• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An efficient approach to solving fractional Van der Pol–Duffing jerk oscillator

    2022-11-10 12:15:06YusryElDib
    Communications in Theoretical Physics 2022年10期

    Yusry O El-Dib

    Department of Mathematics,Faculty of Education,Ain Shams University,Roxy,Cairo,Egypt

    Abstract The motive behind the current work is to perform the solution of the Van der Pol–Duffing jerk oscillator,involving fractional-order by the simplest method.An effective procedure has been introduced for executing the fractional-order by utilizing a new method without the perturbative approach.The approach depends on converting the fractional nonlinear oscillator to a linear oscillator with an integer order.A detailed solving process is given for the obtained oscillator with the traditional system.

    Keywords:Van der Pol oscillator,Duffing jerk oscillator,fractional oscillator,non-perturbative approach,numerical simulation

    1.Introduction

    In the preceding few decades,non-integer order differential equations became an area of interest for researchers owing to their accuracy and applicability in various fields of physics,science,and technology.Many physical,dynamical,biological,and chemical phenomena are represented in a highly effective style by using differential equations having a noninteger rather than integer-order.Being a more accurate approach is the major reason for attracting the attention of researchers.Differential equations having fractional order are suitable for mathematicians,engineers,and physicists.The fractional-order differential equations have a large number of applications in several fields of science and technology,for example,porous media,rheology,optics,electromagnetism,electrochemistry,bio-science,bioengineering,medicine,geology,probability,statistics,etc.The fractional-order differential equations are also applicable in control theory,control of power electrons,tomography,polymer physics,polymer science,and neural networks.Furthermore,it has various applications in the modeling of other phenomena,such as the absorption of drugs in the bloodstream,seepage flow,traffic modeling of fluid dynamics,porous media,image processing,mathematical biology,genetic properties,and nonlinear oscillations resulting from earthquakes.These equations are also used for the calculations of genetically and chemically acquired properties of different materials and phenomena,(see for details[1–7]).

    Several physical phenomena are modeled using systems of nonlinear fractional differential equations,which are more accurate for practical applications.Several real phenomena emerging in engineering and science fields can be successfully modeled by developing models which are more accurate than the integer ones[8–10].The essential quality of fractional-order differential equations is that it yields accurate and stable results.Some of these equations are time-fractional heat equations,time-fractional heat-like equations,time-fractional wave equations,time-fractional telegraphic equations,fractional-order oscillators such as the Van der Pol equation,and so on.These physical equations are performed as linear or nonlinear formulations;and since they have several employments in the field of applied engineering and science,then the analysis of solving such equations is very important.As these equations are generally strenuous to solve,many alternative and powerful methods have been expanded over the last few years.The main advantage of fractional order differential equations is that they produce accurate and stable results.Therefore,these equations represent a significant class of differential equations[11–18].

    Fractional calculus(FC)represents a field of mathematics that discusses the non-integer order differentiation and integration and their implications on different physical systems.Generally,the physical situation might predicate its present state and its historical status,which can be confidently modeled by using the technology of FC tools[19,20].Accordingly,many analytic methods are derived to deduce exact,explicit,and numerical techniques for nonlinear fractional partial differential equations[21–25].A lot of fractional-order definitions;while Grunwald–Letnikov,Riemann–Liouville,and Caputo definitions are the majority used in FC research[26].

    Schot[27]presented the definition of a jerk as referring to the rate of variation of acceleration.A jerk equation has vast applications in physics and daily life.It has been set to have numerous applications in various areas of science,such as laser physics electrical circuits,acoustics,dynamical processes,and mechanics[28–32].Jerk is also organized to be governed the flow of a thin-film viscous fluid with a free surface where the surface tension effects play a role typically leading to a third-order equation governing the form of the free surface of the fluid.Jerk also plays a mighty role in the physiological balancing of the human body.

    Another employment of jerk is in the accelerated charged particle which sends off radiation,which is correlated to the jerk[33,34].In most cases,it is totally hard to find the exact solutions to nonlinear problems,where estimated solutions to the fractional nonlinear problems are considered.

