• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impacts of gravitational-wave standard siren observations from Einstein Telescope and Cosmic Explorer on weighing neutrinos in interacting dark energy models

    2022-11-10 12:15:16ShangJieJinRuiQiZhuLingFengWangHaiLiLiJingFeiZhangandXinZhang
    Communications in Theoretical Physics 2022年10期

    Shang-Jie Jin,Rui-Qi Zhu,Ling-Feng Wang,Hai-Li Li,Jing-Fei Zhang and Xin Zhang,2,3

    1 Department of Physics,College of Sciences,Northeastern University,Shenyang 110819,China

    2 Frontiers Science Center for Industrial Intelligence and Systems Optimization,Northeastern University,Shenyang 110819,China

    3 Key Laboratory of Data Analytics and Optimization for Smart Industry(Northeastern University),Ministry of Education,China

    Abstract Multi-messenger gravitational wave(GW)observation for binary neutron star merger events could provide a rather useful tool to explore the evolution of the Universe.In particular,for the third-generation GW detectors,i.e.the Einstein Telescope(ET)and the Cosmic Explorer(CE),proposed to be built in Europe and the U.S.,respectively,lots of GW standard sirens with known redshifts could be obtained,which would exert great impacts on the cosmological parameter estimation.The total neutrino mass could be measured by cosmological observations,but such a measurement is model-dependent and currently only gives an upper limit.In this work,we wish to investigate whether the GW standard sirens observed by ET and CE could help improve the constraint on the neutrino mass,in particular in the interacting dark energy(IDE)models.We find that the GW standard siren observations from ET and CE can only slightly improve the constraint on the neutrino mass in the IDE models,compared to the current limit.The improvements in the IDE models are weaker than those in the standard cosmological model.Although the limit on neutrino mass can only be slightly updated,the constraints on other cosmological parameters can be significantly improved by using the GW observations.

    Keywords:gravitational-wave standard sirens,neutrino mass,interacting dark energy model,cosmological parameter estimation,Einstein telescope,cosmic explorer

    1.Introduction

    In the recent two decades,the study of cosmology has entered the era of precision cosmology.A standard model of cosmology has been established,usually called the Λ cold dark matter(ΛCDM)model.The measurements of cosmic microwave background(CMB)anisotropies from the Planck satellite mission have constrained the six primary parameters of the ΛCDM model with unprecedented precision.However,with the measurement precisions of the cosmological parameters improved,some puzzling issues appeared.For example,the inferred values of the Hubble constant from the Planck observation of the CMB anisotropies(based on the ΛCDM model)[1]and from the Cepheidsupernova distance ladder measurement[2]are inconsistent,with the tension between them more than 4σ significance[2].Namely,there is an inconsistency of measurements between the early and late universe,which is the so-called ‘Hubble tension’ problem.The Hubble tension recently has been widely discussed in the literature(see,e.g.[3–31]).Furthermore,theoretically,for the ΛCDM model,the cosmological constant Λ,which is equivalent to the density of vacuum energy,has always been suffering from serious theoretical challenges,such as the ‘fine-tuning’ and‘cosmic coincidence’ problems[32,33].Thus,it is hard to say that the ΛCDM model with only six base parameters is the eventual model of cosmology.All of these facts actually imply that the ΛCDM model needs to be further extended and some extra parameters concerning new physics need to be introduced into the new models.Of course,some novel cosmological probes should also be further developed.

    To extend the ΛCDM cosmology,the primary idea is to consider the dynamical dark energy with the dark energy density no longer a constant.In this class of models,the simplest one is the model with dark energy having a constant equation-of-state(EoS)parameter,w=pde/ρde=constant,which is usually called the wCDM model.For some popular dark energy models,see,e.g.[34–51].There is also a class of models known as the interacting dark energy(IDE)models in which some direct,non-gravitational interaction between dark energy and dark matter is considered.The interaction between dark sectors could help resolve(or alleviate)the coincidence problem of dark energy,and also can help alleviate the Hubble tension.The IDE models have been widely studied and deeply explored till now(see,e.g.[11,13,52–97]).

    Currently,the mainstream cosmological probes mainly include,e.g.the CMB anisotropies,baryon acoustic oscillations(BAO),type Ia supernovae(SN),direct determination of the Hubble constant(H0),weak gravitational lensing,redshift space distortions,and clusters of galaxies.The combinations of these cosmological data based on the electromagnetic(EM)observations have provided precise measurements for the base cosmological parameters.But for some extended parameters beyond the standard ΛCDM model,e.g.the EoS parameter of dark energy,the tensor-to-scalar ratio,and the total mass of neutrinos,they still cannot be precisely measured.Therefore,on one hand,the EM observations should be further greatly developed,and on the other hand,some novel cosmological probes are also needed to be developed in the future.In the next few decades,the gravitational wave(GW)standard siren observation is one of the most promising cosmological probes.

    The detection of the GW event GW170817[98]from the binary neutron star(BNS)merger initiated the multi-messenger astronomy era.Because in this event,not only GWs but also the EM signals in various bands were detected for the same transient source[99,100].From the analysis of the waveform of GW,one can obtain the absolute luminosity distance to the source.Furthermore,the redshift of the source can also be determined by identifying the EM counterpart of the GW source.With the known distance and redshift of a celestial source,a distance–redshift relation can be established,which can be used to explore the expansion history of the Universe[101].Such a tool for exploring the evolution of the Universe provided by GWs is called ‘standard sirens’(note here that the case having EM counterparts is usually referred to as bright sirens,to be differentiated from the case of dark sirens without EM counterparts)[102].

