• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Topological excitations in rotating spin–orbit-coupled spin-1 Bose–Einstein condensates with in-plane gradient magnetic field

    2022-11-10 12:15:18HuiYangXianghuaSuYuZhangandLinghuaWen
    Communications in Theoretical Physics 2022年10期

    Hui Yang,Xianghua Su,Yu Zhang and Linghua Wen

    1 Key Laboratory for Microstructural Material Physics of Hebei Province,School of Science,Yanshan University,Qinhuangdao 066004,China

    2 Department of Physics,Xinzhou Teachers University,Xinzhou 034000,China

    Abstract We investigate the topological excitations of rotating spin-1 ferromagnetic Bose–Einstein condensates with spin–orbit coupling(SOC)in an in-plane quadrupole field.Such a system sustains a rich variety of exotic vortex structures due to the spinor order parameter and the interplay among in-plane quadrupole field,SOC,rotation,and interatomic interaction.For the nonrotating case,with the increase of the quadrupole field strength,the system experiences a transition from a coreless polar-core vortex with a bright soliton to a singular polar-core vortex with a density hole.Without rotation but with a fixed quadrupole field,when the SOC strength increases,the system transforms from a central Mermin–Ho vortex into a criss-crossed vortex–antivortex string lattice.For the rotating case,we give a phase diagram with respect to the quadrupole field strength and the SOC strength.It is shown that the rotating system supports four typical quantum phases:vortex necklace,diagonal vortex chain cluster,single diagonal vortex chain,and few vortex states.Furthermore,the system favors novel spin textures and skyrmion excitations including an antiskyrmion,a criss-crossed half-skyrmion–half-antiskyrmion lattice,a skyrmion-meron necklace,a symmetric half-skyrmion lattice,and an asymmetric skyrmionmeron lattice.

    Keywords:spin-1 Bose–Einstein condensate,spin–orbit coupling,topological excitation,vortex,skyrmion

    1.Introduction

    The experimental realization of spin–orbit coupling(SOC)in ultracold quantum gases is a tremendous breakthrough and attracts considerable attention[1–7].The general SOC being of Bychkov–Rashba[8],Dresselhaus[9]or Rashab–Dresselhaus type which couples the internal states and the orbit motion of the atoms offers an ideal simulation platform for studying the few-body and many-body quantum phenomena in condensed matter physics,nuclear physics and astrophysics,and provides a unique opportunity for exploring novel quantum states in ultracold atomic gases such as Bose–Einstein condensates(BECs)[10,11].In the past few years,numerous experimental and theoretical studies have focused on the new quantum phases of spin–orbit-coupled pseudospin-1/2 BECs[1,3,4,6,12–19].In particular,the rotating pseudo-spin-1/2 BECs with SOC have been shown to be able to create various topological excitations,such as half-quantum vortex[20],vortex lattice[21–24],vortex necklace[25],skyrmion[23],and Bloch domain wall[26].Recently,spin–orbit-coupled spin-1 BECs of87Rb atoms have been realized experimentally[27,28],which paves the way toward the exploration of intriguing properties of spin-1 BECs[29–31]generally unattainable in electronic materials and pseudospin-1/2 BECs due to the interplay between the spinor character(e.g.the spin-exchange interactions)and the SOC as well as the other parameters[32–39].Essentially,the SOC mentioned above is SU(2)SOC,where the internal states couple to their momentum via the SU(2)Pauli matrices.

    On the other hand,gradient magnetic fields have been used recently to create an artificial non-Abelian gauge field and various topological defects including monopoles,skyrmions and quantum knots[40–44].Relevant studies demonstrate that SOC and spin Hall state can be achieved in an optical lattice system without spin-flip process by applying a gradient magnetic field[45,46].These investigations show that the gradient magnetic field plays a key role in exploring the rich many-body physics of ultracold condensate systems.Recently,Li et al predicted the Dirac monopoles induced by SOC in spinor BECs in the presence of a three-dimensional(3D)gradient magnetic field[47],and Wang et al discussed the ground-state configurations of spin–orbit-coupled antiferromagnetic BECs in a quadrupole field[48].In addition,the ground-state properties of dipolar pseudo-spin-1/2 BECs with SOC in an in-plane quadrupole field were analyzed[49].In this context,an interesting question is what novel quantum states sustain in rotating spin–orbit-coupled spin-1 BECs in the presence of in-plane gradient magnetic field.Which parameters are related to these quantum phases and what are the relevant physical mechanisms?

    In this paper,we study the topological excitations of rotating quasi-2D ferromagnetic spin-1 BECs with 2D SOC in a 2D harmonic trap plus an in-plane quadrupole field.It is shown that the system supports rich exotic vortex excitations because of the multicomponent order parameters and the combined effects of rotation,SOC,in-plane quadrupole field,and interatomic interaction.For the nonrotating case,the system sustains a coreless polar-core vortex,a singular polarcore vortex,a central Mermin–Ho vortex,and a criss-crossed vortex–antivortex string lattice,depending on the SOC strength,the quadrupole field strength,and the interparticle interactions.For the rotating case,we give a phase diagram with respect to the quadrupole field strength and the SOC strength.We find that the rotating spin-1 ferromagnetic BECs with SOC in the quadrupole field display four typical quantum phases:vortex necklace,diagonal vortex chain cluster,single diagonal vortex chain,and few vortex state.Furthermore,the system sustains peculiar spin textures and skyrmion excitations including a criss-crossed meron–antimeron lattice,a skyrmion-half-skyrmion necklace,a symmetric half-skyrmion lattice,and an asymmetric skyrmionmeron lattice.

    The paper is organized as follows.The theoretical model is introduced in section 2.In section 3,we present and analyze the ground-state structures of the system without rotation.The quantum phases of the system for the rotating case are discussed in section 4.The spin textures and skyrmion configurations are analyzed in section 5.Finally,we summarize our findings in the last section.

