• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metaheuristics with Machine Learning Enabled Information Security on Cloud Environment

    2022-11-10 02:31:40HayaMesferAlshahraniFaisalAlsubaeiTaiseerAbdallaElfadilEisaMohamedNourManarAhmedHamzaAbdelwahedMotwakelAbuSarwarZamaniandIshfaqYaseen
    Computers Materials&Continua 2022年10期

    Haya Mesfer Alshahrani,Faisal S.Alsubaei,Taiseer Abdalla Elfadil Eisa,Mohamed K.Nour,Manar Ahmed Hamza,Abdelwahed Motwakel,Abu Sarwar Zamani and Ishfaq Yaseen

    1Department of Information Systems,College of Computer and Information Sciences,Princess Nourah Bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    2Department of Cybersecurity,College of Computer Science and Engineering,University of Jeddah,Jeddah,21959,Saudi Arabia

    3Department of Information Systems-Girls Section,King Khalid University,Mahayil,62529,Saudi Arabia

    4Department of Computer Science,College of Computing and Information System,Umm Al-Qura University,Saudi Arabia

    5Department of Computer and Self Development,Preparatory Year Deanship,Prince Sattam bin Abdulaziz University,AlKharj,Saudi Arabia

    Abstract:The increasing quantity of sensitive and personal data being gathered by data controllers has raised the security needs in the cloud environment.Cloud computing (CC) is used for storing as well as processing data.Therefore,security becomes important as the CC handles massive quantity of outsourced,and unprotected sensitive data for public access.This study introduces a novel chaotic chimp optimization with machine learning enabled information security(CCOML-IS)technique on cloud environment.The proposed CCOML-IS technique aims to accomplish maximum security in the CC environment by the identification of intrusions or anomalies in the network.The proposed CCOML-IS technique primarily normalizes the networking data by the use of data conversion and min-max normalization.Followed by,the CCOML-IS technique derives a feature selection technique using chaotic chimp optimization algorithm (CCOA).In addition,kernel ridge regression (KRR) classifier is used for the detection of security issues in the network.The design of CCOA technique assists in choosing optimal features and thereby boost the classification performance.A wide set of experimentations were carried out on benchmark datasets and the results are assessed under several measures.The comparison study reported the enhanced outcomes of the CCOML-IS technique over the recent approaches interms of several measures.

    Keywords:Information security;cloud computing;intrusion;anomalies;data mining;feature selection;classification

    1 Introduction

    Cloud computing(CC)provides large number of support to the global environments in different regions such as business,education,and medical[1].Security is the main portion of the service that is provided globally.Data security plays a significant part in a cloud network.Different kinds of security risks such as audit schedules,security application,key management and encryption,physical and user access control identity,and access management,[2]are listed in the cloud information.Recently,the encryption of information is executed by various encryption methods that have the capacity for the transformation of texts into a framework called ciphertext.This is an encrypted form of the particular input as plain text that won’t be viewed by privileged users.Similarly,by utilizing a separate key,the encrypted information creates the approach for decrypting the information that is capable of offering the original text to the privileged users[3].In cloud environment,privacy maintenance contains two factors such as data processing and data storage security.Data storage security consists of issues of potential user data confidentiality while the information is stored in the data center.Data processing security consists of the problem of how to maintain user privacy at operation time in a virtualized cloud environment.Several methods are designed for privacy preservation in the cloud.A massive number of private information are analyzed and exploited using cloud service provider(CSP)on the basis of cloud.When the CSP is taken into account as trustworthy than in the cloud,sensitive data management is easier[4].Yet,many legal issues are remaining.But the healthcare or personal data and data subject trusted the data manager in several instances,even though they do not allow the regulator to transfer the information by the trusted member[5].Fig.1 illustrates security system involved in CC.

    Figure 1:Cloud security

    Generally,intrusion detection system(IDS)is classified on the basis of activity level as follows:Host based IDS (HIDS) and Network based IDS (NIDS)[6].Host based IDS is developed for monitoring activity of certain host networks.Network based IDS is designed for monitoring the activity of several hosts and analyzing vehicular adhoc networks (VANET) packets taken from the system.At the same time,IDS consist of strategic detection method includes anomaly detection and signature recognition.The variance among these approaches is that anomaly detection analyses the property of common behavior whereas signature recognition recognizes intrusion based on known attack features[7].Thus,IDS handles unbelievable amount of information that has unrelated and redundant features which presented a calculation time and extreme training[8].Different methods for feature classification or reduction were presented for improving the efficacy of IDS in attack detection[9].Most of them are depends on machine learning(ML)methods to improve IDS feature selection,mostly for effective attack classification procedure.Unfortunately,none of the presented methods is effective-often there are certain drawbacks.Henceforth,let us discuss that there is a requirement for research is being undertaken to enhance the IDS efficiency[10].