    The main advantage of the GW standard siren method is that the absolute luminosity distances can be measured.This is obviously superior to the SN observation,in that the latter can only measure the ratio of luminosity distances at different redshifts.In addition,the GW observation can observe much higher redshift events,compared to the SN observation.

    It is indisputable that the GW standard siren will be developed into a powerful cosmological probe in the future.The third-generation(3G)ground-based GW detectors,such as the Einstein Telescope(ET)[103,104]in Europe and the Cosmic Explorer(CE)[105,106]in the United States,have been proposed.In the 2030s,ET will be brought into operation.CE will start its observation in the mid-2030s.The 3G ground-based GW detectors have a much wider detectionfrequency range and a much better detection sensitivity,which can observe much more BNS events at much deeper redshifts.Recently,the GW standard sirens have been widely discussed in the literature[107–134](see[135]for a recent review).It is found that the GW standard siren observations from ET and CE would play an important role in the cosmological parameter estimation[136–141].

    In cosmology,neutrinos play a crucial role in helping shape the large-scale structure and the expansion history of the Universe.The phenomenon of neutrino oscillation indicates that neutrinos have masses and there are mass splittings between different neutrino species.However,it is extremely difficult to measure the absolute masses of neutrinos.Neutrino oscillation experiments cannot measure the absolute neutrino masses,but can only give the squared mass differences between the different mass eigenstates of neutrinos.The solar and reactor experiments giveand the atmospheric and accelerator beam experiments giveThus,there are two possible mass hierarchies of the neutrino mass spectrum,namely,the normal hierarchy(NH)with m1<m2?m3and the inverted hierarchy(IH)with m3?m1<m2.In addition,in some cases one also considers the cosmological models of neglecting the neutrino mass splittings,namely m1=m2=m3,which is usually called the degenerate hierarchy(DH).

    Although the neutrino masses can hardly be measured by particle physics experiments,they can be effectively constrained by cosmological observations.This is because massive neutrinos can exert some impacts on the evolution of the Universe.Using the current cosmological observations,an upper limit on the total neutrino mass ∑mνcan be obtained.So far,the most stringent limit on the total neutrino mass comes from the Planck 2018 CMB observation,and the combination CMB+BAO+SN gives the 95%CL upper limit∑mν<0.12 eV,for the DH case in the ΛCDM model.See e.g.[144–181]for studies on neutrino mass in cosmology.

    In a recent forecast[138],it was shown that the standard sirens observed by the ET can be used to improve the constraints on the total neutrino mass in the ΛCDM model.Using 1000 GW standard siren data points of the BNS merger events,it is found that the upper limits on ∑mνcan be tightened by about 10%[138].However,weighing neutrinos in cosmology depends on the cosmological model considered,and thus one would be curious about whether the role the GW data play in helping measure the neutrino mass will change if an extension to the ΛCDM model is considered.In this work,we consider the IDE models,and we wish to see what will happen on measuring neutrino mass when the IDE models are considered.

    In an IDE model,the energy conservation equations for dark energy and CDM satisfy

    where Q is the energy transfer rate,ρdeand ρcrepresent the energy densities of dark energy and CDM,respectively,H is the Hubble parameter,and a dot represents the derivative with respect to the cosmic time t.In this work,we consider the interaction form of Q=βHρc,where β is a dimensionless coupling parameter.Here,β >0 and β <0 mean CDM decaying into dark energy and dark energy decaying into CDM,respectively.

    In this work,we consider the IDE versions of the ΛCDM and wCDM models,which are called the IΛCDM and IwCDM models.We will discuss the cosmological parameter estimation in the IΛCDM+∑mνand IwCDM+∑mνmodels.Moreover,we will consider the three neutrino mass hierarchy cases,i.e.the NH,IH,DH cases.To avoid the perturbation divergence problem in the IDE models,in this work we employ the extended parameterized post-Friedmann(ePPF)framework[182,183]to calculate the perturbations of dark energy.

    We simulate the GW standard siren data observed by ET and CE,and we use these simulated GW data to investigate how well they can be used to improve the constraints on the neutrino mass as well as other cosmological parameters on the basis of the current CMB+BAO+SN constraints.

    The rest of this paper is organized as follows.In section 2.1,we introduce the methods of simulating the GW standard siren data.In section 2.2 we describe the EM cosmological observations used in this work.In section 2.3,we briefly describe the methods of constraining cosmological parameters.In section 3,we give the constraint results and make some relevant discussions.The conclusion is given in section 4.

    2.Method and data

    In this section,we first introduce the method of simulating the GW standard siren data from ET and CE.Then,we describe the current mainstream EM cosmological observations used in this work.Finally,we briefly introduce the method of constraining cosmological parameters.

    2.1.Simulation of the GW standard sirens

    The primary GW sources in the detection frequency band of the ground-based GW detectors are the mergers of BNS,binary stellar-mass black holes(BBH),and so on.The BNS mergers could produce rich EM signals[184]that can be detected by the EM observatories,thus enabling precise redshift measurements.Owing to the fact that there are no EM signals produced in the process of the BBH mergers,their redshifts could not be precisely measured through the detection of the EM counterparts.Hence,in this work,we only simulate the GW standard sirens from the BNS mergers.

    Figure 1.The redshift distribution of BNS mergers.

    Following[107,185],the redshift distribution of the BNS mergers takes the form

    where dC(z)is the comoving distance at the redshift z,and R(z)represents the redshift evolution of the burst rate,which takes the form[107,186,187]

    In figure 1,we show the redshift distribution of BNS mergers.

    Considering the transverse-traceless gauge,the strain h(t)in the GW interferometers can be described by two independent polarization amplitudes,h+(t)and h×(t)

    where F+and F×are the antenna response functions,θ and φ describe the location of the GW source relative to the GW detector,and ψ is the polarization angle.