    2.Model

    3.Ground-state structures without rotation

    In what follows,we study the ground-state structures of the spin–orbit-coupled spin-1 ferromagnetic BECs in an in-plane quadrupole field without rotation and with rotation,respectively.The ground states are obtained by using the imaginary time propagation method[55,56]combined with the Peaceman–Rachford method[57].The normalization condition∫∣ψ∣2dxdy=1is used in solving the imaginary time evolution of the GP equations(3)–(5).In the present work,we consider the ferromagnetic spin interaction,i.e.λ2<0.Without magnetic field and rotation,the ground-state phases of spin-1 BECs with SOC in the case of antiferromagnetic spin interaction are the stripe phase and lattice phase[58],while the ground-state phase in the case of ferromagnetic spin interaction is a magnetized phase(plane wave phase)[58].The typical ground-state phase diagram of spin-1 BECs with SOC can be seen in the relevant literature[58,59].Figure 1 shows the typical ground states of nonrotating spin-1 BEC in the presence of an in-plane quadrupole field.To highlight the∣ψ1∣2,∣ψ0∣2and∣ψ-1∣2(the left three columns)are the density effect of the in-plane quadrupole field in the absence of rotation(Ω=0),we fix the SOC strength k=0.8.Note that distributions of three components mF=1,mF=0 and mF=?1,and the corresponding phase distributions and momentum distribution of component mF=0 are given byθ1=argψ1,θ0=argψ0,θ-1=argψ-1and nk(the right four columns),respectively.Here,we characterize the vortex configuration according to the combination of the winding number of each component.The winding combination can be denoted as〈w1,w0,w-1〉 in which the integers w1,w0,w?1are the winding numbers of ψ1,ψ0,ψ?1,respectively,and w means the phase change by 2πw when the wave function goes around the phase singularity.As the in-plane quadrupole field strength increases from 0.2 to 5,the vortices occur only in the central regions of components mF=1 and mF=?1,and the soliton in the center of component mF=0 transforms to a density hole,which form a polar-core vortex with winding combination〈-〉1,0,1 and an antiferromagnetic core,as shown in figures 1(a)–(c).Essentially,the polar-core vortices in figures 1(a)and(b)are coreless vortices because there is no phase defect in the total density of the system,while the one in figure 1(c)is a singular vortex due to the evident density hole in the total density distribution.Our numerical simulation shows that the formation of the central polar-core vortex is relevant to the interplay of the quadrupole field and the SOC.The combined effects of the quadrupole field and the SOC generate a special saddle point structure,where the inplane magnetization of spin occurs in the particular magnetic field and the amplitude of the total magnetization∣∣Fat the saddle point is zero.To satisfy the conservation of angular momentum,the two vortices at the center of components mF=1 and mF=?1 must rotate backwards,so they have opposite winding numbers.The momentum distributions in figures 1(a)and(b)show four discrete points near the origin of the k-space,which indicates here the quantum phases result from the combination of two pairs of opposite momenta.For large quadrupole field strength,the momentum distribution displays a parallelogram structure around the origin of the k-space as shown in figure 1(c).

    Figure 1.Effect of in-plane quadrupole field on the ground state of nonrotating spin-1 BEC with fixed SOC strength k=0.8.(a)B=0.2,(b)B=1,and(c)B=5.The relevant parameters are Ω=0,λ0=6052,and λ2=?28.The first to the third columns are the density distributions of three components∣F=1,mF=1〉,∣F=1,mF=0〉and∣F=1,mF=-1〉,and the fourth to seventh columns are corresponding phase distributions and momentum distribution of component mF=0,respectively.

    Figure 2.Effect of SOC on the ground state of nonrotating spin-1 BEC with fixed in-plane quadrupole field strength B=0.2.(a)k=0,(b)k=0.2,(c)k=1.8,(d)k=0.3,and(e)k=1.5.The parameters are Ω=0,λ0 = 6052,and λ2=?28.The first to the third columns are the density distributions of three components mF=1,mF=0 and mF=?1,and the fourth to seventh columns are the corresponding phase distributions and the momentum distribution of component mF=0,respectively.

    Figure 3.Ground-state phase diagram of rotating spin–orbit-coupled spin-1 BEC in an in-plane quadrupole field with respect to B and k for Ω=0.3,λ0=6052,and λ2=?28.There are four differentphases marked by A–D.

    Secondly,we consider the influence of SOC on the ground-state structures of nonrotating spin-1 BECs with an in-plane quadrupole field.The quadrupole field strength is fixed as B=0.2,and the other relevant parameters are the same as those in figure 1 except for the SOC strength.The main results are illustrated in figure 2.In the absence of SOC,i.e.k=0,the winding combination at the centers of the three components mF=1,0,?1 is〈- 2,- 1,0〉 .Thus the vortex configuration of the system is a typical Mermin–Ho vortex(figure 2(a))[60],where a doubly quantized antivortex with winding number ?2 and a singly quantized antivortex with winding number ?1 form in the central regions of components mF=1 and mF=0,respectively,whereas a bright soliton with zero winding number is generated in the central region of component mF=?1.The order parameter in the central region of the condensate is similar to a ferromagnetic state(0,0,1)T.For small SOC strength,e.g.k=0.2,the central Mermin–Ho vortex〈- 2,- 1 ,0〉 evolves into a central polarcore vortex〈-1,0,1〉 as shown in figure 2(b).The winding combination〈-1,0,1〉 of the three components in the polarcore vortex is obtained by adding a corresponding winding combination〈1,1,1〉 caused by SOC to that of the three components in the Mermin–Ho vortex〈- 2,- 1 ,0〉 .Physically,the polar-core vortex results from the competition between the in-plane quadrupole field and the SOC.With the increase of SOC strength,there still exists a polar-core vortex in the central region of the condensate,which can be explained by the fact that the zero magnetic field strength at the center of the in-plane quadrupole field tends to protect the central topological defect against the destruction from SOC under ferromagnetic spin interaction.The momentum distribution shows a point-like structure near the origin of the k-space.When the SOC strength is further increased,e.g.k=1.8,one can find that the vortices beside the central polarcore vortex in each component distribute along two asymptotic directions of the in-plane quadrupole field(i.e.two diagonal directions)and form a diagonal vortex–antivortex string lattice rather than a conventional triangular vortex lattice,where the vortex string occupies one diagonal line and the antivortex string occupies another diagonal line(see figure 2(c)).At the same time,the momentum distribution in the k-space exhibits an evident ring structure.From figures 1 and 2,as two new degrees of freedom,the in-plane quadrupole filed and SOC can be used to achieve the desired groundstate configurations and to control the phase transition between various ground states of spin-1 BECs.