    Over the last two decades,there was significant progress in the area of fractional differential equations.Many efforts have been done to the existence of solutions to fractional differential equations[35].Since the fractional nonlinear operators have a vital role in differential equations,the investigation to find a simple approach alternative to the mathematical hard work is urgent use.One of the several significant operators used to simplify the procedure of nonlinear differential equations is the equivalent linearized method which leads to obtaining the solution easily.A considerable number of valuable research articles can be obtained in the literature regarding this topic,(see for detail[36–38]).

    The fractional Van der Pol–Duffing jerk vibration is investigated to give a more perfect description and shed more light on the dynamics of the suggested oscillator.Although the suggested oscillator is simple,it improves complex and noticeable phenomena such as symmetry-breaking bifurcation,bistability,reverses period-doubling,symmetry-restoring crisis,and coexisting attractors[39].In the present proposal,the linearized equivalent method has been derived or developed to be consistent with solving the fractional jerk oscillator.Afterward,the proposed method is applied to obtain an analytical solution to different cases of the fractional Van der Pol–Duffing jerk oscillator.The technique consists of obtaining the equivalent linearized form with an integer order employing the principle of minimum mean-square error.Then the solution will be available.

    2.The methodology

    The present section describes the purpose of the fractional jerk oscillator and explains how to find the solution most simply.The simple effective approach is adopted herein utilizing the equivalent linearization technique to solve the fractional Duffing jerk oscillation of the form

    3.The case of the Duffing jerk oscillator with the fractional damping forces

    3.1.Solution utilizing the modified HPM coupling with He’s frequency formula

    4.The case of the Van der Pol–Duffing jerk oscillator in its fractional-order form

    It is noted that asε→0 into(54)and(55)the results reduce to those obtained before in(31)and(32).

    Thirdly,the case of the full fractional orders form is discussed in the next section:

    5.Van der Pol–Duffing jerk in full fractional order

    In this section,an important cause of the nonlinear jerk oscillation with the full fractional order is considered in the form

    Because of the approximate relations(21)–(23)and by utilizing He’s frequency formula,the above equation can be sought in the equivalent linearized form as

    The solution of the linear jerk oscillator(57)is still given by the solution(28)except that the frequency Ω and the parameterφhave been replaced by

    The above equation(60)is the fractional frequency-amplitude formula of the full fractional Duffing jerk oscillator.

    6.The equivalent linearized approach to reducing the rank of the jerk oscillator

    In this section,the effort in converting the third-order oscillator into an equivalent linear second-order oscillator is interesting.This aim is done for the first time,and the linear equivalence method can be used to reduce the rank of the oscillation.The new approach will be applied to the oscillator given in(4).To illustrate the procedure,equation(4)can be arranged in the form As mentioned before the total frequency is selected to be Ω.The application of the equivalent linearized technique transforms the above equation to

    whereω3is the He’s frequency formula as given in(27),while the coefficientceqis estimated as

    At this stage,equation(63)can be solved as a second-order linear equation that has solution arises in the form

    where the frequency Ω is given by

    This can be read as

    It is noted that this approach can be used when the coefficientηhas a larger value than the other parameters of the oscillator(56).

    7.Numerical simulation

    To have a clear and proper understanding of the properties of the present approach,an illustrative numerical interpolation is done.The comparison of the obtained results in this paper with the numerical solution obtained by the Mathematica software is investigated.The comparison of the quasi-exact solution performed in(28)and the homotopy perturbation solution given by(46)with the numerical solution of the traditional integer-order is studied herein for the case of(i.e.equation(4)),to illustrate how the equivalent method of the fractional-order is close to the numerically exact solution.Two systems of the numerical values of the given coefficients are considered.One of them produces a growing behavior in the time-history profile,while the other deals with the damping behavior in the time-history description.The comparison of the behavior of the influence of0<α<1 is between the quasi-exact solution and the solution obtained by HPM.

    In figure 1,the numerical solution of equation(4),the analytical solution(46)with HPM,and the quasi-exact solution(28)are plotted together,for the case ofε= 0,in one graph for the system ofη=μ=Q =ω0=A =α=1.The numerical solution is plotted by the solid red line;the solution of HPM is drawn by the green dashed line;the quasiexact solution is displayed by the blue dotted line.This graph shows that there is an excellent agreement among the three different solutions for a system producing a growing behavior.When the system is selected to produce a damping behavior,the same conclusion is found as found in figure 2.The system used to produce the graph in figure 2 isη=μ= 1.3,ε= 0,Q =ω0= A =α=1.The variation in the fractional-orderαof the solution(28)has been collected together in figure 3,for the same system given in figure 2.It is observed from the investigation of this graph that the damping behavior for the caseα= 1 still occurs with an increase in its amplitude due to a small decrease in the values ofα.Continue in decreasing ofαleads to a dramatic change in the damping behavior for the oscillation.In which the growing behavior in the oscillation amplitude is observed.