    The antenna response functions of ET are[185]However,in this work,we simulate GW events by detecting short γ-ray bursts(SGRBs)to determine sources’ redshifts.Owing to the fact that SGRBs are strongly beamed[197],the detectable inclination angle is about ι ≤20°[192,198].Hence,in the present work,we set the inclination angle to be in the range of[0,20°].This is an ideal treatment,but for this work,since the number of simulated GW standard sirens is fixed,it has little effect on showing the impact of GW standard sirens on breaking cosmological parameter degeneracies and improving constraints on the cosmological parameters.

    Figure 2.Distribution of as a function of redshift.The color indicates the SNR of the simulated GW standard sirens.Upper:1000 GW standard sirens from a 10-year observation of ET.Lower:1000 GW standard sirens from a 10-year observation of CE.

    In figure 3,we show the simulated GW standard sirens from ET and CE.In the left panel,we show the standard siren data points without Gaussian randomness,where the central value of the luminosity distance is calculated by the fiducial cosmological model.In the right panel,in order to reflect the fluctuations in measured values resulting from actual observations,we show the standard siren data points with Gaussian randomization(the central values are populated according to a Gaussian distribution with mean being dLand standard deviation beingσdL).In principle,the right panel is more representative of actual observational data,but the central values of dLhave no effect on determining the absolute errors of cosmological parameters.Therefore,we use the data points in the left panel to constrain the cosmological models,because this is more helpful in investigating how the parameter degeneracies are broken to improve measurement precisions of cosmological parameters.We can clearly see that the measurement errors of dLfrom CE are smaller than those from ET,because CE has a better sensitivity than ET.

    2.2.Other cosmological observations

    In this work,we consider three current mainstream EM cosmological observations,including CMB,BAO,and SN.For the CMB data,we consider the Planck TT,TE,EE spectra at? ≥30,the low-? temperature Commander likelihood,and the low-? SimAll EE likelihood from the Planck 2018 release[1].For the BAO data,we consider the measurements from 6dFGS(zeff=0.106)[199],SDSS-MGS(zeff=0.15)[200],and BOSS DR12(zeff=0.38,0.51,and 0.61)[201].For the SN data,we use the latest Pantheon sample,which is comprised of 1048 data points from the Pantheon compilation[202].

    2.3.Method of constraining cosmological parameters

    To resolve the large-scale instability problem in the IDE cosmology[203],we apply the ePPF approach[182,183]for the IDE scenario so that the whole parameter space of IDE models can be explored without any divergence of the dark energy perturbation.In this work,we employ the modified version of the available Markov-Chain Monte Carlo package CosmoMC[204],with the ePPF code[182,183]inserted,to constrain the neutrino mass and other cosmological parameters.In order to show the impacts of GW data from ET and CT on constraining cosmological parameters,we use CMB+BAO+SN,CMB+BAO+SN+ET,and CMB+BAO+SN+CE to make our analysis.For convenience,we use CBS to standard for CMB+BAO+SN in the following.

    For the GW standard siren observation with N data points,the χ2function can be written as

    Figure 3.The simulated GW standard siren data points observed by ET and CE.The blue data points represent the 1000 standard sirens from the 10-year observation of ET and the orange data points represent the 1000 standard sirens from the 10-year observation of CE.Left:the standard siren data points without Gaussian randomness,where the central values of the luminosity distances are calculated by the fiducial cosmological model,and the solid green line represents the dL(z)curve predicted by the fiducial model.Right:the standard siren data points with Gaussian randomization,reflecting the fluctuations in measured values resulting from actual observations.

    Figure 4.Two-dimensional marginalized contours(68.3% and 95.4% confidence level)in the ∑mν–H0 and Ωm–H0 planes using the CBS,CBS+ET,and CBS+CE data.Here CBS stands for CMB+BAO+SN.

    3.Results and discussion

    In this section,we report the constraint results of cosmological parameters in the ΛCDM+∑mν,IΛCDM+∑mν,and IwCDM+∑mνmodels.In these models,the three mass hierarchy cases of neutrinos,i.e.the NH,IH,and DH cases,have been considered.The constraint results of the NH case are shown as representative in figures 4–6 and the constraint results are summarized in tables 1–3.Note that for the constraints on the total neutrino mass,the 2σ upper limits are given.Note also that using the squared mass differences derived from the neutrino oscillation experiments,one can obtain the lower limits for the total neutrino mass,i.e.0.05 eV for NH and 0.1 eV for IH;in the case of DH,the smallest value of the total neutrino mass is zero.For a parameter ξ,we use σ(ξ)and ε(ξ)to represent its absolute and relative errors,respectively,with ε(ξ)defined as ε(ξ)=σ(ξ)/ξ.

    We first take a look at the results in the ΛCDM+∑mνmodel.In figure 4,we show the constraints on the ΛCDM+∑mνmodel in the ∑mν–H0and Ωm–H0planes from the CBS,CBS+ET,and CBS+CE data.We find that the addition of the GW data to the CBS data could lead to the reduction of the upper limits of ∑mνto some extent.The CBS+CE data give slightly smaller upper limits on ∑mνthan those from the CBS+ET data.Concretely,when adding the ET data to the CBS data,the upper limits on ∑mνcould be reduced by 2.7%–12.4% in the three hierarchy cases.While for CE,the upper limits on ∑mνcould be reduced by 4.3%–14.0%in the three hierarchy cases.Here the results of ET are consistent with the previous results in[138].