    In[11],a secure and efficient access control system was introduced for the CC platform for sharing knowledge and resource.In the beginning,resources or data are encrypted by the user attribute,and encrypted information is separated into the extracted and encapsulated ciphertext.Next,identitybased timed-release encryption(IDTRE)approach was utilized for encrypting the decrypted key and integrated the ciphertext of the key with the extracted ciphertext to create the ciphertext share.The researcher in[12]proposed a new method for creating innovative multi-level user authentication system with hybrid CAPTCHA codes.This code defines a novel type of cognitive CAPTCHA,where the authentication needs user special knowledge and skills,that are essential for appropriate verification.This method of verification might be focused on offering data accessing for trusted users or certain group of experts who have special perception abilities and knowledge as well as to characterize specific expert areas.

    The researchers in[13]aim at cloud data delivery and storage to privileged users.Therefore,a hierarchal identity-based cryptography model is utilized for checking the data integrity and security,to guarantee that there is no modification or alteration made by a CSP or malicious attacker for their gain.In[14],the fundamental concept of the CC and its applications were examined based on the significance of privacy problems.The presented method enhances the security level in the CC via decision trees and data mining algorithms.Lower computation burden and user number independence assist in efficiently carrying out the presented method in real time.Veerabathiran et al.[15]provide a homomorphic proxy re-encryption(HPRE)which allows different cloud users that they redistributed HPRE encrypted with the PubKs using the acceptability by a close process namely INFO remotely.The examination of providing access control(AC),secrecy,and uprightness of INFO enabled cloud phases is not given for by traditional AC methods.A model was generated to fulfill the association requirements that accept complete authorization through the physical structure of the resources.

    This study introduces a novel chaotic chimp optimization with machine learning enabled information security(CCOML-IS)technique on cloud environment.The proposed CCOML-IS technique primarily normalizes the networking data by the use of data conversion and min-max normalization.Followed by,the CCOML-IS technique derives a feature selection technique using chaotic chimp optimization algorithm(CCOA).In addition,kernel ridge regression(KRR)classifier is used for the detection of security issues in the network.The design of CCOA technique assists in choosing optimal features and thereby boost the classification performance.A wide set of simulations were carried out on benchmark datasets and the results are assessed under several measures.

    The rest of the paper is organized as follows.Section 2 introduces the proposed model,Section 3 validates the proposed model,and Section 4 concludes the work.

    2 The Proposed Information Security Technique

    In this study,an effective CCOML-IS technique has been developed to accomplish maximum security in the CC environment by the identification of intrusions or anomalies in the network.The proposed CCOML-IS technique primarily normalizes the networking data by the use of data conversion and min-max normalization.Then,the CCOML-IS technique derives a feature selection technique using CCOA.Moreover,KRR classifier is used for the detection of security issues in the network.Fig.2 illustrates the overall process of CCOML-IS technique.

    Figure 2:Overall process of CCOML-IS technique

    2.1 Data Pre-Processing

    For eliminating the dimension influence of all the features,the training as well as testing set are normalized.Based on the subsequent data transformation Eq.(1),all the values from the dataset achieved from the primary phase were normalized in the range zero to one.

    where Yoriginal implies the novel value of y feature,Ymin refers the minimal value of y feature,and Ymax stands for the maximal value of y feature.

    2.2 Process Involved in CCOA Based Feature Selection

    A nature inspired approach called COA[16]was stimulated from the sexual motivation and individual intelligence of chimps in group hunting.It is distinct from the other social predators.In this method,four distinct stages were employed to stimulate dissimilar intelligence including barrier,attacker,driver,chaser,and so on.The arithmetical method of the presented approach was given as follows:The chasing and driving the prey or target is demonstrated below:

    In the equation,nrepresents the overall amount of iterations,m,andaindicates the coefficient vector.They are estimated as follows

    Here,r1andr2denotes arbitrary number within[0,1],mshows that chotic vector andlis nonlinearly decreased from 2.5 to 0 by using the iteration method.In this phase,the behavior of chimps has been mathematically implemented.Now,assume the first solution is accessible by the chaser,attacker,driver,and barrier that is better informed regarding the targeted position.Next,the other optimal solutions attained are stored,and reaming chimps are enforced to upgrade the individual position based on the optimal chimp location.

    Once the random vector lies within[-1,1],then the subsequent position of chimp might be in any position among the target or prey present location:

    In the above equations,the location of the chimps in the searching procedure can be upgraded as follows

    At last,in order to upgrade the position of chimps at the time of the searching procedure in the searching region was employed to the subsequent formula:

    The optimization approach cannot demonstrate the optimal solution to complex problems.Each algorithm faces some disadvantages.Hence,because of the existing competitive situation,we need effective optimization methods,therefore it addresses complicated problems.But this technique tackles complicated functions when the exploitation and exploration process of the technique.Initialization of the searching agent in the optimization problem is randomly implemented.A random vector is set with value ranges among predetermined minimum and maximum constraints.There is no clear rule which defines the first stage for the optimization method[17].Owing to the fact that the meta heuristic-based optimization method progresses is considerably impacted by the initialized population determination,the likelihood of attaining good results that improve when the initialized population assumption is increased.The development of the initialized population is performed by hybridization using chaotic maps.The concept of merging the chaotic map with the metaheuristic optimization method is suggested.The analysis demonstrates that the logistic chaotic map is improved when compared to each existing chaotic map.This is because of good computation efficacy and the higher likelihood for initiating arbitrary values closer to 0 and 1.