    It is worth noting that the forgoing graphs are plotted for the solution(28)in the case ofε= 0.In figures 4–6,the calculations should deal with the case ofε>0.Figure 4 is plotted using the same system given in the graph of figure 1 except thatε= 1.The comparison between the two graphs of figures 1 and 4 shows that replacingε= 0 byε= 1 leads to an increase in the displacement scale of the growth behavior.Figure 5 is plotted for the same system given in figure 2 but withε= 1.The comparison between these figures shows a dramatic change occurs.The time-history curve starts as damping behavior and then changes to behave as a growing behavior.The examination of the variation inεhas been demonstrated in figure 6.In this graph,the solution(28)is plotted for the same system considered in figure 2 with different valuesεto illustrate the influence ofε.It is worthwhile to note that the system is given in figure 6 starts with damping behavior atε= 0.It is observed that the amplitude of the damping influence has increased with the increase inε.Atε= 0.5,the oscillation becomes with constant amplitude and there is no damping oscillation as shown in figure 7.Whenεbecomesε= 0.5,the oscillation behaves with the same amplitude as a non-damped behavior.After this state ofε= 0.5,the growing behavior in the amplitude of the oscillation will be increased.This behavior should be increased more rapidly for more increase inε.This means that there are three cases observed for the variation ofε,namely,the damping behavior in the interval ofno damped at,and growing behavior in the interval of

    Figure 1.Comparison of the quasi-exact solution(28)(Blue-dashing curve)with the numerical solution of equation(4),for the system ofη = μ =Q = ω 0 =A = α=1.

    Figure 2.Comparison of the quasi-exact solution(28)with the numerical solution for the system ofη = 1.2,μ = 1.3,ε=0,Q= ω 0 =A = α=1.

    Figure 3.The variation of the parameter α in the profile of the timehistory for the same system is considered in figure 2.

    Figure 4.The comparison of two solutions as given in figure 1 except thatε = 1.

    Figure 5.The comparison of the two solutions as given in figure 2 except thatε = 1.

    Figure 6.Influence of the variationε on the time-history profile for the same system of figure 2.

    Figure 7.Influence ofε = 0.5 on the time-history profile for the same system of figure 2.

    Figure 8.Comparison of the numerical solution of equation(56)versus its quasi-exact solution(28)for the same system of figure 2 with the variation in the parameter α withε = 0.5.

    Figure 9.Comparison of the numerical solution of equation(4)versus its reduced equation(63)for the system ofη = 10,μ =ω0= Q = A=1.

    Figure 8 is plotted to examine the solution of equation(56)with the variation in the parameterα.The comparison with its numerical solution is done for the case ofα= 1 withε= 0.5.The remaining parameters are as given in figure 2.This graph shows that the decrease inαhas a contribution to the damping influence of the jerk oscillator.

    Figure 9 is graphed to clarify the new feature that reduces the rank of the jerk oscillator from the third rank to the second rank.The numerical solution of the original third-order equation(4)was compared with the new analytical solution(65)of the second-order equation(63),taking into account thatThis graph shows that the solution of the reduced equation(63)becomes an excellent equivalent to the original equation(4).

    8.Conclusion

    A qualitative study of the efficiency of the simplest analysis of the differential equations based on fractional-order has been considered in the present proposal.The solution of the fractional nonlinear oscillator is obtained by converting it to the linear ordinary differential equation of integer order.This aim is accomplished using the linearized equivalent approach.In the reduced equations,the solution is obtained easily.It has been utilized for the time-fractional Van der Pol–Duffing jerk oscillator.The validation of the proposed technique is emulated with the numerical simulation of the oscillator with integer orders.The obtained solutions might be of huge importance in several areas of applied mathematics in elucidating some physical phenomena.Furthermore,the present approach can be used to reduce the rank of the jerk oscillator under certain conditions.The simplicity of the present approach provides extra advantages for fractional-order solutions.