    4.Ground-state structures with rotation

    Next we study the ground-state structures of rotating spin-1 ferromagnetic BECs with SOC and in-plane quadrupole field.We give the ground-state phase diagram spanned by the quadrupole field strength B and the SOC strength k with fixed rotation frequency Ω=0.3 in figure 3.There are four different phases marked by A–D,which differ in terms of their density profiles and phase distributions.Note that our numerical simulation shows that there is a similar ground-state phase diagram for other rotation frequencies above a certain critical value.In the following discussion,we will give a detailed description of each phase.The density and the phase profiles of the four different phases A–D in figure 3 are shown in figures 4(a)–(e),respectively.

    We first consider the effect of the quadrupole field on the formation of diagonal vortex chains in spin-1 BECs.Figure 4 displays the ground states of the system.Hereθ1-θ-1= argψ1-argψ-1is the phase difference between two components mF=1 and mF=?1(the last column).We start from the case where the quadrupole field is sufficiently weak(the limit case is B=0),which is indicated by the red region A in figure 3.Typical density and phase distributions of such a phase are shown in figure 4(a).Four singly quantized vortices are distributed in the central region of component mF=1,and the outer vortices form a double-layer vortex necklace.Vortex necklace structures can also be seen in the two components mF=0 and mF=?1.The main difference is that the central regions of the two components mF=0 and mF=?1 are occupied by a triangular vortex lattice and a vortex pair,respectively.We call the A phase a vortex necklace.

    With the increase of the quadrupole field strength,the B phase emerges as the ground state of the system in figure 3.The typical density and phase distributions for the B phase are shown in figures 4(b)and(c),where the vortices decrease and link up with each other along or parallel to the principal diagonal.This new nontrivial configuration,i.e.the B phase,can be called a diagonal vortex chain cluster state.Recently,the vortex chain phenomenon has also been observed in an anisotropic spin–orbit-coupled pseudo-spin-1/2 BECs[23,25]and spin-1 BECs[61].However,here the diagonal vortex chain results from the interplay of in-plane quadrupole field,isotropic SOC and rotation.Physically,the combination of the in-plane quadrupole field and the SOC sustains the diagonal plane-wave phase with opposite momenta.At the same time,the rotation induces the creation of the vortices.Therefore the combined effects of in-plane quadrupole field,SOC and rotation realize the diagonal vortex chains.When the in-plane quadrupole field strength is increased,the vortices along and away from the diagonal vortex chain decrease.As shown in figure 3,the B phase occupies the largest region of the ground-state phase diagram.The phase difference in the last column of figure 4 shows that there is no synchronization of phases of the mF=1 and mF=?1 components,which is different from the case of anisotropic SOC[23,25,61].

    As the quadrupole field strength further increases,the C phase emerges as the ground state of the system,which is displayed by the yellow region in figure 3.Typical density and phase distributions of such a phase are shown in figure 4(d).The vortices on both sides of the diagonal vortex chain vanish and there is only a diagonal vortex chain in each component(see figure 4(d)).We can name the C phase as a single diagonal vortex chain.In the case of relatively weak SOC,with the further increase of the quadrupole field strength,the C phase transforms into the D phase as shown in figure 3.The corresponding density and phase distributions are shown in figure 4(e),where there are just a few vortices at the center region of the system(see figure 4(e)).The D phase can be defined as a few vortex states.The reduction of the vortex number is due to the reversal of the magnetic moment caused by the in-plane gradient magnetic field.The physical mechanism can be understood as follows.The ordinary vortices are always associated with the sharp reversal and fluctuation of spin,which makes the spin deviate from the x–y plane.On the other hand,the in-plane quadrupole field exerts a torque on the magnetic moment,so that the spin is inclined in the direction parallel to the in-plane magnetic field.Therefore,the in-plane magnetic field inhibits the generation of vortices,while the rotation tends to promote the creation of vortices.At the same time,the SOC supports the generation of vortex defects.The three factors compete with each other.When the magnetic field gradient is very strong,the inhibition is dominant such that the number of vortices decreases significantly.Furthermore,figure 4 actually displays the structural transition of the density patterns as the quadrupole field strength B increases.Thus,as a new degree of freedom,the in-plane quadrupole field can be used to achieve the desired ground-state phases and to control the phase transition between different ground states of spin–orbit-coupled spin-1 BECs.

    Then we consider the influence of SOC on the diagonal vortex chain in rotating spin-1 BECs with fixed quadrupole field strength B=0.2.The relevant parameters are the same as those in figure 4 except for the SOC strength k.Figure 5 displays the density and phase distributions of the ground states of the system under various strengths of SOC,where the fourth column denotes the total particle density.As shown in figure 5(a),the component densities and vortex patterns display irregular distributions and no vortex chain forms in the absence of SOC(i.e.k=0).With the increase of SOC,more vortices appear in individual components,and diagonal vortex chains evidently form in each component,where the remaining vortices are arranged parallel to the diagonal line and symmetrically distributed as far as possible on both sides of the diagonal line(see figures 5(b)–(e)).Physically,the inplane quadrupole field has a special saddle point structure and tends to turn the spin towards the plane interior,which essentially inhibits the creation of ordinary vortices.By comparison,the rotation makes each component produce vortices with unit winding number.On the other hand,in order to minimize the energy of spin-exchange interaction,the ferromagnetic spin-exchange interaction tends to make the system spin in the same direction.Since the ordinary vortices are related to the sharp reversal of the spin near their cores,the ferromagnetic spin-exchange interaction actually suppresses the generation of ordinary vortices.Without SOC,the competition among the rotation,the in-plane quadrupole field and the ferromagnetic spin-exchange interaction can lead to the formation of irregular density distribution and vortex pattern in figure 5(a).As the SOC favors the generation of vortices,when the number of vortices increases due to the increasing SOC,the vortices are easier to choose a relatively symmetrical equilibrium configuration.

    Figure 4.Effect of in-plane quadrupole field on the ground-state structures of rotating spin–orbit-coupled spin-1 BECs with fixed rotation frequency Ω=0.3.(a)B=0,(b)B=0.1,(c)B=0.2 ,(d)B=0.5,and(e)B=3.The parameters are k=0.5,λ0=6052,and λ2=?28.The first to the third columns are the density distributions of three components mF=1 ,mF=0 and mF=?1.The corresponding phase distributions are displayed in the fourth to the sixth columns,and the last column denotes the phase difference between two components mF=1 and mF=?1.