    Algorithm 1:Pseudocode of COA Inputs:The population size Nand maximal amount of iterations t Random population generation Xi(i=1,2,..., N)while t <max.amount of iterations do for all the chimps do Determine the chimp’s group By utilizing is group strategy to upgrade end for for every search climb do if x <1 then Upgrade the location of the existing search chimp else if x >1 then Choose an arbitrary search chimp end if Upgrade the location of the existing search chimp end for Upgrade X Attacker,Barrier,Driver,and Chaser t+1 end while

    Consequently,the fast local searching is presented:

    whereas rand represents an arbitrary vector within 0 and 1.The recently proposed CMOA is described by substituting the random vector namedrandiestimated by the logistic chaotic mapping.Therefore,the MOA is enhanced by modifying the population initialization using the chaotic character.

    The CCOA approach resolves a fitness function (FF) for determining solution under this state develop for attaining a balance amongst the 2 objectives as:

    ΔR(D)implies the classifier error rate.|Y|signifies the size of subset which approach chooses and|T|entire amount of features restricted from the current data sets.αrefers the parameter ∈[0,1]comparing with the weight of error rate of classifiers correspondingly alsoβ= 1-αstands for the significance of decrease feature.

    2.3 KRR Based Classification

    In typical RR,the part of the hidden state is to map the input layers to the hidden layers that are hidden layers of the RR maps information from the data space to high dimension space,whereby all the dimensions correspond to a hidden layer.Henceforth,the efficiency of RR is mainly based on the hidden layers and it is application specific.In order to prevent the abovementioned hidden layer selection problem,a KRR was utilized for classifying each microarray medical data set.In KRR,a positive regularization coefficientCis presented to make it more stable and generalized[18].

    NowCindicates the regulation coefficient,Tshows the output matrix andHrepresents the hidden neuron output matrix.

    Here,rather than knowing the hidden neuron feature mapping,h(x),its respective |〈(u,v)is evaluated.The absence ofLthat is,hidden layers inKRRsimplify KRR computational method.

    Therefore,the output of kernel ridge regression is given by

    whereasθRR=HHTandkxi,xjrepresent the kernel function of hidden layers of single layer feedforward networks(SLFN).Among the distinct kernel function satisfies Mercer condition accessible in radial basis function kernel (RKRR) and wavelet kernel (WKRR) are taken into consideration.RKRR is a local kernel function whereλandYare utilized as the variables.At the same time,the complex wavelet kernel function employs vector that is[d,e,f]as variable.Based on the data sets,best decision of kernel function and appropriate tuning of the variables are extremely needed to attain optimal results.

    Radial basis kernel

    Wavelet kernel

    Kernel RR is beneficial when compared to RR since there is no need to know the hidden neuron feature mapping and setting the amount of hidden layersL.It attains good generalization,is faster than SVM,and has more stability in comparison with RR.

    3 Results and Discussion

    The performance validation of the CCOML-IS technique is performed using the KDD dataset,which comprises of two sets namely training data and testing data.The dataset includes instances under binary class and multi-class instances.The class distribution of the samples that exist in the dataset is shown in Fig.3.Tab.1 and Fig.4 relates the binary class accuracy attained by the CCOMLIS approach on the training and testing processes of KDD dataset.On KDD-training dataset,the CCOML-IS method has gained enhanced accuracy of 99.92%whereas the hybrid-deep belief network(DBN),particle swarm optimization (PSO) with DBN (PSODBN),genetic algorithm with PSO(GAPSO)-DBN,artificial fish swarm algorithm (AFSA)-PSODBN,and CMPSO-DBN techniques have obtained reduced accuracy of 99.85%,96.83%,97.26%,98.27%,and 98.12% correspondingly.Besides,on the test KDD-testing dataset,the CCOML-IS system has gained higher accuracy of 87.35% whereas the hybrid-DBN,PSODBN,GAPSO-DBN,AFSA-PSODBN,and CMPSO-DBN methodologies have resulted in lesser accuracy of 83.86%,80.58%,81.02%,81.98%,and 81.23%correspondingly.

    Figure 3:Sample classes

    Table 1:Binary class accuracy analysis of CCOML-IS technique under training and testing of KDD dataset

    Figure 4:Accuracy analysis of CCOML-IS technique under binary class

    The accuracy outcome analysis of the CCOML-IS technique under binary class is portrayed in Fig.5.The results demonstrated that the CCOML-IS technique has accomplished improved validation accuracy compared to training accuracy.It is also observable that the accuracy values get saturated with the epoch count of 1000.

    Figure 5:Accuracy graph analysis of CCOML-IS technique under binary class

    The loss outcome analysis of the CCOML-IS technique under binary class is depicted in Fig.6.The figure revealed that the CCOML-IS technique has denoted the reduced validation loss over the training loss.It is additionally noticed that the loss values get saturated with the epoch count of 1000.