    Competing interests

    The author declares that there are no competing interests regarding the publication of the present paper.

    ORCID iDs

    一区二区av电影网| 精品福利永久在线观看| 国产欧美亚洲国产| 精品国产超薄肉色丝袜足j| 少妇猛男粗大的猛烈进出视频| 国产一区二区 视频在线| 亚洲国产精品一区三区| 两个人看的免费小视频| 欧美精品av麻豆av| 人人妻人人添人人爽欧美一区卜| 天美传媒精品一区二区| av在线播放精品| 大片免费播放器 马上看| 一级毛片我不卡| 亚洲四区av| 国产精品免费视频内射| 国产精品久久久久久久久免| 天天躁夜夜躁狠狠躁躁| 亚洲国产看品久久| 亚洲,欧美精品.| 交换朋友夫妻互换小说| 男女国产视频网站| 亚洲欧美日韩另类电影网站| 国产精品麻豆人妻色哟哟久久| 老司机影院毛片| 又大又黄又爽视频免费| 日韩欧美精品免费久久| 在线观看一区二区三区激情| 90打野战视频偷拍视频| 99热国产这里只有精品6| xxxhd国产人妻xxx| 18禁观看日本| 人体艺术视频欧美日本| 视频区图区小说| 国产精品偷伦视频观看了| www日本在线高清视频| 欧美国产精品va在线观看不卡| 在现免费观看毛片| 一边摸一边做爽爽视频免费| 丝袜美足系列| av在线播放精品| 国产亚洲最大av| 91在线精品国自产拍蜜月| 午夜免费鲁丝| 亚洲精品久久成人aⅴ小说| 超碰成人久久| 亚洲欧美日韩另类电影网站| 日韩 亚洲 欧美在线| www日本在线高清视频| 久久久久久久亚洲中文字幕| 日本免费在线观看一区| 一级片'在线观看视频| 99久国产av精品国产电影| 老女人水多毛片| 人体艺术视频欧美日本| 国产一区亚洲一区在线观看| 99久久精品国产国产毛片| av在线app专区| 99国产综合亚洲精品| av片东京热男人的天堂| 久久久久网色| 日本欧美视频一区| 婷婷色麻豆天堂久久| 伦理电影免费视频| 国产精品蜜桃在线观看| 黑丝袜美女国产一区| 99热网站在线观看| 国产 精品1| 成人午夜精彩视频在线观看| 日韩av不卡免费在线播放| 国产精品免费大片| 亚洲成人一二三区av| 亚洲在久久综合| 欧美日韩精品成人综合77777| 亚洲,一卡二卡三卡| 三上悠亚av全集在线观看| 天堂俺去俺来也www色官网| 亚洲国产精品999| 日本av免费视频播放| 亚洲色图综合在线观看| 亚洲精品一区蜜桃| 老鸭窝网址在线观看| av一本久久久久| 日韩中文字幕欧美一区二区 | 99九九在线精品视频| 久久精品国产鲁丝片午夜精品| 考比视频在线观看| 免费观看av网站的网址| 国产精品三级大全| 国产精品久久久久久久久免| a级片在线免费高清观看视频| 欧美激情极品国产一区二区三区| 国产 一区精品| 少妇人妻久久综合中文| 热99国产精品久久久久久7| 成年女人在线观看亚洲视频| 亚洲激情五月婷婷啪啪| 在线观看免费高清a一片| 久久精品国产亚洲av天美| 久久久久久久久久人人人人人人| 亚洲一级一片aⅴ在线观看| 日本欧美国产在线视频| 久久亚洲国产成人精品v| 制服诱惑二区| 又黄又粗又硬又大视频| 黄片小视频在线播放| 免费观看a级毛片全部| 在线观看免费高清a一片| 精品人妻一区二区三区麻豆| 日本-黄色视频高清免费观看| 熟女少妇亚洲综合色aaa.