    Finally,we point out that for the other values of rotation frequency and interaction strengths,there exist similar groundstate phase diagrams and physical properties.Figure 6 illustrates the effects of rotation frequency and density–density interaction(i.e.the ratio between the density–density interaction and the spin-exchange interaction for fixed spin-dependent interaction)on the ground state of the system.The ground-state phases are similar to those in figures 5 and 6.From figures 5(c)and 6,with the increase of rotation frequency or spin-independent interaction the number of vortices in the three components increases significantly.This feature can be understood because a large rotation frequency or strong interatomic interaction makes it easier for the system to excite vortices.Particularly,there are vortices in the momentum space as shown in the last columns of figures 6(b),(c)and(e).

    Figure 5.Effect of SOC on the ground states of rotating spin-1 BECs with fixed in-plane quadrupole field strength B=0.2.(a)k=0,(b)k=0.2,(c)k=0.5,(d)k=1,and(e)k=1.3.The relevant parameters are Ω=0.3,λ0 = 6052,and λ2=?28.The fourth column denotes total density distributions.

    Figure 6.Effects of rotation frequency and interatomic interaction on the ground states of rotating spin-1 BECs with SOC in an in-plane quadrupole field.(a)Ω=0.1,(b)Ω=0.25,(c)Ω=0.6,and the other parameters in(a)-(c)are B=0.2,k=0.5,λ0=6052,and λ2=?28.(d)λ0=200,(e)λ0=3000,and the other parameters in(d)–(e)are B=0.2,k=0.5,Ω=0.3,and λ2=?28.

    Figure 7.Topological charge densities and spin textures for nonrotating case.(a)Topological charge density,(b)the corresponding spin texture,and(c)–(d)the local amplifications of the spin texture,where the ground state is given in figure 2(a).(e)Topological charge density,(f)the corresponding spin texture,and(g)–(h)the local enlargements of the spin texture,where the ground state is given in figure 2(c).Note that the black triangles in(b)and(c)represent an antiskyrmion,the red spots in(f)and(g)denote half-skyrmions(merons),and the blue spots in(f)and(h)represent half-antiskyrmions(antimerons).

    5.Spin textures

    matter of fact,the topological charge∣Q∣ is unchanged,no matter how one exchanges the spin vectors Sx,Sy,and Sz.

    Displayed in figures 7(a)and(b)are the topological charge density and the spin texture of the nonrotating spin-1 BEC with SOC,respectively,where B=0.2,k=1.8,and the corresponding ground state is given in figure 2(a).Figures 7(c)and(d)are the typical local enlargements of the spin texture in figure 7(b).It is shown that the spin defect in figure 7(b)is an antiskyrmion with topological charge Q=?1.By comparison,figure 7(e)shows the topological charge density of the nonrotating spin-1 BEC with SOC in the case of B=0.2 and k=1.5,and the ground state is exhibited in figure 2(c).Our numerical calculation shows that the red spots in figures 7(f)and(g)denote half-skyrmions(merons)with local topological charge Q=0.5[23,60].At the same time,the blue spots in figures 7(f)and(h)represent half-antiskyrmions(antimerons)with local topological charge Q=?0.5.Obviously,the half-skyrmions and half-antiskyrmions along the two main diagonals in figure 7(f)constitute an exotic criss-crossed half-skyrmion–halfantiskyrmion(meron–antimeron)lattice.A recent investigation showed that half skyrmion in quenched spin-1 BECs with SOC was related to the three-vortex structure which can be expressed as〈 11,10,1-1〉3[32,61].In the angle bracket,1j(j=1,0,?1)represents mF=j(j=1,0,?1)vortex with winding number 1(i.e.the three components contain a vortex with winding number 1,respectively),and the subscript 3 out the angle bracket means that the three vortices locate at separated positions.Therefore,one can view the three-vortex structure as a cell,where the number of vortices in three components approaches 1:1:1.Figure 8(a)shows the topological charge density of the system for the rotation case,where the ground state is given in figure 4(a).Considering the limited resolution,in figure 8(b)we only display the spin texture in a limited domain,and the typical local enlargements of the spin texture are exhibited in figures 8(c)and(d),respectively.Our computation results demonstrate that the topological defect in the red square pane is a circular skyrmion with unit topological charge Q=1 and that in each green circle pane is a half-skyrmion with topological charge Q=0.5.The local amplification of the red square pane in figure 8(b)is shown in figure 8(c).From figure 8(b),a skyrmion and two half-skyrmions jointly occupy the central region of the trap and they are arranged in a triangle.This triangular combination of skyrmion and half-skyrmions is surrounded by seven half-skyrmions in the green circle panes of figure 8(b)which form a half-skyrmion necklace.In a similar way,the number of vortices corresponding to each half-skyrmion in the three components approaches 1:1:1.In fact,our simulation shows that there is a larger half-skyrmion necklace in the outer region of figure 8(b),which is also indicated in figure 8(a).Therefore the topological configuration of the system is a skyrmion-half-skyrmion necklace composed of a central triangular skyrmion-halfskyrmion lattice and two annular half-skyrmion necklaces.Shown in figures 8(e),(f),and(g)–(h)are the topological charge density,the corresponding spin texture,and the local amplifications of the spin texture,respectively,where the ground state is given in figure 4(c).The local topological charge in each green circle pane is Q=0.5,which indicates that the topological structure of the system is a symmetric half-skyrmion lattice with respect to the leading diagonals.By comparison,figures 8(i),(j),and(k)–(l)give the topological charge density for the parameters in figure 5(a),the corresponding spin texture,and the typical local amplifications of the spin texture,respectively.Each green circle pane in figure 8(j)corresponds to a half-skyrmion with topological charge Q=0.5,whereas the yellow square pane in figure 8(j)corresponds to a hyperbolic skyrmion with unit topological charge Q=1(see figure 8(k)).The hyperbolic skyrmion and the three half-skyrmions jointly form an asymmetric skyrmion-meron lattice.Here the rotation effect makes the spin deviate from the in-plane polarization,so there is a(1-1,10,1-1)3vortex confgiuration in the yellow square pane and a(11,10,1-1)3vortex structure in each green circle pane as shown in figure 5(a),respectively.In addition,due to the different magnetization direction of the quadrupole magnetic field,the direction of the spin current detour in two adjacent green circle panes is opposite.The above two points can explain the creation of the asymmetric skyrmion-meron lattice in figure 8(j).