    Figure 6:Loss graph analysis of CCOML-IS technique under binary class

    Tab.2 and Fig.7 compare the multi-class accuracy obtained by the CCOML-IS technique on the training and testing processes of KDD dataset.On KDD-training dataset,the CCOML-IS technique has gained improved accuracy of 99.08% whereas the hybrid-DBN,PSODBN,GAPSODBN,AFSA-PSODBN,and CMPSO-DBN techniques have obtained reduced accuracy of 98.55%,95.72%,96.35%,97.26%,and 97.12% respectively.Similarly,on the test KDD-testing dataset,the CCOML-IS technique has attained enhanced accuracy of 88.75%whereas the hybrid-DBN,PSODBN,GAPSO-DBN,AFSA-PSODBN,and CMPSO-DBN techniques have resulted to lower accuracy of 82.36%,79.22%,80.42%,80.68%,and 80.13%respectively.

    Table 2:Multiclass accuracy analysis of CCOML-IS technique under training and testing of KDD dataset

    Figure 7:Accuracy analysis of CCOML-IS technique under multiclass

    The accuracy outcome analysis of the CCOML-IS approach under multiclass is demonstrated d in Fig.8.The outcomes depicted that the CCOML-IS method has accomplished higher validation accuracy compared to training accuracy.It can be also observable that the accuracy values get saturated with the epoch count of 1000.

    The loss outcome analysis of the CCOML-IS technique under multiclass is depicted in Fig.9.The figure stated that the CCOML-IS system has represented the lower validation loss over the training loss.It can be additionally noticed that the loss values get saturated with the epoch count of 1000.

    Figure 8:Accuracy graph analysis of CCOML-IS technique under multiclass

    Figure 9:Loss graph analysis of CCOML-IS technique under multiclass

    Finally,a detailed computation time(CT)analysis of the CCOML-IS technique is provided[19].A brief training time (TT) analysis of the CCOML-IS technique is compared with recent methods in Fig.10.The results show that the Hybrid-DBN,GAPSO-DBN,and AFSA-PSODBN techniques have obtained least outcome with the extreme TT of 222.64,205.59,and 255.36 min respectively.In line with,the PSODBN and CMPSO-DBN techniques have obtained slightly reduced TT of 188.76 and 172.55 min respectively.However,the CCOML-IS technique has resulted in enhanced outcomes with the minimal TT of 142.38 min.

    A detailed detection time (DT) analysis of the CCOML-IS approach was related to recent techniques in Fig.11.The outcomes demonstrated that the Hybrid-DBN,GAPSO-DBN,and AFSAPSODBN methods have obtained worse outcomes with the extreme DT of 136.69,129.83,and 142.92 min correspondingly.Also,the PSODBN and CMPSO-DBN systems have reached slightly minimal DT of 123.81 and 125.47 min correspondingly.At last,the CCOML-IS technique has resulted in improved outcomes with the reduced DT of 101.26 min.The above mentioned results and discussion ensured the enhanced outcomes of the CCOML-IS technique over the other techniques.

    Figure 10:Training time analysis of CCOML-IS technique with existing approaches

    Figure 11:Detection time analysis of CCOML-IS technique with existing approaches

    4 Conclusion

    In this study,an effective CCOML-IS technique has been developed to accomplish maximum security in the CC environment by the identification of intrusions or anomalies in the network.The proposed CCOML-IS technique primarily normalizes the networking data by the use of data conversion and min-max normalization.Then,the CCOML-IS technique derives a feature selection technique using CCOA.Moreover,KRR classifier is used for the detection of security issues in the network.The design of CCOA technique assists in choosing optimal features and thereby boost the classification performance.A wide set of experimentations were carried out on benchmark datasets and the results are assessed under several measures.The comparison study reported the enhanced outcomes of the CCOML-IS technique over the recent approaches interms of several measures.In future,outlier removal approaches can be included to further improvise the security.

    Acknowledgement:The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR01).

    Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/49/42).Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R237),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品人妻久久久影院| 国产精品二区激情视频| 欧美av亚洲av综合av国产av| www.999成人在线观看| 最近中文字幕2019免费版| 午夜福利在线免费观看网站| 久久久久久免费高清国产稀缺| 菩萨蛮人人尽说江南好唐韦庄| avwww免费| 亚洲欧美一区二区三区国产| svipshipincom国产片| 中国美女看黄片| 久久精品aⅴ一区二区三区四区| 久久国产精品影院| 女人被躁到高潮嗷嗷叫费观| 国产在线视频一区二区| 久久99一区二区三区| 国产熟女欧美一区二区| 三上悠亚av全集在线观看| 脱女人内裤的视频| xxx大片免费视频| av又黄又爽大尺度在线免费看| 国产成人免费观看mmmm| 国产精品国产av在线观看| 国产精品一二三区在线看| 婷婷色综合www| 老司机亚洲免费影院| 精品久久久精品久久久| 各种免费的搞黄视频| 亚洲欧美精品自产自拍| videosex国产| 色94色欧美一区二区| 丝袜喷水一区| 狂野欧美激情性bbbbbb| 真人做人爱边吃奶动态| 久久ye,这里只有精品| 国产亚洲午夜精品一区二区久久| 极品人妻少妇av视频| 国产成人一区二区三区免费视频网站 | √禁漫天堂资源中文www| 永久免费av网站大全| 色网站视频免费| www.999成人在线观看| 国产精品一区二区在线观看99| 亚洲人成电影免费在线| 欧美精品av麻豆av| 精品一区二区三区av网在线观看 | 男女之事视频高清在线观看 | 亚洲一区二区三区欧美精品| 亚洲男人天堂网一区| 涩涩av久久男人的天堂| 在线观看www视频免费| 欧美成人午夜精品| 黄色 视频免费看| 一二三四社区在线视频社区8| 夫妻性生交免费视频一级片| 久久久国产精品麻豆| 女人高潮潮喷娇喘18禁视频| 国产精品熟女久久久久浪| 久久久久久久久免费视频了| 青青草视频在线视频观看| 手机成人av网站| 亚洲五月色婷婷综合| 人人妻人人添人人爽欧美一区卜| 亚洲欧洲国产日韩| 国产色视频综合| 只有这里有精品99| 欧美国产精品一级二级三级| av在线播放精品| 国产av国产精品国产| 国产亚洲欧美精品永久| 日韩一卡2卡3卡4卡2021年| 久9热在线精品视频| 69精品国产乱码久久久| 亚洲欧洲精品一区二区精品久久久| 成人影院久久| 亚洲av男天堂| 精品熟女少妇八av免费久了| 国产精品一国产av| 久久性视频一级片| 夫妻午夜视频| 亚洲成人手机| 久久热在线av| 少妇裸体淫交视频免费看高清 | 成年美女黄网站色视频大全免费| 日韩av免费高清视频| 国产精品久久久久成人av| 水蜜桃什么品种好| 亚洲国产欧美网| 国产一区二区 视频在线| www.精华液| 国产精品一区二区免费欧美 | 亚洲精品av麻豆狂野| 午夜福利影视在线免费观看| 啦啦啦在线免费观看视频4| 久久午夜综合久久蜜桃| 69精品国产乱码久久久| 免费在线观看黄色视频的| 一本色道久久久久久精品综合| 免费在线观看日本一区| 好男人电影高清在线观看| 国产淫语在线视频| 女人被躁到高潮嗷嗷叫费观| 亚洲国产欧美日韩在线播放| 亚洲精品国产av蜜桃| 亚洲国产精品国产精品| 两个人免费观看高清视频| 国产精品一区二区在线观看99| 青草久久国产| 国产成人影院久久av| 精品免费久久久久久久清纯 | 亚洲国产精品999| 一级,二级,三级黄色视频| 又粗又硬又长又爽又黄的视频| 一区二区三区四区激情视频| 国产高清videossex| 激情五月婷婷亚洲| 国产亚洲午夜精品一区二区久久| 国产精品欧美亚洲77777| www.