    Figure 5.Two-dimensional marginalized contours(68.3%and 95.4%confidence level)in the ∑mν–β and Ωm–H0 planes using the CBS,CBS+ET,and CBS+CE data.Here CBS stands for CMB+BAO+SN.

    Figure 6.Two-dimensional marginalized contours(68.3%and 95.4%confidence level)in the ∑mν–w and w–β planes using the CBS,CBS+ET,and CBS+CE data.Here CBS stands for CMB+BAO+SN.

    Table 1.The absolute and relative errors of cosmological parameters in the ΛCDM+∑mν model using the CBS,CBS+ET,and CBS+CE data.Note that H0 is in units of km s-1 Mpc-1 and CBS stands for CMB+BAO+SN.Here,2σ upper limits on ∑mν are given.

    Although using the GW data could only slightly improve the limits on the neutrino mass,they can significantly help improve the constraints on other cosmological parameters.We find that the constraints on Ωmand H0could be improvedby 29.0%–32.8% and 30.4%–34.7%,respectively,when adding the ET data to the CBS data,and by 40.3%–43.8%and 43.5%–46.9%,respectively,for the case of CE.

    Table 2.The absolute and relative errors of cosmological parameters in the IΛCDM+∑mν model using the CBS,CBS+ET,and CBS+CE data.Note that H0 is in units of km s-1 Mpc-1 and CBS stands for CMB+BAO+SN.Here,2σ upper limits on ∑mν are given.

    Table 3.The absolute and relative errors of cosmological parameters in the IwCDM+∑mν model using the CBS,CBS+ET,and CBS+CE data.Note that H0 is in units of km s-1 Mpc-1 and CBS stands for CMB+BAO+SN.Here,2σ upper limits on ∑mν are given.

    In figure 5,we show the constraints on the IΛCDM+∑mνmodel in the ∑mν–β and Ωm–H0planes from the CBS,CBS+ET,and CBS+CE data.We can clearly see that when considering the interaction between vacuum energy and dark matter,the improvement of the limits on ∑mνby adding GW data is rather not evident.In the case of ET,the improvement of the limits on ∑mνis only 0.7%–1.8%,and in the case of CE,the improvement is 1.8%–4.1%.Therefore,we find that compared with the standard ΛCDM model,in its interaction version,the IΛCDM model,the improvement of the limits on ∑mνby GW data from ET and CE becomes weaker.This is because the IΛCDM model considers an extra cosmological parameter β compared with the ΛCDM model,which will degenerate with other cosmological parameters when the CBS data are used to constrain the IΛCDM model.Hence,compared with the ΛCDM model,the addition of the GW data to the CBS data for its interaction version leads to weaker improvement.

    We also find that the constraints on the coupling parameter β can be improved by using the GW data to a certain extent.In the IΛCDM+∑mνmodel,the constraints on β are improved by 19.2%–20.8% and 22.3%–26.2%,respectively,when the GW data of ET and CE are added on the basis of the CBS case.

    In figure 6,we show the constraints on the IwCDM+∑mνmodel in the ∑mν–w and w–β planes from the CBS,CBS+ET,and CBS+CE data.We find that in this case,the improvement of the limits on the neutrino mass is better than in the previous case.For ET,the improvement of the limit on ∑mνis 2.0%–5.4%,and for CE,the improvement is 5.3%–8.7%.

    We find that in this case the constraints on the coupling parameter β and the EoS parameter of dark energy w can both be significantly improved by considering the addition of GW data.The constraints on β and w are improved by 2.4%–8.0%and 10.8%–13.2%,respectively,when considering the ET data,and by 7.1%–10.2% and 18.9%–21.1%,respectively,when considering the CE data.

    In this work,we discuss the cosmological constraints on the IDE models in the cases of considering the GW standard siren observations from 3G ground-based GW detectors ET and CE.The results show that the limits on the neutrino mass can only be slightly improved with the help of the GW data,on the basis of the CBS constraint.Since the GW data can precisely constrain the Hubble constant H0,the addition of them in the cosmological fit can help break the cosmological parameter degeneracies formed by other cosmological observations.Therefore,the consideration of GW standard siren data can help significantly improve the constraints on the most cosmological parameters.However,the effect of massive neutrinos in the late universe and on large scales cannot be distinctively distinguished from that of the cold dark matter,leading to the improvement of the limits on the neutrino mass by considering GW data is not obvious.Anyway,even though the impact on constraining the neutrino mass is not apparent,the GW standard sirens are rather useful in helping improve the constraints on the most cosmological parameters including the EoS of dark energy and the coupling between dark energy and dark matter.

    4.Conclusion

    In the era of 3G ground-based GW detectors,a lot of GW standard siren data with known redshifts could be obtained by the multi-messenger observation for BNS merger events.Obviously,these standard sirens would exert great impacts on the cosmological parameter estimation.Since the GW standard sirens can tightly constrain the Hubble constant,the consideration of them in a joint cosmological fit can lead to the cosmological parameter degeneracies formed by other cosmological observations being well broken.The GW standard sirens can thus be used to help significantly improve the constraints on cosmological parameters in the future.

    It is of great interest to investigate whether the limits on the total neutrino mass can also be effectively improved by considering the GW standard siren data.In particular,the cosmological constraints on the neutrino mass are strongly model-dependent,and so the cases in different cosmological scenarios need to be discussed in detail.In this work,we discuss the issue of weighing neutrinos in the IDE models by using the GW standard siren observations by ET and CE.

    We consider the simplest IDE models,namely the IΛCDM and IwCDM models with Q=βHρc.We simulate the GW standard siren data of the BNS mergers observed by ET and CE(in a way of multi-messenger detection).We investigate whether the GW standard sirens observed by ET and CE could help improve the constraint on the neutrino mass in the IDE models.