| 少妇 在线观看| 亚洲,欧美,日韩| av福利片在线| 天天躁日日躁夜夜躁夜夜| 亚洲国产毛片av蜜桃av| 天天躁夜夜躁狠狠久久av| 成人18禁高潮啪啪吃奶动态图| 免费看av在线观看网站| 免费观看av网站的网址| 久久人人爽av亚洲精品天堂| 18禁动态无遮挡网站| 夫妻性生交免费视频一级片| 少妇的丰满在线观看| 777久久人妻少妇嫩草av网站| 国产精品不卡视频一区二区| 亚洲熟女精品中文字幕| 亚洲av免费高清在线观看| 80岁老熟妇乱子伦牲交| 亚洲av成人精品一二三区| 我要看黄色一级片免费的| 一区二区日韩欧美中文字幕| 黄片无遮挡物在线观看| 免费在线观看视频国产中文字幕亚洲 | 看十八女毛片水多多多| 男女边吃奶边做爰视频| 妹子高潮喷水视频| 黄频高清免费视频| 色视频在线一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 成年美女黄网站色视频大全免费| √禁漫天堂资源中文www| 青春草国产在线视频| 大香蕉久久网| 国产精品 欧美亚洲| 国产精品久久久久久精品古装| 色94色欧美一区二区| 国产精品人妻久久久影院| 久久精品夜色国产| 在线天堂中文资源库| 七月丁香在线播放| 一区二区三区激情视频| 亚洲成色77777| 啦啦啦在线观看免费高清www| 99热全是精品| 国产av码专区亚洲av| 男女边吃奶边做爰视频| www.自偷自拍.com| 永久免费av网站大全| 国产一区二区 视频在线| 天天躁夜夜躁狠狠躁躁| 久久久亚洲精品成人影院| 久久久久久久精品精品| 精品国产一区二区三区四区第35| 免费人妻精品一区二区三区视频| 国产成人a∨麻豆精品| 国产免费又黄又爽又色| 看非洲黑人一级黄片| 一本大道久久a久久精品| 80岁老熟妇乱子伦牲交| 亚洲综合色惰| 超碰97精品在线观看| 精品国产一区二区三区久久久樱花| 欧美中文综合在线视频| 久久精品国产a三级三级三级| 亚洲一码二码三码区别大吗| 人人澡人人妻人| 日韩中文字幕欧美一区二区 | 久久亚洲国产成人精品v| 视频区图区小说| 中文乱码字字幕精品一区二区三区| 亚洲国产精品999| 精品一区二区免费观看| 日韩中文字幕欧美一区二区 | 国产在线视频一区二区| 有码 亚洲区| 18禁动态无遮挡网站| 国产成人精品久久久久久| 久久综合国产亚洲精品| 久久99精品国语久久久| 欧美av亚洲av综合av国产av | 一个人免费看片子| 国产男女超爽视频在线观看| 亚洲国产av新网站| xxxhd国产人妻xxx| 亚洲精品成人av观看孕妇| 波多野结衣av一区二区av| 亚洲人成77777在线视频| 视频区图区小说| 免费观看无遮挡的男女| 香蕉精品网在线| 久久久久精品人妻al黑| 久久99蜜桃精品久久| 久久影院123| 欧美成人午夜精品| 熟女av电影| 国产黄频视频在线观看| 亚洲国产精品一区三区| 国产精品一二三区在线看| 亚洲国产精品999| 99香蕉大伊视频| 高清不卡的av网站| 中文字幕制服av| 久久久久精品人妻al黑| 亚洲人成77777在线视频| 色婷婷久久久亚洲欧美| 丝瓜视频免费看黄片| 中文字幕人妻丝袜制服| 啦啦啦在线观看免费高清www| 人妻系列 视频| 老汉色av国产亚洲站长工具| 人人妻人人澡人人看| 精品卡一卡二卡四卡免费| 高清在线视频一区二区三区| 欧美xxⅹ黑人| 多毛熟女@视频| 狂野欧美激情性bbbbbb| 91精品三级在线观看| 亚洲美女视频黄频| 超碰成人久久| 精品人妻在线不人妻| 国产熟女午夜一区二区三区| 少妇猛男粗大的猛烈进出视频| 精品亚洲成a人片在线观看| 电影成人av| 黄片播放在线免费| 国产无遮挡羞羞视频在线观看| 国产成人精品在线电影| 一本色道久久久久久精品综合| 