    Figure 8.Topological charge densities and spin textures for rotating case.The first column denotes the topological charge densities,the second column represents the spin textures,and columns 3 and 4 display the local enlargements of the spin textures.The corresponding ground states in the three rows from top to bottom are given in figures 4(a),(c)and 5(a),respectively.The red square pane in(b)indicates a circular skyrmion,the green circles in(b),(f)and(j)denote half-skyrmions(merons),and the yellow square pane in(j)characterizes a hyperbolic skyrmion.

    The topological excitations in the present system are evidently different from those in quenched finite-temperature spin-1 BECs with isotropic or anisotropic SOC described by the stochastic projected GP equation[32,61].Here,the physical system is a rotating zero-temperature ferromagnetic spin-1 BEC with SOC in an in-plane quadrupole field.Due to the in-plane quadrupole field,the topological excitations of the spin textures contain not only half-skyrmion excitations but also half-antiskyrmion excitations as well as skyrmion excitations,where the spin defects form peculiar topological structures such as an antiskyrmion(figure 7(b)),a criss-crossed meron–antimeron lattice(figure 7(f)),a skyrmion-meron necklace(figures 8(a)–(d)),a symmetric half-skyrmion meron lattice(figures 8(e)–(h))and an asymmetric skyrmion-meron lattice(figures 8(i)–(l)).Furthermore,for the quenched finite-temperature spin-1 BECs[32,61],only when both the rotation frequency and the SOC strength are larger than some critical values can the half-skyrmion excitations occur in the system.However,our results show that the half-skyrmions(merons)can be generated in the absence of rotation(Ω=0 ,see figures 2(e)and 7)or in the absence of SOC(k=0,see figures 5(a)and 8(i)–(l))owing to the in-plane gradient magnetic filed.Thus the present system has more abundant quantum phases and novel physical properties.

    6.Conclusion

    To summarize,we have investigated the topological excitations of rotating spin–orbit-coupled spin-1 BECs with ferromagnetic spin interactions in an in-plane quadrupole field.The effects of rotation,in-plane gradient magnetic field,SOC,and interatomic interaction on the topological structures and the spin textures of the ground states of the system are systematically discussed.In the absence of rotation,with the increase of in-plane quadrupole field strength,the system experiences a transition from a coreless polar-core vortex with a bright soliton to a singular polar-core vortex with a density hole for fixed SOC strength.Without rotation but with fixed quadrupole field strength,when the SOC strength increases the system evolves from a central Mermin–Ho vortex into a central polar vortex and then into a criss-crossed vortex–antivortex string lattice.Particularly,for the rotating case,we have presented a phase diagram with respect to the quadrupole field strength and the SOC strength.Our study demonstrates that there exist four interesting typical quantum phases:vortex necklace,diagonal vortex chain cluster,single diagonal vortex chain,and few vortex states.It is shown that the in-plane quadrupole field tends to inhibit the generation of vortices whereas the interplay of SOC and rotation tends to enhance the formation of diagonal vortex chain clusters.Therefore,as three important degrees of freedom,the rotation,the SOC and the in-plane quadrupole field can be used to achieve the desired ground-state configurations and to control the phase transition between various ground states of spin-1 BECs.Furthermore,it is shown that the system sustains exotic spin textures and skyrmion excitations including an antiskyrmion,a criss-crossed meron–antimeron lattice,a skyrmion-meron necklace,a symmetric meron lattice,and an asymmetric skyrmion-meron lattice.These interesting findings enrich the phase diagram of the BEC system and provide new understanding and exciting perspectives for topological excitations in ultracold atomic gases and condensed matter physics.

    Acknowledgments

    We thank Xiao-Fei Zhang and Shi-Jie Yang for helpful discussion.This work was supported by the National Natural Science Foundation of China(Grant Nos.11 475 144 and 11 047 033),the Natural Science Foundation of Hebei Province(Grant Nos.A2022203001,A2019203049 and A2015203037),Innovation Capability Improvement Project of Hebei province(Grant No.22 567 605H),Shanxi Education Department Fund(Grant No.2020L0546),and Research Foundation of Yanshan University(Grant No.B846).