    It is found that the GW standard siren observations from ET and CE can only slightly improve the constraint on the neutrino mass in the IDE models,compared to the current limit given by CMB+BAO+SN.This is mainly because the effect of massive neutrinos in the late universe and on the large scales cannot be distinctively distinguished from that of the CDM,leading to the improvement of the limits on the neutrino mass by considering GW data is not obvious.Although the limit on neutrino mass can only be slightly updated by considering the GW standard sirens,they are fairly useful in helping improve the constraints on the most cosmological parameters including the EoS of dark energy and the coupling between dark energy and dark matter.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Grants Nos.11 975072,11835009,11875102,and 11690021),the Liaoning Revitalization Talents Program(Grant No.XLYC1905011),the Fundamental Research Funds for the Central Universities(Grant No.N2005030),the National 111 Project of China(Grant No.B16009),and the Science Research Grants from the China Manned Space Project(Grant No.CMS-CSST-2021-B01).

    19禁男女啪啪无遮挡网站| 天堂影院成人在线观看| www日本在线高清视频| 精品国产超薄肉色丝袜足j| 一级a爱片免费观看的视频| 男女床上黄色一级片免费看| 中亚洲国语对白在线视频| 少妇的丰满在线观看| 成人一区二区视频在线观看| 国内精品美女久久久久久| 欧美午夜高清在线| 一本久久中文字幕| 99热这里只有是精品50| 中文亚洲av片在线观看爽| 精品国产三级普通话版| 亚洲七黄色美女视频| 免费在线观看成人毛片| 欧美乱码精品一区二区三区| 99国产极品粉嫩在线观看| 国产成人福利小说| 别揉我奶头~嗯~啊~动态视频| 黄色丝袜av网址大全| 免费无遮挡裸体视频| 国产成人系列免费观看| 亚洲欧美日韩卡通动漫| 午夜福利成人在线免费观看| 超碰成人久久| 精品久久久久久,| 久久久久久大精品| 欧美3d第一页| 亚洲欧美日韩东京热| 最好的美女福利视频网| 亚洲狠狠婷婷综合久久图片| 在线免费观看不下载黄p国产 | 国产精品久久久av美女十八| 狠狠狠狠99中文字幕| 女人被狂操c到高潮| 国产亚洲精品av在线| 亚洲 国产 在线| 琪琪午夜伦伦电影理论片6080| 后天国语完整版免费观看| 淫妇啪啪啪对白视频| 成人特级黄色片久久久久久久| 热99在线观看视频| 十八禁人妻一区二区| 亚洲欧洲精品一区二区精品久久久| www日本在线高清视频| 18禁黄网站禁片免费观看直播| 偷拍熟女少妇极品色| 非洲黑人性xxxx精品又粗又长| 99久久精品一区二区三区| 黄色 视频免费看| 五月玫瑰六月丁香| 女警被强在线播放| 国产伦一二天堂av在线观看| 久久这里只有精品中国| 中亚洲国语对白在线视频| www.熟女人妻精品国产| 一区二区三区激情视频| 亚洲国产欧美人成| 欧美日韩一级在线毛片| 色av中文字幕| 亚洲精华国产精华精| 免费一级毛片在线播放高清视频| 成人一区二区视频在线观看| 日本免费一区二区三区高清不卡| АⅤ资源中文在线天堂| 麻豆国产av国片精品| 中文字幕久久专区| 国内少妇人妻偷人精品xxx网站 | 国产又黄又爽又无遮挡在线| 熟女电影av网| 亚洲av成人av| 在线观看日韩欧美| 国产伦在线观看视频一区| 亚洲乱码一区二区免费版| 香蕉丝袜av| 国产精品亚洲av一区麻豆| 在线十欧美十亚洲十日本专区| 97人妻精品一区二区三区麻豆| 偷拍熟女少妇极品色| 性欧美人与动物交配| 超碰成人久久| 国产精品一及| bbb黄色大片| 波多野结衣巨乳人妻| 