在现免费观看毛片| 国产xxxxx性猛交| 大话2 男鬼变身卡| 各种免费的搞黄视频| 黄色视频在线播放观看不卡| 宅男免费午夜| 91国产中文字幕| 久久97久久精品| 美女视频免费永久观看网站| 亚洲,欧美,日韩| 中文字幕人妻熟女乱码| 国产成人a∨麻豆精品| 久久精品国产a三级三级三级| 美女脱内裤让男人舔精品视频| 亚洲国产欧美在线一区| 亚洲国产色片| 亚洲欧美成人精品一区二区| 两性夫妻黄色片| 国精品久久久久久国模美| 欧美成人午夜免费资源| 成人亚洲欧美一区二区av| 久久久久国产一级毛片高清牌| a 毛片基地| 久久av网站| 国产精品一国产av| 亚洲 欧美一区二区三区| 丝瓜视频免费看黄片| 免费人妻精品一区二区三区视频| 亚洲av免费高清在线观看| 五月开心婷婷网| 国产精品免费大片| 国产精品久久久久久精品古装| 久久这里有精品视频免费| 中文乱码字字幕精品一区二区三区| 三级国产精品片| 一区二区日韩欧美中文字幕| 美女脱内裤让男人舔精品视频| 亚洲综合色惰| 精品久久久精品久久久| 日本欧美视频一区| 亚洲精品自拍成人| 日韩成人av中文字幕在线观看| 久久久久久久国产电影| 精品国产一区二区三区久久久樱花| 可以免费在线观看a视频的电影网站 | 日韩av在线免费看完整版不卡| 9色porny在线观看| 女的被弄到高潮叫床怎么办| 90打野战视频偷拍视频| 大码成人一级视频| 久久久久精品性色| 在线看a的网站| 日日爽夜夜爽网站| 日韩电影二区| 日韩一卡2卡3卡4卡2021年| 老汉色∧v一级毛片| 日韩av在线免费看完整版不卡| 欧美 亚洲 国产 日韩一| 久久久久久久久久久免费av| 日本爱情动作片www.在线观看| 国产不卡av网站在线观看| 日韩三级伦理在线观看| 国产一区有黄有色的免费视频| 精品国产一区二区久久| 九九爱精品视频在线观看| 如日韩欧美国产精品一区二区三区| 国产精品免费视频内射| 亚洲国产精品一区二区三区在线| 一级毛片我不卡| 国产一区二区三区综合在线观看| av天堂久久9| 中国三级夫妇交换| 男女午夜视频在线观看| 亚洲av.av天堂| 久久久久久人妻| 哪个播放器可以免费观看大片| 麻豆乱淫一区二区| 日产精品乱码卡一卡2卡三| 亚洲一区中文字幕在线| 大话2 男鬼变身卡| 老司机亚洲免费影院| 99国产综合亚洲精品| 高清不卡的av网站| 美女高潮到喷水免费观看| 黄片播放在线免费| 欧美+日韩+精品| 久久久久人妻精品一区果冻| 国产av一区二区精品久久| 大码成人一级视频| 免费黄频网站在线观看国产| 国产成人91sexporn| 国产精品久久久久久久久免| 黄片无遮挡物在线观看| 激情视频va一区二区三区| 亚洲av中文av极速乱| 欧美精品亚洲一区二区| 1024视频免费在线观看| 少妇熟女欧美另类| 青草久久国产| 另类精品久久| 美女主播在线视频| 欧美成人午夜免费资源| 国产成人91sexporn| 自线自在国产av| 免费在线观看黄色视频的| 黄色 视频免费看| 如日韩欧美国产精品一区二区三区| 久久人人爽人人片av| 亚洲精品日韩在线中文字幕| 97精品久久久久久久久久精品| 精品福利永久在线观看| 一二三四在线观看免费中文在| av网站免费在线观看视频| 成年人午夜在线观看视频| 亚洲欧美一区二区三区黑人 | 永久免费av网站大全| 老司机影院成人| 国产高清不卡午夜福利| 最近手机中文字幕大全| 亚洲国产精品一区二区三区在线| 国产精品熟女久久久久浪| 天堂中文最新版在线下载| 又黄又粗又硬又大视频| 成人毛片60女人毛片免费| 女性被躁到高潮视频| 久久精品国产亚洲av高清一级| 