精华液| av一本久久久久| av又黄又爽大尺度在线免费看| 日本a在线网址| 午夜福利免费观看在线| 精品国产一区二区三区久久久樱花| 国产亚洲欧美在线一区二区| 性色av乱码一区二区三区2| 亚洲欧美一区二区三区黑人| 久久精品国产亚洲av涩爱| 99国产精品免费福利视频| 热99久久久久精品小说推荐| 另类亚洲欧美激情| 免费高清在线观看日韩| 美女大奶头黄色视频| 人体艺术视频欧美日本| 大陆偷拍与自拍| 狠狠婷婷综合久久久久久88av| 又大又爽又粗| 性少妇av在线| 校园人妻丝袜中文字幕| 少妇猛男粗大的猛烈进出视频| av网站在线播放免费| 国产熟女午夜一区二区三区| 亚洲国产av新网站| 日本猛色少妇xxxxx猛交久久| 9191精品国产免费久久| 国产一级毛片在线| 91字幕亚洲| 每晚都被弄得嗷嗷叫到高潮| 成年av动漫网址| 日本91视频免费播放| 精品人妻熟女毛片av久久网站| 亚洲色图 男人天堂 中文字幕| 一级毛片 在线播放| 99精品久久久久人妻精品| 国产熟女午夜一区二区三区| 亚洲欧美成人综合另类久久久| 精品一区二区三区四区五区乱码 | 精品久久久精品久久久| a 毛片基地| 亚洲欧美一区二区三区久久| 男男h啪啪无遮挡| 97人妻天天添夜夜摸| 国产亚洲一区二区精品| 欧美 日韩 精品 国产| 亚洲国产欧美日韩在线播放| 夜夜骑夜夜射夜夜干| 国产精品 欧美亚洲| 18在线观看网站| 亚洲av电影在线进入| 捣出白浆h1v1| 国产黄色免费在线视频| 熟女少妇亚洲综合色aaa.| 十分钟在线观看高清视频www| videosex国产| 国产免费又黄又爽又色| 亚洲精品日本国产第一区| 久久人人97超碰香蕉20202| 国产av国产精品国产| 国产高清videossex| 亚洲欧美清纯卡通| 91成人精品电影| 国产真人三级小视频在线观看| 亚洲国产精品国产精品| 777久久人妻少妇嫩草av网站| 美女国产高潮福利片在线看| 亚洲精品国产区一区二| 男人添女人高潮全过程视频| 亚洲人成77777在线视频| 最新的欧美精品一区二区| 国产精品亚洲av一区麻豆| 国语对白做爰xxxⅹ性视频网站| 亚洲精品久久成人aⅴ小说| 美女大奶头黄色视频| 国产成人91sexporn| 国产精品亚洲av一区麻豆| 国产精品亚洲av一区麻豆| 2018国产大陆天天弄谢| 91精品国产国语对白视频| 婷婷色综合www| 亚洲精品在线美女| 久久精品人人爽人人爽视色| 制服人妻中文乱码| 好男人电影高清在线观看| 中文字幕人妻丝袜制服| 在线av久久热| 一级毛片女人18水好多 | 麻豆乱淫一区二区| 婷婷色综合www| 欧美性长视频在线观看| 国产无遮挡羞羞视频在线观看| 中文字幕亚洲精品专区| 国产一级毛片在线| 一级黄片播放器| 午夜免费成人在线视频| 免费黄频网站在线观看国产| 欧美日本中文国产一区发布| 亚洲精品国产一区二区精华液| 久久久久久免费高清国产稀缺| 91精品三级在线观看| 久久人妻熟女aⅴ| 国产女主播在线喷水免费视频网站| 日韩大码丰满熟妇| 后天国语完整版免费观看| 别揉我奶头~嗯~啊~动态视频 | 最黄视频免费看| 如日韩欧美国产精品一区二区三区| 女警被强在线播放| 2018国产大陆天天弄谢| 中文字幕av电影在线播放| a 毛片基地| 日韩视频在线欧美| 日韩人妻精品一区2区三区| svipshipincom国产片| 男人爽女人下面视频在线观看| 亚洲欧美精品综合一区二区三区| 激情视频va一区二区三区| 在线亚洲精品国产二区图片欧美| 日本欧美视频一区| 99re6热这里在线精品视频| 久久99精品国语久久久| 丰满人妻熟妇乱又伦精品不卡| 久久精品久久精品一区二区三区| 我要看黄色一级片免费的| 亚洲欧美一区二区三区国产| 精品亚洲成a人片在线观看| 啦啦啦 在线观看视频| 91国产中文字幕| 激情五月婷婷亚洲| 日韩 亚洲 欧美在线| 久久久久久久大尺度免费视频| 久久人人97超碰香蕉20202| 巨乳人妻的诱惑在线观看| 日本黄色日本黄色录像| 制服诱惑二区| 久久国产精品人妻蜜桃| 国产精品一区二区精品视频观看| 性色av一级| 久久人人97超碰香蕉20202| kizo精华| 亚洲国产精品一区二区三区在线| 亚洲国产av影院在线观看| 日韩免费高清中文字幕av| 人妻一区二区av| 狂野欧美激情性xxxx| 美女视频免费永久观看网站| 亚洲人成电影观看| 精品高清国产在线一区| 晚上一个人看的免费电影| 国产精品麻豆人妻色哟哟久久| 男人添女人高潮全过程视频| 宅男免费午夜| 国产精品一区二区在线观看99| 日韩av不卡免费在线播放| 夫妻午夜视频| 国产在线一区二区三区精| 大话2 男鬼变身卡| 可以免费在线观看a视频的电影网站| 伦理电影免费视频| 久久精品国产综合久久久| 老司机影院成人| 欧美av亚洲av综合av国产av| 精品国产一区二区三区久久久樱花| 亚洲成国产人片在线观看| 亚洲欧美一区二区三区国产| 亚洲精品一二三| 99精国产麻豆久久婷婷| 色精品久久人妻99蜜桃| bbb黄色大片| 人人澡人人妻人| 国产日韩欧美视频二区| 另类亚洲欧美激情| 中文字幕人妻熟女乱码| 亚洲国产日韩一区二区| 亚洲第一青青草原| 99re6热这里在线精品视频| 