亚洲av成人不卡在线观看播放网| 中文字幕熟女人妻在线| 国产成人欧美在线观看| 小说图片视频综合网站| 欧美一区二区国产精品久久精品| 特大巨黑吊av在线直播| 国产视频一区二区在线看| 午夜免费观看网址| 好男人在线观看高清免费视频| 亚洲 欧美一区二区三区| ponron亚洲| 国产精品爽爽va在线观看网站| 夜夜夜夜夜久久久久| 亚洲专区字幕在线| 亚洲成人中文字幕在线播放| 丝袜人妻中文字幕| 中文字幕av在线有码专区| 精品人妻1区二区| 99国产综合亚洲精品| 国产97色在线日韩免费| 在线a可以看的网站| 99热只有精品国产| aaaaa片日本免费| 久久精品亚洲精品国产色婷小说| 色综合亚洲欧美另类图片| 毛片女人毛片| 国产成+人综合+亚洲专区| 在线视频色国产色| 高清毛片免费观看视频网站| 九色成人免费人妻av| 老司机午夜十八禁免费视频| 老司机在亚洲福利影院| 99精品欧美一区二区三区四区| 亚洲五月婷婷丁香| 亚洲一区二区三区不卡视频| 久久天堂一区二区三区四区| 可以在线观看的亚洲视频| 亚洲国产欧美网| 久久国产乱子伦精品免费另类| 亚洲七黄色美女视频| 国产av一区在线观看免费| 亚洲电影在线观看av| 九色成人免费人妻av| 97超级碰碰碰精品色视频在线观看| 亚洲自偷自拍图片 自拍| 国产高清激情床上av| 俺也久久电影网| 日日摸夜夜添夜夜添小说| av中文乱码字幕在线| 性色av乱码一区二区三区2| 熟女少妇亚洲综合色aaa.| 麻豆成人av在线观看| 亚洲熟妇中文字幕五十中出| 免费在线观看成人毛片| 久久香蕉精品热| 国产三级黄色录像| 人妻久久中文字幕网| 欧美日韩综合久久久久久 | 色尼玛亚洲综合影院| 亚洲一区二区三区色噜噜| a级毛片a级免费在线| 亚洲精品456在线播放app | 操出白浆在线播放| 国内精品一区二区在线观看| 一二三四社区在线视频社区8| av片东京热男人的天堂| 亚洲中文字幕日韩| 免费看美女性在线毛片视频| 久久人妻av系列| 国产爱豆传媒在线观看| 国产精品 国内视频| 真实男女啪啪啪动态图| 天天躁狠狠躁夜夜躁狠狠躁| 一边摸一边抽搐一进一小说| 中文资源天堂在线| 久久中文看片网| 成人av在线播放网站| 亚洲国产日韩欧美精品在线观看 | 又大又爽又粗| 免费在线观看视频国产中文字幕亚洲| 波多野结衣高清作品| 国产视频内射| 午夜两性在线视频| 精品国产乱码久久久久久男人| 法律面前人人平等表现在哪些方面| 999久久久精品免费观看国产| 国产精品爽爽va在线观看网站| 熟女少妇亚洲综合色aaa.| 三级国产精品欧美在线观看 | 国产精品亚洲一级av第二区| 俄罗斯特黄特色一大片| 精品国产乱子伦一区二区三区| 女人高潮潮喷娇喘18禁视频| 一本久久中文字幕| 欧美日本视频| 亚洲,欧美精品.| 97超级碰碰碰精品色视频在线观看| 亚洲欧美精品综合一区二区三区| 久久久精品欧美日韩精品| 美女扒开内裤让男人捅视频| 欧美+亚洲+日韩+国产| 一个人观看的视频www高清免费观看 | 99热这里只有是精品50| 熟女电影av网| 天天添夜夜摸| 欧美成人一区二区免费高清观看 | 成人欧美大片| 全区人妻精品视频| 日韩欧美一区二区三区在线观看| 99国产综合亚洲精品| 三级毛片av免费| 久久草成人影院| 超碰成人久久| 女人高潮潮喷娇喘18禁视频| 亚洲中文av在线| aaaaa片日本免费| 久久热在线av| 麻豆成人av在线观看| 全区人妻精品视频| 午夜福利高清视频| 此物有八面人人有两片| www日本黄色视频网| 丰满的人妻完整版| 久久久水蜜桃国产精品网| 欧美性猛交╳xxx乱大交人| 精品免费久久久久久久清纯| 亚洲五月婷婷丁香| www.熟女人妻精品国产| 在线十欧美十亚洲十日本专区| 成人av一区二区三区在线看| 97超视频在线观看视频| 亚洲精品美女久久久久99蜜臀| a级毛片a级免费在线| 成在线人永久免费视频| 最近最新中文字幕大全免费视频| 俺也久久电影网| 一进一出抽搐动态| 色视频www国产| 亚洲天堂国产精品一区在线| 人人妻人人看人人澡| 婷婷亚洲欧美| 男人舔女人的私密视频| avwww免费| 色综合站精品国产| 欧美激情在线99| 国产真实乱freesex| 精品日产1卡2卡| 丰满人妻熟妇乱又伦精品不卡| 国产探花在线观看一区二区| 久久久久国产精品人妻aⅴ院| 动漫黄色视频在线观看| 最好的美女福利视频网| 99re在线观看精品视频| 九色成人免费人妻av| 亚洲欧美一区二区三区黑人| 18禁裸乳无遮挡免费网站照片| 操出白浆在线播放| 国产成人啪精品午夜网站| 国产探花在线观看一区二区| 国产毛片a区久久久久| 欧美+亚洲+日韩+国产| 国产伦精品一区二区三区视频9 | 观看免费一级毛片| 最近最新中文字幕大全电影3| 国产亚洲精品av在线| 欧美日韩黄片免| 婷婷六月久久综合丁香| 久久久精品欧美日韩精品| 欧美乱妇无乱码| 国产成人啪精品午夜网站| 日韩欧美在线乱码| 日本黄大片高清| 日本 av在线| 淫秽高清视频在线观看| 高清毛片免费观看视频网站| 国产成人欧美在线观看| 中文字幕av在线有码专区| 黑人巨大精品欧美一区二区mp4| 