精品久久久精品久久久| 亚洲欧美一区二区三区黑人 | 成人手机av| 国产精品一二三区在线看| 在线观看免费日韩欧美大片| 国产乱来视频区| 日韩av在线免费看完整版不卡| 狂野欧美激情性bbbbbb| 一级,二级,三级黄色视频| 狂野欧美激情性bbbbbb| 久久精品亚洲av国产电影网| 韩国高清视频一区二区三区| 两性夫妻黄色片| 亚洲av综合色区一区| 国产 一区精品| 香蕉精品网在线| 最黄视频免费看| 久久久久久人妻| 精品一区二区免费观看| 丝袜在线中文字幕| 一级,二级,三级黄色视频| 亚洲国产色片| 亚洲精品日韩在线中文字幕| 欧美成人午夜精品| 波多野结衣一区麻豆| 久热久热在线精品观看| 麻豆av在线久日| 丝袜美足系列| 欧美日韩综合久久久久久| 亚洲成人手机| 国产精品不卡视频一区二区| 亚洲成国产人片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 自拍欧美九色日韩亚洲蝌蚪91| 国产又爽黄色视频| 久久久精品94久久精品| 18禁国产床啪视频网站| 久久99热这里只频精品6学生| 在线天堂中文资源库| 啦啦啦视频在线资源免费观看| 成人免费观看视频高清| 午夜福利影视在线免费观看| 亚洲欧美精品自产自拍| 曰老女人黄片| 亚洲人成电影观看| 久久久久久久大尺度免费视频| 亚洲人成电影观看| 女人被躁到高潮嗷嗷叫费观| 视频区图区小说| 欧美成人午夜免费资源| 各种免费的搞黄视频| 国产色婷婷99| 久久ye,这里只有精品| 亚洲国产精品999| 久久久久久久精品精品| 波野结衣二区三区在线| 免费在线观看视频国产中文字幕亚洲 | 国产精品欧美亚洲77777| 在线观看免费视频网站a站| 日韩三级伦理在线观看| 少妇被粗大的猛进出69影院| 9色porny在线观看| 久久精品人人爽人人爽视色| 午夜福利影视在线免费观看| 亚洲精品aⅴ在线观看| 97精品久久久久久久久久精品| 大香蕉久久成人网| 婷婷成人精品国产| 搡女人真爽免费视频火全软件| 日日啪夜夜爽| 国产激情久久老熟女| 国产不卡av网站在线观看| 观看美女的网站| 美女高潮到喷水免费观看| 欧美日韩国产mv在线观看视频| 天堂中文最新版在线下载| 欧美日韩av久久| 欧美日韩成人在线一区二区| 久久久久久久大尺度免费视频| 亚洲伊人久久精品综合| 久久精品熟女亚洲av麻豆精品| av一本久久久久| 亚洲精品美女久久久久99蜜臀 | 综合色丁香网| 午夜福利在线免费观看网站| 老司机亚洲免费影院| 1024视频免费在线观看| 国产精品蜜桃在线观看| 一本—道久久a久久精品蜜桃钙片| 国产色婷婷99| 美女xxoo啪啪120秒动态图| 国产成人精品福利久久| 免费在线观看视频国产中文字幕亚洲 | 成年动漫av网址| 多毛熟女@视频| 国产精品二区激情视频| av国产久精品久网站免费入址| 永久网站在线| 国产精品一二三区在线看| 欧美bdsm另类| 丝袜喷水一区| 男女高潮啪啪啪动态图| 免费大片黄手机在线观看| 咕卡用的链子| 国产成人精品无人区| 亚洲精品日本国产第一区| 寂寞人妻少妇视频99o| 咕卡用的链子| 捣出白浆h1v1| 久久久久人妻精品一区果冻| 久久精品熟女亚洲av麻豆精品| av福利片在线| 国产一级毛片在线| 日韩一本色道免费dvd| 久久久久网色| 你懂的网址亚洲精品在线观看| 热re99久久国产66热| 亚洲精品美女久久久久99蜜臀 | 丝袜美腿诱惑在线| av卡一久久| 看十八女毛片水多多多| 亚洲精品av麻豆狂野| 十八禁网站网址无遮挡| 黄片播放在线免费| 欧美激情 高清一区二区三区| 欧美另类一区| 