    日本-黄色视频高清免费观看| 久久久成人免费电影| 蜜臀久久99精品久久宅男| 成人亚洲欧美一区二区av| 少妇高潮的动态图| 美女脱内裤让男人舔精品视频| 久久鲁丝午夜福利片| 高清午夜精品一区二区三区| 亚洲最大成人中文| 天堂中文最新版在线下载 | 18禁动态无遮挡网站| 少妇熟女欧美另类| 晚上一个人看的免费电影| 极品教师在线视频| 狠狠精品人妻久久久久久综合| 日本三级黄在线观看| 精品一区二区三卡| 久久久久免费精品人妻一区二区| 成人亚洲精品一区在线观看 | 久久韩国三级中文字幕| 久久久久网色| 国产亚洲一区二区精品| 亚洲久久久久久中文字幕| 精品人妻一区二区三区麻豆| 天堂影院成人在线观看| 波多野结衣巨乳人妻| 成人亚洲精品一区在线观看 | av国产久精品久网站免费入址| 国产精品嫩草影院av在线观看| 国产精品久久久久久久久免| 在线观看人妻少妇| 美女被艹到高潮喷水动态| 久久精品国产亚洲av涩爱| 最近中文字幕2019免费版| 麻豆久久精品国产亚洲av| 亚洲熟女精品中文字幕| 午夜激情久久久久久久| 午夜亚洲福利在线播放| 亚洲va在线va天堂va国产| 99热6这里只有精品| 蜜桃亚洲精品一区二区三区| 乱码一卡2卡4卡精品| 秋霞伦理黄片| 国产精品.久久久| 亚洲欧美日韩另类电影网站| 精品国产超薄肉色丝袜足j| 亚洲av在线观看美女高潮| 亚洲国产看品久久| 日韩在线高清观看一区二区三区| 美女高潮到喷水免费观看| 久久精品国产亚洲av高清一级| 母亲3免费完整高清在线观看 | 国产成人a∨麻豆精品| 99久国产av精品国产电影| 国产精品一二三区在线看| 天天躁夜夜躁狠狠躁躁| 成年女人在线观看亚洲视频| 欧美日本中文国产一区发布| 欧美激情高清一区二区三区 | 五月伊人婷婷丁香| 有码 亚洲区| 亚洲 欧美一区二区三区| 久久国内精品自在自线图片| 国产成人aa在线观看| 亚洲国产欧美日韩在线播放| 美女午夜性视频免费| 亚洲男人天堂网一区| 日韩熟女老妇一区二区性免费视频| 免费女性裸体啪啪无遮挡网站| 在线观看免费日韩欧美大片| 一级毛片 在线播放| 欧美国产精品一级二级三级| 人人妻人人添人人爽欧美一区卜| 久久久久网色| 久久久久久人人人人人| 男人添女人高潮全过程视频| 欧美+日韩+精品| 丝袜美腿诱惑在线| 成人手机av| 亚洲综合色惰| 男女边吃奶边做爰视频| 丝袜美足系列| 侵犯人妻中文字幕一二三四区| 成人二区视频| 青春草视频在线免费观看| 人人妻人人澡人人爽人人夜夜| 日韩一本色道免费dvd| 精品一区二区免费观看| av天堂久久9| 一二三四中文在线观看免费高清| av不卡在线播放| 老汉色∧v一级毛片| 国产淫语在线视频| 人妻一区二区av| 免费观看av网站的网址| 国产精品无大码| 免费久久久久久久精品成人欧美视频| 一二三四中文在线观看免费高清| a 毛片基地| 欧美成人午夜免费资源| 国产又色又爽无遮挡免| 中文字幕人妻丝袜制服| 欧美亚洲 丝袜 人妻 在线| 可以免费在线观看a视频的电影网站 | 国产一区二区三区综合在线观看| 日韩av不卡免费在线播放| 伦理电影免费视频| 天天躁夜夜躁狠狠躁躁| 国产av精品麻豆| 一区二区av电影网| 国产高清国产精品国产三级| 青草久久国产| 欧美精品人与动牲交sv欧美| 熟女少妇亚洲综合色aaa.| 国产老妇伦熟女老妇高清| 巨乳人妻的诱惑在线观看| videosex国产| 日本色播在线视频| 国产成人精品婷婷| 久久久久人妻精品一区果冻| 亚洲国产最新在线播放| 韩国av在线不卡| videos熟女内射| 久久av网站| av网站免费在线观看视频| 少妇人妻 视频| √禁漫天堂资源中文www| 国产免费一区二区三区四区乱码| 一级黄片播放器| 天天躁狠狠躁夜夜躁狠狠躁| 国产探花极品一区二区| 亚洲欧美一区二区三区黑人 | 国产成人免费无遮挡视频| 精品99又大又爽又粗少妇毛片| 黑丝袜美女国产一区| 国产男人的电影天堂91| 激情视频va一区二区三区| 国产在线视频一区二区| 99热网站在线观看| 午夜福利影视在线免费观看| 国产成人一区二区在线| 国产精品秋霞免费鲁丝片| 亚洲精品国产av成人精品| 国产淫语在线视频| 又大又黄又爽视频免费| 最近的中文字幕免费完整| 深夜精品福利| 18禁裸乳无遮挡动漫免费视频| 欧美日韩精品网址| 国产精品.久久久| 各种免费的搞黄视频| 狂野欧美激情性bbbbbb| 久久久久久久久久人人人人人人| 欧美精品国产亚洲| 国产精品久久久久久久久免| 精品福利永久在线观看| 欧美日韩视频高清一区二区三区二| 在线亚洲精品国产二区图片欧美| 精品人妻偷拍中文字幕| 色播在线永久视频| 久久久欧美国产精品| 26uuu在线亚洲综合色| 一本久久精品| 日本免费在线观看一区| 国产成人精品无人区| 亚洲美女视频黄频| 黄片播放在线免费| 亚洲国产精品成人久久小说| 亚洲精品一区蜜桃| 午夜福利,免费看| 麻豆av在线久日| 在线观看三级黄色| 大片免费播放器 马上看| 久热久热在线精品观看| 亚洲人成网站在线观看播放| 亚洲国产精品一区二区三区在线| 99久久中文字幕三级久久日本| 精品少妇内射三级| 久久人人97超碰香蕉20202| 免费大片黄手机在线观看| 欧美人与性动交α欧美精品济南到 | 国产精品一区二区在线不卡| 97精品久久久久久久久久精品| 十八禁网站网址无遮挡| 高清av免费在线| 久久久久久免费高清国产稀缺| 夫妻性生交免费视频一级片| 黄片播放在线免费| 秋霞伦理黄片| 最近最新中文字幕免费大全7| 九色亚洲精品在线播放| 精品国产乱码久久久久久男人| 黑人猛操日本美女一级片| 欧美日韩亚洲高清精品| 美女大奶头黄色视频| 高清不卡的av网站| 欧美97在线视频| 国产一区二区三区av在线| 精品久久久精品久久久| 午夜福利,免费看| av免费在线看不卡| 国产精品久久久久久久久免| 男女边摸边吃奶| 久久韩国三级中文字幕| 亚洲视频免费观看视频| 中国三级夫妇交换| 中文字幕亚洲精品专区| 免费高清在线观看视频在线观看| 日韩欧美精品免费久久| 在线天堂中文资源库| av又黄又爽大尺度在线免费看| 国产精品一二三区在线看| 香蕉丝袜av| 人人澡人人妻人| 丁香六月天网| 视频在线观看一区二区三区| 高清欧美精品videossex| kizo精华| 国产成人精品婷婷| 男女午夜视频在线观看| 久久精品久久久久久噜噜老黄| 久久久久精品性色| videosex国产| 日本爱情动作片www.