亚洲精品一区av在线观看| 国产av不卡久久| 欧美成人一区二区免费高清观看 | 麻豆久久精品国产亚洲av| 丁香欧美五月| 欧美一区二区国产精品久久精品| 欧美xxxx黑人xx丫x性爽| 亚洲一区高清亚洲精品| 成人一区二区视频在线观看| 黑人巨大精品欧美一区二区mp4| 日韩成人在线观看一区二区三区| 亚洲激情在线av| 国产黄色小视频在线观看| 亚洲国产色片| 国产av一区在线观看免费| 免费看光身美女| 黄色 视频免费看| 男女下面进入的视频免费午夜| 国产精品,欧美在线| 19禁男女啪啪无遮挡网站| 欧美在线一区亚洲| 桃色一区二区三区在线观看| 国内久久婷婷六月综合欲色啪| 欧洲精品卡2卡3卡4卡5卡区| 天堂影院成人在线观看| 伦理电影免费视频| 亚洲自偷自拍图片 自拍| 日本与韩国留学比较| 亚洲av成人av| 在线观看午夜福利视频| 色av中文字幕| 亚洲国产欧美网| 波多野结衣高清无吗| 国内揄拍国产精品人妻在线| www日本黄色视频网| 亚洲精品美女久久久久99蜜臀| 国产精品自产拍在线观看55亚洲| 欧美zozozo另类| 最新在线观看一区二区三区| 色综合婷婷激情| 欧美一区二区精品小视频在线| 亚洲激情在线av| 欧美黑人巨大hd| 欧美丝袜亚洲另类 | 欧美中文综合在线视频| 久久久久免费精品人妻一区二区| ponron亚洲| 亚洲国产欧洲综合997久久,| 一边摸一边抽搐一进一小说| 欧美另类亚洲清纯唯美| 亚洲va日本ⅴa欧美va伊人久久| 好男人电影高清在线观看| 亚洲精品粉嫩美女一区| 免费在线观看亚洲国产| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产精品久久男人天堂| 国产成人av激情在线播放| 变态另类成人亚洲欧美熟女| 五月伊人婷婷丁香| 香蕉丝袜av| 两人在一起打扑克的视频| 国产伦精品一区二区三区四那| 757午夜福利合集在线观看| 色在线成人网| 俄罗斯特黄特色一大片| 久久久久性生活片| 成人一区二区视频在线观看| 一进一出抽搐gif免费好疼| 亚洲精品美女久久久久99蜜臀| 精品欧美国产一区二区三| 精品久久久久久久久久久久久| 网址你懂的国产日韩在线| 欧美日本亚洲视频在线播放| 久久香蕉国产精品| 国产精品美女特级片免费视频播放器 | 制服人妻中文乱码| 国产精品99久久99久久久不卡| 国内揄拍国产精品人妻在线| 亚洲五月天丁香| 特大巨黑吊av在线直播| 日韩精品中文字幕看吧| 美女免费视频网站| 搡老妇女老女人老熟妇| 女人被狂操c到高潮| 久久久久免费精品人妻一区二区| 国产精品久久久久久亚洲av鲁大| 九色成人免费人妻av| 可以在线观看的亚洲视频| 国产伦精品一区二区三区四那| 神马国产精品三级电影在线观看| 国产高清视频在线观看网站| 日本与韩国留学比较| 午夜亚洲福利在线播放| 中亚洲国语对白在线视频| 高清在线国产一区| 国产毛片a区久久久久| 日本 av在线| 久久亚洲真实| 亚洲第一电影网av| 在线a可以看的网站| 国产精品久久久久久精品电影| 天天躁日日操中文字幕| 亚洲第一电影网av| 亚洲成人免费电影在线观看| 99热只有精品国产| 在线观看免费午夜福利视频| 看片在线看免费视频| 人人妻人人澡欧美一区二区| 51午夜福利影视在线观看| 熟女少妇亚洲综合色aaa.| 亚洲欧美精品综合一区二区三区| 久久婷婷人人爽人人干人人爱| 国产精品久久视频播放| 怎么达到女性高潮| 国产爱豆传媒在线观看| 久久久精品欧美日韩精品| 久久久国产成人精品二区| 婷婷亚洲欧美| 国产精品免费一区二区三区在线| 久久午夜亚洲精品久久| 窝窝影院91人妻| 亚洲av成人不卡在线观看播放网| 亚洲七黄色美女视频| 成人亚洲精品av一区二区| 黄色成人免费大全| 亚洲精品色激情综合| 国产成人aa在线观看| 久久久久久久久中文| 亚洲国产精品sss在线观看| 啪啪无遮挡十八禁网站| 制服人妻中文乱码| 精品国产超薄肉色丝袜足j| 亚洲精品国产精品久久久不卡| 久久草成人影院| 又黄又爽又免费观看的视频| 国产一区二区在线观看日韩 | 每晚都被弄得嗷嗷叫到高潮| 久久香蕉国产精品| 桃色一区二区三区在线观看| 亚洲av成人一区二区三| 午夜福利18| 国模一区二区三区四区视频 | 国产不卡一卡二| 两性夫妻黄色片| 一级毛片高清免费大全| 2021天堂中文幕一二区在线观| 男女之事视频高清在线观看| 国产激情久久老熟女| 国产亚洲精品久久久久久毛片| 男女床上黄色一级片免费看| 欧美日韩福利视频一区二区| 一本综合久久免费| 国产伦精品一区二区三区视频9 | 国产又色又爽无遮挡免费看| 国产精品久久视频播放| 久久久精品大字幕| www.