦理黄色片| 三上悠亚av全集在线观看| 欧美人与性动交α欧美精品济南到 | 免费黄色在线免费观看| 成人毛片60女人毛片免费| 国产精品嫩草影院av在线观看| 午夜福利在线观看免费完整高清在| 婷婷色综合www| 欧美日韩一区二区视频在线观看视频在线| 午夜老司机福利剧场| 精品国产露脸久久av麻豆| 性色avwww在线观看| 色94色欧美一区二区| 色播在线永久视频| 老司机影院毛片| videossex国产| videosex国产| 制服人妻中文乱码| 久热这里只有精品99| www.熟女人妻精品国产| 久久精品aⅴ一区二区三区四区 | 麻豆乱淫一区二区| 欧美亚洲 丝袜 人妻 在线| 韩国av在线不卡| 久久99精品国语久久久| 亚洲精品成人av观看孕妇| 久久99精品国语久久久| 国产亚洲一区二区精品| 青草久久国产| 国产成人欧美| 观看av在线不卡| 亚洲美女搞黄在线观看| 日本wwww免费看| 黑人巨大精品欧美一区二区蜜桃| 久久久精品国产亚洲av高清涩受| 亚洲图色成人| 色吧在线观看| 国产又爽黄色视频| 在线观看三级黄色| 巨乳人妻的诱惑在线观看| 日韩av免费高清视频| 在线观看免费视频网站a站| 十分钟在线观看高清视频www| 少妇熟女欧美另类| 最新的欧美精品一区二区| 少妇熟女欧美另类| 亚洲天堂av无毛| 欧美成人午夜免费资源| 亚洲av.av天堂| 精品亚洲成a人片在线观看| xxx大片免费视频| 成人午夜精彩视频在线观看| 中国国产av一级| 久久久久精品人妻al黑| 美女福利国产在线| 国产av码专区亚洲av| 在现免费观看毛片| 交换朋友夫妻互换小说| 亚洲欧美日韩另类电影网站| 亚洲精品日韩在线中文字幕| 国产亚洲一区二区精品| 久久久久精品久久久久真实原创| 伊人久久国产一区二区| 在线观看三级黄色| 国产午夜精品一二区理论片| 天堂8中文在线网| videosex国产| av不卡在线播放| 亚洲激情五月婷婷啪啪| 超碰97精品在线观看| 日韩不卡一区二区三区视频在线| 国产在线一区二区三区精| 日韩三级伦理在线观看| 久久这里有精品视频免费| 久久人人爽av亚洲精品天堂| 女性生殖器流出的白浆| 亚洲欧美清纯卡通| 男的添女的下面高潮视频| 久久久久久免费高清国产稀缺| 亚洲欧洲国产日韩| 国产xxxxx性猛交| 久久影院123| 国产精品二区激情视频| 日韩成人av中文字幕在线观看| 大香蕉久久网| 啦啦啦在线免费观看视频4| 免费高清在线观看日韩| www日本在线高清视频| 这个男人来自地球电影免费观看 | 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品国产亚洲| 国产伦理片在线播放av一区| 美女福利国产在线| 国产成人精品无人区| 日韩中文字幕欧美一区二区 | 精品人妻熟女毛片av久久网站| 亚洲婷婷狠狠爱综合网| 国产成人精品无人区| 精品国产超薄肉色丝袜足j| 一区二区av电影网| 精品视频人人做人人爽| 在线观看美女被高潮喷水网站| 午夜福利在线免费观看网站| a级毛片黄视频| 香蕉国产在线看| 在线观看人妻少妇| 国产视频首页在线观看| 女人久久www免费人成看片| 欧美国产精品va在线观看不卡| 这个男人来自地球电影免费观看 | 免费少妇av软件| 在线观看国产h片| 夫妻性生交免费视频一级片| 丝袜脚勾引网站| 香蕉国产在线看| 丁香六月天网|