在线观看| 久久国产精品男人的天堂亚洲| 欧美人与性动交α欧美精品济南到 | videos熟女内射| 亚洲精品,欧美精品| 亚洲欧美一区二区三区久久| 不卡视频在线观看欧美| 男女国产视频网站| 久久国产精品男人的天堂亚洲| 99香蕉大伊视频| 男人爽女人下面视频在线观看| 欧美日本中文国产一区发布| 欧美另类一区| 国产日韩欧美亚洲二区| 免费人妻精品一区二区三区视频| 欧美日韩精品网址| 制服丝袜香蕉在线| 美国免费a级毛片| 亚洲久久久国产精品| 777米奇影视久久| 欧美 日韩 精品 国产| 美女大奶头黄色视频| 亚洲成人手机| 国产成人一区二区在线| 国产片内射在线| 波多野结衣av一区二区av| 69精品国产乱码久久久| 麻豆精品久久久久久蜜桃| 成年美女黄网站色视频大全免费| 久久午夜福利片| 欧美老熟妇乱子伦牲交| 国产激情久久老熟女| 亚洲美女搞黄在线观看| 2022亚洲国产成人精品| 婷婷色综合www| 国产欧美亚洲国产| 午夜免费鲁丝| 欧美激情 高清一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 欧美亚洲日本最大视频资源| 免费高清在线观看视频在线观看| 久久久久网色| 国产成人精品久久久久久| 一二三四中文在线观看免费高清| 国产精品二区激情视频| 男女边吃奶边做爰视频| 日韩电影二区| 大码成人一级视频| 久久久a久久爽久久v久久| 哪个播放器可以免费观看大片| 国产精品免费视频内射| 国产成人精品无人区| 王馨瑶露胸无遮挡在线观看| 国产白丝娇喘喷水9色精品| 国产高清国产精品国产三级| 精品一区二区三卡| 18禁裸乳无遮挡动漫免费视频| 中文字幕亚洲精品专区| 五月伊人婷婷丁香| 国产乱来视频区| 国产福利在线免费观看视频| 最近手机中文字幕大全| 黑丝袜美女国产一区| 久久青草综合色| 少妇的逼水好多| 精品久久蜜臀av无| 国产一区有黄有色的免费视频| 精品国产乱码久久久久久小说| 一边摸一边做爽爽视频免费| 麻豆av在线久日| 老司机亚洲免费影院| 夫妻性生交免费视频一级片| 丝袜美足系列| 欧美最新免费一区二区三区| 美女xxoo啪啪120秒动态图| 久久精品aⅴ一区二区三区四区 | 老熟女久久久| 久久精品久久久久久噜噜老黄| 性色av一级| 男的添女的下面高潮视频| 婷婷色综合www| 波野结衣二区三区在线| 天堂8中文在线网| 日韩欧美一区视频在线观看| √禁漫天堂资源中文www| 一级爰片在线观看| 中国三级夫妇交换| 一个人免费看片子| 最近最新中文字幕免费大全7| 国产爽快片一区二区三区| 久久99蜜桃精品久久| 少妇 在线观看| 寂寞人妻少妇视频99o| videossex国产| 亚洲国产日韩一区二区| 国精品久久久久久国模美| 人人妻人人爽人人添夜夜欢视频| 久久热在线av| 高清视频免费观看一区二区| 精品第一国产精品| 人人妻人人爽人人添夜夜欢视频| 在线观看美女被高潮喷水网站| 久久久欧美国产精品| 午夜久久久在线观看| 天天影视国产精品| 黑丝袜美女国产一区| 国产精品免费大片| 亚洲精品在线美女| 丝袜美腿诱惑在线| 精品一区在线观看国产| 女人被躁到高潮嗷嗷叫费观| 国产免费现黄频在线看| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品成人av观看孕妇| 老汉色av国产亚洲站长工具| 日本vs欧美在线观看视频| 久久久久国产精品人妻一区二区| 免费大片黄手机在线观看| 午夜激情久久久久久久| 性色av一级| 波野结衣二区三区在线| 久久久国产一区二区| 亚洲图色成人| 1024视频免费在线观看| 欧美日韩国产mv在线观看视频| 久久国产精品男人的天堂亚洲| 国产精品偷伦视频观看了| 精品国产国语对白av| 少妇被粗大的猛进出69影院| 十分钟在线观看高清视频www| 麻豆精品久久久久久蜜桃| 亚洲一区二区三区欧美精品| 97精品久久久久久久久久精品| 电影成人av| 欧美日韩av久久| 纵有疾风起免费观看全集完整版| 水蜜桃什么品种好| 国产精品国产三级专区第一集| 亚洲五月色婷婷综合| 亚洲一码二码三码区别大吗| 国产精品99久久99久久久不卡 | 男女边吃奶边做爰视频| 亚洲视频免费观看视频| 欧美日韩视频高清一区二区三区二| 国产伦理片在线播放av一区| 综合色丁香网| 伦理电影大哥的女人| 一二三四中文在线观看免费高清| 免费高清在线观看日韩| 精品久久久精品久久久| 亚洲av日韩在线播放| 色婷婷久久久亚洲欧美| av网站免费在线观看视频| 黄色视频在线播放观看不卡| 国产极品天堂在线| 亚洲成人一二三区av| 波多野结衣一区麻豆| 国产精品蜜桃在线观看| 亚洲精品,欧美精品| 热re99久久精品国产66热6| 青草久久国产| 午夜精品国产一区二区电影| 少妇人妻久久综合中文| 在线观看一区二区三区激情| √禁漫天堂资源中文www| 考比视频在线观看| 成人漫画全彩无遮挡| 高清视频免费观看一区二区| 高清不卡的av网站| 最近中文字幕2019免费版| 最近手机中文字幕大全| 人成视频在线观看免费观看| 亚洲精品日本国产第一区| 久久99一区二区三区| 国产老妇伦熟女老妇高清| 伊人亚洲综合成人网| 国产老妇伦熟女老妇高清| av网站免费在线观看视频| 少妇人妻精品综合一区二区| 久久99精品国语久久久| 久久久久久久大尺度免费视频| 欧美日韩视频精品一区| 久久精品国产亚洲av天美| 精品国产一区二区久久| 亚洲伊人色综图| 