自偷自拍.com| 日韩av在线大香蕉| 国产激情偷乱视频一区二区| 国产精品久久久人人做人人爽| 99久久国产精品久久久| 亚洲专区字幕在线| 波多野结衣高清作品| 精品欧美国产一区二区三| 又黄又粗又硬又大视频| 久久这里只有精品中国| 久久久国产成人免费| www日本在线高清视频| 丰满人妻一区二区三区视频av | 精品国产美女av久久久久小说| av女优亚洲男人天堂 | 色吧在线观看| 黄色片一级片一级黄色片| av天堂中文字幕网| 天堂√8在线中文| 婷婷丁香在线五月| 又黄又爽又免费观看的视频| 天堂√8在线中文| 成人鲁丝片一二三区免费| 久久久久亚洲av毛片大全| 国产野战对白在线观看| 色精品久久人妻99蜜桃| 国产激情偷乱视频一区二区| 精华霜和精华液先用哪个| 给我免费播放毛片高清在线观看| 国产精品99久久久久久久久| 美女黄网站色视频| 欧美3d第一页| 亚洲精品在线美女| 观看美女的网站| 亚洲人成网站高清观看| 在线视频色国产色| 青草久久国产| 国产精品99久久久久久久久| 美女高潮喷水抽搐中文字幕| e午夜精品久久久久久久| 精品不卡国产一区二区三区| 久久久久久久午夜电影| 欧洲精品卡2卡3卡4卡5卡区| 亚洲专区中文字幕在线| 69av精品久久久久久| 看片在线看免费视频| 久久这里只有精品中国| 亚洲成a人片在线一区二区| 99久久久亚洲精品蜜臀av| 亚洲aⅴ乱码一区二区在线播放| 可以在线观看毛片的网站| 国产精品久久久av美女十八| 久久久色成人| 少妇熟女aⅴ在线视频| 国产成人福利小说| 亚洲国产中文字幕在线视频| 又粗又爽又猛毛片免费看| 欧美成人一区二区免费高清观看 | 精品国产美女av久久久久小说| 亚洲欧美一区二区三区黑人| 最新美女视频免费是黄的| 亚洲欧美日韩无卡精品| 久久性视频一级片| 日本熟妇午夜| 国产三级黄色录像| 高清在线国产一区| 男女午夜视频在线观看| 青草久久国产| 曰老女人黄片| 噜噜噜噜噜久久久久久91| 久久国产精品人妻蜜桃| 巨乳人妻的诱惑在线观看| 午夜精品久久久久久毛片777| 欧美日韩精品网址| 国产精品精品国产色婷婷| 九色国产91popny在线| 精华霜和精华液先用哪个| 可以在线观看的亚洲视频| 黑人巨大精品欧美一区二区mp4| 露出奶头的视频| 亚洲在线观看片| 国产伦精品一区二区三区视频9 | 国产欧美日韩一区二区三| 中出人妻视频一区二区| 三级国产精品欧美在线观看 | 欧美高清成人免费视频www| 精品乱码久久久久久99久播| 欧美一级毛片孕妇| 午夜福利高清视频| 青草久久国产| 一二三四在线观看免费中文在| 淫秽高清视频在线观看| 精品国内亚洲2022精品成人| 国产精品一区二区三区四区久久| 日韩欧美国产在线观看| 在线视频色国产色| 午夜激情欧美在线| 身体一侧抽搐| 一边摸一边抽搐一进一小说| 日本熟妇午夜| 久久中文字幕人妻熟女| 国产激情偷乱视频一区二区| 国产精品一区二区三区四区久久| 亚洲精品乱码久久久v下载方式 | 99久久久亚洲精品蜜臀av| 色精品久久人妻99蜜桃| 特级一级黄色大片| 久久久久久大精品| 真实男女啪啪啪动态图| 亚洲美女视频黄频| 女人被狂操c到高潮| 欧美+亚洲+日韩+国产| tocl精华| 午夜两性在线视频| 久久天躁狠狠躁夜夜2o2o| 不卡av一区二区三区| 舔av片在线| 国产1区2区3区精品| 日本精品一区二区三区蜜桃| 蜜桃久久精品国产亚洲av| 天天躁狠狠躁夜夜躁狠狠躁| 黄色片一级片一级黄色片| 亚洲成人久久性| 久久九九热精品免费| 在线a可以看的网站| 日本 欧美在线| 欧美日韩精品网址| 搡老妇女老女人老熟妇| 国产伦在线观看视频一区| 综合色av麻豆| 麻豆一二三区av精品| 哪里可以看免费的av片| 欧美大码av| 黄色女人牲交| 精品久久久久久成人av| 国产一区在线观看成人免费| 国产日本99.免费观看| 亚洲 国产 在线| 最近在线观看免费完整版| 国产午夜福利久久久久久| www.www免费av| 变态另类成人亚洲欧美熟女| av视频在线观看入口| 搞女人的毛片| 在线观看美女被高潮喷水网站 | 美女大奶头视频| av片东京热男人的天堂| 亚洲av成人不卡在线观看播放网| av女优亚洲男人天堂 | 两性夫妻黄色片| 欧美一区二区精品小视频在线| 久久久国产成人免费| 不卡一级毛片| 欧美成狂野欧美在线观看| 亚洲精品在线美女| 国产亚洲精品久久久com| 黑人巨大精品欧美一区二区mp4| 亚洲精华国产精华精| 变态另类成人亚洲欧美熟女| 久久亚洲真实| 国产精品一区二区精品视频观看| 日日干狠狠操夜夜爽| 国产精品98久久久久久宅男小说| 69av精品久久久久久| 国产精品一区二区精品视频观看| 亚洲国产精品成人综合色| 网址你懂的国产日韩在线| 欧美zozozo另类| 精品福利观看| 中亚洲国语对白在线视频| 国产精品99久久99久久久不卡| 亚洲国产欧美一区二区综合| 免费av不卡在线播放| 免费看十八禁软件| 中文亚洲av片在线观看爽| 俺也久久电影网| 久久精品91蜜桃| 亚洲成av人片免费观看| 亚洲电影在线观看av| 国产亚洲av嫩草精品影院| 亚洲精品在线美女| 后天国语完整版免费观看| 亚洲成人久久性| 熟女人妻精品中文字幕| 欧美三级亚洲精品| 亚洲色图 男人天堂 中文字幕| 麻豆久久精品国产亚洲av| 精品熟女少妇八av免费久了| 一进一出抽搐gif免费好疼| 黄色片一级片一级黄色片| 此物有八面人人有两片| 欧美黄色淫秽网站| 亚洲成人中文字幕在线播放| 国产精品久久电影中文字幕| 他把我摸到了高潮在线观看|