考比视频在线观看| 久久久久久人妻| 精品国产乱码久久久久久小说| 婷婷成人精品国产| 中文欧美无线码| 韩国高清视频一区二区三区| 日韩人妻精品一区2区三区| a级毛片黄视频| 满18在线观看网站| 国产老妇伦熟女老妇高清| 久久99精品国语久久久| 精品人妻一区二区三区麻豆| 激情五月婷婷亚洲| 五月开心婷婷网| 中文乱码字字幕精品一区二区三区| 国产黄频视频在线观看| 91成人精品电影| 成人影院久久| 亚洲成人av在线免费| 国产精品免费视频内射| 搡女人真爽免费视频火全软件| 精品视频人人做人人爽| 久久99热这里只频精品6学生| 免费观看在线日韩| 韩国av在线不卡| 精品一区二区三区四区五区乱码 | 2021少妇久久久久久久久久久| 免费高清在线观看视频在线观看| 十八禁高潮呻吟视频| 91久久精品国产一区二区三区| 成人免费观看视频高清| 国产成人aa在线观看| 久久精品久久久久久噜噜老黄| 国产xxxxx性猛交| 综合色丁香网| 久久人妻熟女aⅴ| 精品国产超薄肉色丝袜足j| 桃花免费在线播放| 熟女av电影| 美国免费a级毛片| 欧美日韩成人在线一区二区| 男女午夜视频在线观看| 精品第一国产精品| av.在线天堂| 另类精品久久| 久久久久视频综合| 尾随美女入室| 高清欧美精品videossex| 汤姆久久久久久久影院中文字幕| 老熟女久久久| 久久午夜综合久久蜜桃| 最近中文字幕2019免费版| 麻豆乱淫一区二区| 成人国语在线视频| 亚洲第一青青草原| 一本大道久久a久久精品| 只有这里有精品99| 黑人巨大精品欧美一区二区蜜桃| 激情五月婷婷亚洲| 精品国产一区二区三区久久久樱花| 一边摸一边做爽爽视频免费| av免费在线看不卡| 亚洲成av片中文字幕在线观看 | 成人免费观看视频高清| 国产精品免费视频内射| 色婷婷av一区二区三区视频| 熟女av电影| 久久国内精品自在自线图片| 日本色播在线视频| 日韩精品免费视频一区二区三区| 国产免费视频播放在线视频| 男女啪啪激烈高潮av片| 97在线人人人人妻| 青青草视频在线视频观看| 制服丝袜香蕉在线| 亚洲国产欧美日韩在线播放| 免费久久久久久久精品成人欧美视频| 女性生殖器流出的白浆| 韩国av在线不卡| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品999| 2021少妇久久久久久久久久久| 国产熟女午夜一区二区三区| 日韩一区二区视频免费看| 色播在线永久视频| 欧美日韩成人在线一区二区| 久久久久久久亚洲中文字幕| 国精品久久久久久国模美| 天天躁夜夜躁狠狠久久av| 精品亚洲乱码少妇综合久久| 制服人妻中文乱码| 永久网站在线| 男人舔女人的私密视频| 国产高清国产精品国产三级| 久久人妻熟女aⅴ| 国产精品蜜桃在线观看| 久久久精品94久久精品| 香蕉丝袜av| 女的被弄到高潮叫床怎么办| 丰满乱子伦码专区| 99精国产麻豆久久婷婷| 老汉色∧v一级毛片| 亚洲欧洲日产国产| 99国产综合亚洲精品| 老汉色∧v一级毛片| 国产亚洲午夜精品一区二区久久| 老司机影院毛片| 免费看av在线观看网站| 2018国产大陆天天弄谢| 久久国产精品大桥未久av| 国产无遮挡羞羞视频在线观看| 亚洲精品国产一区二区精华液| 免费高清在线观看日韩| 国产无遮挡羞羞视频在线观看| 日韩av免费高清视频| 夫妻性生交免费视频一级片| 另类精品久久| 男女边吃奶边做爰视频| 国产高清不卡午夜福利| 美女视频免费永久观看网站| 欧美少妇被猛烈插入视频| 肉色欧美久久久久久久蜜桃| 狠狠精品人妻久久久久久综合| 成人18禁高潮啪啪吃奶动态图|