亚洲成国产人片在线观看| 国产日韩欧美在线精品| 男女高潮啪啪啪动态图| 精品人妻熟女毛片av久久网站| 日韩成人av中文字幕在线观看| 老汉色av国产亚洲站长工具| 精品国产国语对白av| 狠狠婷婷综合久久久久久88av| 亚洲av免费高清在线观看| 在线看a的网站| 国产 精品1| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品古装| 国产熟女午夜一区二区三区| 在线亚洲精品国产二区图片欧美| 七月丁香在线播放| 久久狼人影院| 成人18禁高潮啪啪吃奶动态图| 亚洲男人天堂网一区| 高清不卡的av网站| 免费观看av网站的网址| 少妇 在线观看| 国产一区二区三区av在线| 国产爽快片一区二区三区| 国产成人免费观看mmmm| 午夜福利乱码中文字幕| 综合色丁香网| 色网站视频免费| 亚洲av免费高清在线观看| 91午夜精品亚洲一区二区三区| 热re99久久精品国产66热6| 免费在线观看黄色视频的| 精品人妻一区二区三区麻豆| 国产精品免费大片| 亚洲久久久国产精品| 国产成人a∨麻豆精品| 狠狠婷婷综合久久久久久88av| a 毛片基地| 超色免费av| 久久久久久久国产电影| 成年女人毛片免费观看观看9 | 国产精品免费视频内射| av免费观看日本| 97在线人人人人妻| 国产精品三级大全| 欧美日本中文国产一区发布| 夜夜骑夜夜射夜夜干| 伊人亚洲综合成人网| 在线观看www视频免费| 久久久久久免费高清国产稀缺| 亚洲精品久久久久久婷婷小说| 国产一级毛片在线| 最近最新中文字幕免费大全7| 日韩电影二区| 校园人妻丝袜中文字幕| 国产高清不卡午夜福利| 男人爽女人下面视频在线观看| 超色免费av| 成年av动漫网址| av又黄又爽大尺度在线免费看| 热99久久久久精品小说推荐| 卡戴珊不雅视频在线播放| 免费高清在线观看日韩| 欧美精品亚洲一区二区| 中文字幕人妻熟女乱码| 天天影视国产精品| 国产精品女同一区二区软件| 久久国产精品大桥未久av| 下体分泌物呈黄色| 五月伊人婷婷丁香| 亚洲欧美色中文字幕在线| 搡老乐熟女国产| 久久久久国产网址| 一本大道久久a久久精品| 亚洲精品视频女| 狠狠精品人妻久久久久久综合| 亚洲成国产人片在线观看| 国产精品国产av在线观看| 日日爽夜夜爽网站| 男女下面插进去视频免费观看| 在线观看www视频免费| 精品一区二区免费观看| 少妇被粗大的猛进出69影院| 91精品伊人久久大香线蕉| 满18在线观看网站| 亚洲精品中文字幕在线视频| 各种免费的搞黄视频| kizo精华| av国产久精品久网站免费入址| 伊人亚洲综合成人网| 国产精品蜜桃在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 极品人妻少妇av视频| 精品人妻一区二区三区麻豆| 一区二区av电影网| 欧美成人午夜免费资源| 精品一区二区三区四区五区乱码 | 视频区图区小说| 亚洲伊人色综图| 一级毛片 在线播放| av在线老鸭窝| 成人国产av品久久久| 激情五月婷婷亚洲| 欧美变态另类bdsm刘玥| 夫妻午夜视频| av视频免费观看在线观看| 91久久精品国产一区二区三区| 青春草视频在线免费观看| 国产男女内射视频| 亚洲人成网站在线观看播放| 国产人伦9x9x在线观看 | 9色porny在线观看| 国产毛片在线视频| 国产成人av激情在线播放| 在线天堂中文资源库| 91精品伊人久久大香线蕉| 亚洲成人av在线免费| 嫩草影院入口| 国产av精品麻豆| 热99国产精品久久久久久7| 男女下面插进去视频免费观看| 亚洲精品第二区| 制服诱惑二区| 亚洲美女搞黄在线观看| 最近最新中文字幕免费大全7| 成年动漫av网址| 黑人欧美特级aaaaaa片| 国产欧美亚洲国产| 大片免费播放器 马上看| 天堂中文最新版在线下载| 亚洲欧美一区二区三区国产| 超色免费av| 自线自在国产av| 国产成人精品婷婷| 国产伦理片在线播放av一区| 啦啦啦在线免费观看视频4| 99国产综合亚洲精品| 下体分泌物呈黄色| 91国产中文字幕| 免费黄网站久久成人精品| 少妇的丰满在线观看| 赤兔流量卡办理| 一区二区三区四区激情视频| 欧美激情极品国产一区二区三区| 亚洲综合精品二区| 亚洲激情五月婷婷啪啪| 欧美 日韩 精品 国产| 亚洲国产av新网站| 精品国产一区二区三区四区第35| 久久久久人妻精品一区果冻| 黄色一级大片看看| 精品久久久精品久久久| 久久久亚洲精品成人影院| 妹子高潮喷水视频| 欧美bdsm另类| 国产精品麻豆人妻色哟哟久久| 一级毛片电影观看| 国产毛片在线视频| 高清不卡的av网站| 波野结衣二区三区在线| 夜夜骑夜夜射夜夜干| 午夜福利网站1000一区二区三区| 97人妻天天添夜夜摸| 大香蕉久久成人网| 午夜精品国产一区二区电影| 日本vs欧美在线观看视频| 国产色婷婷99| 欧美精品av麻豆av| 国产探花极品一区二区| 大片免费播放器 马上看| 天堂中文最新版在线下载| 少妇 在线观看| 哪个播放器可以免费观看大片| 亚洲av在线观看美女高潮| 亚洲国产欧美在线一区| 精品人妻在线不人妻| 国产高清国产精品国产三级| 久久鲁丝午夜福利片| 一级毛片我不卡| 欧美精品人与动牲交sv欧美| 啦啦啦啦在线视频资源| 日本wwww免费看| 亚洲国产毛片av蜜桃av| 黑人猛操日本美女一级片| 国产探花极品一区二区| 亚洲国产最新在线播放| 成人毛片a级毛片在线播放| 精品少妇一区二区三区视频日本电影 | 午夜免费观看性视频| 亚洲成人手机| 两性夫妻黄色片| h视频一区二区三区| 丝袜美足系列| 两性夫妻黄色片| 秋霞伦理黄片| 一本久久精品| 久久精品国产自在天天线| 国产不卡av网站在线观看| 春色校园在线视频观看| 看非洲黑人一级黄片| 日韩在线高清观看一区二区三区| 免费日韩欧美在线观看| 精品国产一区二区久久| 亚洲男人天堂网一区| 午夜激情av网站| 国产97色在线日韩免费| 在线天堂中文资源库|