久久天躁狠狠躁夜夜2o2o | 免费一级毛片在线播放高清视频 | 又黄又粗又硬又大视频| 久久久久网色| 波多野结衣av一区二区av| 一级毛片黄色毛片免费观看视频| 在线观看免费高清a一片| 欧美黄色片欧美黄色片| 国产麻豆69| 天天躁日日躁夜夜躁夜夜| 丝袜在线中文字幕| 国产xxxxx性猛交| 看免费成人av毛片| 成人亚洲欧美一区二区av| 别揉我奶头~嗯~啊~动态视频 | 美女扒开内裤让男人捅视频| av天堂久久9| 丰满少妇做爰视频| 国产高清视频在线播放一区 | tube8黄色片| 欧美激情极品国产一区二区三区| 国产成人精品久久二区二区91| 首页视频小说图片口味搜索 | 国产亚洲av片在线观看秒播厂| 亚洲,欧美精品.| 午夜av观看不卡| 看免费av毛片| 咕卡用的链子| 国产片特级美女逼逼视频| 女人高潮潮喷娇喘18禁视频| 黄色一级大片看看| 女警被强在线播放| 中文字幕av电影在线播放| 亚洲欧美一区二区三区久久| 午夜福利视频精品| 国产99久久九九免费精品| 日本av手机在线免费观看| 好男人视频免费观看在线| 久久国产精品影院| 在线亚洲精品国产二区图片欧美| 丝袜喷水一区| 成年人免费黄色播放视频| a级毛片在线看网站| 桃花免费在线播放| 久久精品久久精品一区二区三区| 最近手机中文字幕大全| 黄网站色视频无遮挡免费观看| 纯流量卡能插随身wifi吗| 午夜免费成人在线视频| 免费少妇av软件| 尾随美女入室| 女性生殖器流出的白浆| 亚洲色图 男人天堂 中文字幕| 亚洲国产精品一区三区| 国产精品一区二区精品视频观看| 国产免费又黄又爽又色| 黄色视频不卡| 两性夫妻黄色片| 男男h啪啪无遮挡| 精品亚洲成国产av| 又大又爽又粗| av天堂久久9| 亚洲熟女毛片儿| 青春草视频在线免费观看| 欧美日韩综合久久久久久| 青草久久国产| 91老司机精品| 亚洲精品一区蜜桃| 一级毛片 在线播放| 久久精品久久久久久久性| 国产男女超爽视频在线观看| 久久这里只有精品19| 午夜91福利影院| 嫩草影视91久久| 亚洲人成77777在线视频| 视频区图区小说| 91精品伊人久久大香线蕉| 久久久精品免费免费高清| 国产国语露脸激情在线看| 亚洲欧美清纯卡通| av在线老鸭窝| 精品久久久久久久毛片微露脸 | 国产在线一区二区三区精| 久久女婷五月综合色啪小说| 中国国产av一级| 91成人精品电影| 亚洲av欧美aⅴ国产| 777米奇影视久久| 最近手机中文字幕大全| 嫩草影视91久久| 肉色欧美久久久久久久蜜桃| 久久久久国产一级毛片高清牌| 国产亚洲av高清不卡| 精品国产一区二区三区久久久樱花| 黑人猛操日本美女一级片| 欧美日韩黄片免| 久久av网站| 成年人黄色毛片网站| 两个人看的免费小视频| 飞空精品影院首页| 99国产精品免费福利视频| 日韩制服骚丝袜av| 亚洲熟女毛片儿| 久久精品亚洲av国产电影网| 欧美日韩亚洲高清精品| 亚洲欧洲国产日韩| 一个人免费看片子| 欧美黄色淫秽网站| 性色av一级| 国产一卡二卡三卡精品| 日韩av不卡免费在线播放| 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 亚洲人成网站在线观看播放| 成人黄色视频免费在线看| 欧美 亚洲 国产 日韩一| 久久精品国产亚洲av高清一级| 999久久久国产精品视频| 亚洲精品一区蜜桃| 亚洲人成网站在线观看播放| av网站免费在线观看视频| 黄色怎么调成土黄色| 97在线人人人人妻| av视频免费观看在线观看| 波多野结衣一区麻豆| 最近手机中文字幕大全| 少妇被粗大的猛进出69影院| 日韩一卡2卡3卡4卡2021年| av不卡在线播放| 亚洲国产精品国产精品| 黄频高清免费视频| 制服诱惑二区| 热re99久久国产66热| 妹子高潮喷水视频| 少妇裸体淫交视频免费看高清 | 性高湖久久久久久久久免费观看| 成人国语在线视频| 久久久久久久大尺度免费视频| 亚洲欧洲国产日韩| 日本欧美视频一区| 狂野欧美激情性xxxx| 久久久久久久国产电影| 国产亚洲精品久久久久5区| 日本猛色少妇xxxxx猛交久久| 狂野欧美激情性bbbbbb| 国产av一区二区精品久久| 亚洲美女黄色视频免费看| 一级毛片我不卡| 亚洲成人国产一区在线观看 | 国产野战对白在线观看| 日韩人妻精品一区2区三区| 久久青草综合色| 老熟女久久久| 成年美女黄网站色视频大全免费| 欧美中文综合在线视频| 亚洲精品美女久久av网站| 欧美日本中文国产一区发布| 成人三级做爰电影| 国产精品麻豆人妻色哟哟久久| 性少妇av在线| 国产爽快片一区二区三区| 1024视频免费在线观看| 亚洲精品久久午夜乱码| 日本91视频免费播放| 大香蕉久久成人网| 色播在线永久视频| 亚洲第一青青草原| xxx大片免费视频| 热re99久久精品国产66热6| 成在线人永久免费视频| 色视频在线一区二区三区| 日韩欧美一区视频在线观看| 国产精品国产三级专区第一集| 不卡av一区二区三区| 岛国毛片在线播放| 成人影院久久| 午夜影院在线不卡| 人成视频在线观看免费观看| 亚洲精品乱久久久久久| 天堂俺去俺来也www色官网| 国产福利在线免费观看视频| 国精品久久久久久国模美| 国产淫语在线视频| 中文精品一卡2卡3卡4更新| 国产又色又爽无遮挡免| 日本猛色少妇xxxxx猛交久久| 高清视频免费观看一区二区| 亚洲av片天天在线观看| 叶爱在线成人免费视频播放| 又紧又爽又黄一区二区| 亚洲人成电影免费在线| 18禁观看日本| 精品国产乱码久久久久久小说| 丝袜脚勾引网站| 大香蕉久久网| av网站在线播放免费| 亚洲国产精品国产精品| 国产精品国产三级专区第一集| 天天躁日日躁夜夜躁夜夜| 久久精品国产亚洲av涩爱| 亚洲欧洲精品一区二区精品久久久| 男人添女人高潮全过程视频| √禁漫天堂资源中文www| 在线精品无人区一区二区三| 婷婷色综合www| 日韩大码丰满熟妇| 亚洲国产精品国产精品| 男女高潮啪啪啪动态图| 视频区欧美日本亚洲| 99九九在线精品视频| 老司机影院毛片| 亚洲精品av麻豆狂野| 国产在线观看jvid| 一区在线观看完整版| 一级a爱视频在线免费观看| 丝袜美腿诱惑在线| 国产免费视频播放在线视频| avwww免费| 日本猛色少妇xxxxx猛交久久| 日韩视频在线欧美| 国产成人啪精品午夜网站| 欧美日本中文国产一区发布| 精品少妇久久久久久888优播| 欧美在线黄色| 国产一区二区三区av在线| 国产精品99久久99久久久不卡| 国产高清不卡午夜福利| 午夜免费鲁丝| tube8黄色片| 麻豆国产av国片精品| 免费在线观看影片大全网站 | 国产日韩一区二区三区精品不卡| 国产又色又爽无遮挡免| 精品一区在线观看国产| 久久国产精品男人的天堂亚洲| 免费观看a级毛片全部| 久久久久国产精品人妻一区二区| 你懂的网址亚洲精品在线观看| 亚洲中文日韩欧美视频| 捣出白浆h1v1| 国产片内射在线| 久久精品aⅴ一区二区三区四区| 制服人妻中文乱码| 叶爱在线成人免费视频播放| 日本欧美国产在线视频| 成年美女黄网站色视频大全免费| 人妻人人澡人人爽人人| 久久久国产精品麻豆| 黄片播放在线免费| 宅男免费午夜| 久久ye,这里只有精品| 亚洲欧美色中文字幕在线| 操美女的视频在线观看| 亚洲伊人色综图| e午夜精品久久久久久久| 国产真人三级小视频在线观看| 久久99热这里只频精品6学生| 大陆偷拍与自拍| av不卡在线播放| 纵有疾风起免费观看全集完整版| 日韩免费高清中文字幕av| 亚洲人成77777在线视频| 免费一级毛片在线播放高清视频 | 午夜免费鲁丝| 老司机影院毛片| 一边摸一边抽搐一进一出视频| 亚洲黑人精品在线| 国产亚洲av高清不卡| 色精品久久人妻99蜜桃| 下体分泌物呈黄色| 美女大奶头黄色视频| 精品福利观看| 欧美精品一区二区大全| 久久久久网色| 亚洲国产精品一区二区三区在线| 国产精品久久久久成人av| 男女之事视频高清在线观看 | 美女视频免费永久观看网站| 国产精品人妻久久久影院| 19禁男女啪啪无遮挡网站| 黄色视频在线播放观看不卡| 日韩一卡2卡3卡4卡2021年| 免费在线观看完整版高清| 91九色精品人成在线观看| 日本a在线网址| 一级a爱视频在线免费观看| 国产黄色免费在线视频| 一级a爱视频在线免费观看| 男女边摸边吃奶| 国产亚洲av高清不卡| 国产精品偷伦视频观看了| 亚洲成人免费电影在线观看 | 亚洲成人手机| 美女脱内裤让男人舔精品视频| 老司机影院成人| 日韩人妻精品一区2区三区| 建设人人有责人人尽责人人享有的| 制服诱惑二区| 三上悠亚av全集在线观看| 国产国语露脸激情在线看| 好男人电影高清在线观看| 女警被强在线播放| 国产欧美日韩一区二区三区在线| 亚洲av成人精品一二三区| av在线app专区| 91麻豆av在线| 国产主播在线观看一区二区 | av欧美777| 国产99久久九九免费精品| 色精品久久人妻99蜜桃| 免费黄频网站在线观看国产| 一区二区三区四区激情视频| 免费看十八禁软件| 搡老岳熟女国产| 我的亚洲天堂| 最近中文字幕2019免费版| 下体分泌物呈黄色| 亚洲精品久久久久久婷婷小说| 亚洲精品中文字幕在线视频|