• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bird Swarm Algorithm with Fuzzy Min-Max Neural Network for Financial Crisis Prediction

    2022-11-10 02:31:36PradeepMohanKumarDhanasekaranHephziPunithavathiDuraipandyAshitKumarDuttaIrinaPustokhinaandDenisPustokhin
    Computers Materials&Continua 2022年10期

    K.Pradeep Mohan Kumar,S.Dhanasekaran,I.S.Hephzi Punithavathi,P.Duraipandy,Ashit Kumar Dutta,Irina V.Pustokhinaand Denis A.Pustokhin

    1Department of Computing Technologies,Associate Professor,SRM Institute of Science and Technology,Kattankulathur,603203,India

    2Department of Information Technology,Kalasalingam Academy of Research and Education,626126,India

    3Department of Computer Science and Engineering,Sphoorthy Engineering College,Hyderabad,Telangana,501510,India

    4Department of Electrical and Electronics Engineering,J B Institute of Engineering and Technology,Hyderabad,Telangana,500075,India

    5Department of Computer Science and Information System,College of Applied Sciences,AlMaarefa University,Riyadh,11597,Kingdom of Saudi Arabia

    6Department of Entrepreneurship and Logistics,Plekhanov Russian University of Economics,117997,Moscow,Russia

    7Department of Logistics,State University of Management,109542,Moscow,Russia

    Abstract:Financial crisis prediction (FCP) models are used for predicting or forecasting the financial status of a company or financial firm.It is considered a challenging issue in the financial sector.Statistical and machine learning (ML) models can be employed for the design of accurate FCP models.Though numerous works have existed in the literature,it is needed to design effective FCP models adaptable to different datasets.This study designs a new bird swarm algorithm (BSA) with fuzzy min-max neural network(FMM-NN) model,named BSA-FMMNN for FCP.The major intention of the BSA-FMMNN model is to determine the financial status of a firm or company.The presented BSA-FMMNN model primarily undergoes minmax normalization to transform the data into uniformity range.Besides,k-medoid clustering approach is employed for the outlier removal process.Finally,the classification process is carried out using the FMMNN model,and the parameters involved in it are tuned by the use of BSA.The utilization of proficient parameter selection process using BSA demonstrate the novelty of the study.The experimental result analysis of the BSA-FMMNN model is validated using benchmark dataset and the comparative outcomes highlighted the supremacy of the BSA-FMMNN model over the recent approaches.

    Keywords:Financial crisis;predictive model;machine learning;outlier removal;clustering;metaheuristics

    1 Introduction

    The financial community,management organizations,and lending organizations are longing to build a theoretical framework or an instrument that would assist in examining the possibility of current avoidance;that is to predict when a business succeeds or fail within a required time[1].Notwithstanding,avoidance activity works in a stochastic manner,financial data produced is utilized for developing or constructing financial crisis prediction(FCP)system.For instance,it is stated that employing the different variance piece of information methods,discriminative study for classifying bankrupt corporations and funds by working financial data[2].Financial distress arises because of corrupting responsibility along with insolvent rankings of credit-based assets[3].Notwithstanding circumvention practice has been employed applied,financial crises guiding the operation FCP method using maximal priority[4].At the same time,Wang and his co-workers suggested that there are no theories or typical stereotypes that arise for a company’s FCP method.The absence of theories or stereotypes to investigate financial distress for investigative activity for the documentation of extrapolation replicas and discriminative potentials applying error and trial[5].Researchers and professionals have been attempted to enhance the performance of FCP theoretical stereotypes by the application of distinct quantifiable replicas.

    The procedure of FCP is extremely required for demonstrating an early,trustworthy,and accurate prediction method to forecast the important risk of the company’s economic condition[6].Generally,The FCP is taken into account as the binary classification method that is solved in reasonable way.The outcomes of the classification method undertake classification into two types such as failing and non-failing conditions of an organization[7].Now,various classification methods were introduced by using distinct areas of interest for FCP.machine learning(ML),and Statistics-based methods are widely employed for finding the significant factor of the FCP.In the field of FCP,the ML model is employed in different ways[8].It is utilized for the structure procedure to validate the methods for the recognition of financial crises.The key assumption is that the financial parameter extracting in the open-accessing financial stamen such as financial ratio includes huge number of information connecting the financial detail and is useful for the FCP method[9].The FCP is a difficult method for utilizing the connected economic detail and other data regarding the company strategy affordability for active information for constructing a new method.As well as the AI and dataset concept,data mining technique is commonly employed in different fields.In FCP,data mining method is widely accessible in two different ways such as decision-making and early warning systems.It is useful to take appropriate measures for eliminating the financial loss of the organization[10].

    This study designs a new bird swarm algorithm (BSA) with fuzzy min-max neural network(FMM-NN)model,named BSA-FMMNN for FCP.The presented BSA-FMMNN model primarily undergoes min-max normalization to transform the data into uniformity range.In addition,k-mediod clustering approach is employed for the outlier removal process.Also,the classification process is carried out using the FMMNN model and the parameters involved in it are tuned by the use of BSA.The experimental result analysis of the BSA-FMMNN model is validated using benchmark dataset.

    2 Related Works

    Junyu[11]employed the information on credit default using an overall sample of 1,000 comprising Germany credit default record and private data.Random forest,XGboost,and Logistic regression have been employed for discovering helpful data behindhand this information.Faris et al.[12]presented a hybrid model which integrates the synthetic minority oversampling method using ensemble models.Furthermore,we applied 5 distinct FS techniques for finding the important characteristics of bankruptcy calculation.The presented method is estimated according to real data gathered from Spanish company.Shetty et al.[13]applied different ML approaches for predicting bankruptcy with simply attainable financial statistics of 3728 Belgian Small and Medium Enterprises(SME)in 2002-2012.With the abovementioned ML approaches,we predicted bankruptcy using a total precision of 82%-83%with three simply attainable financial ratios.

    Kim et al.[14]investigated that corporate bankruptcy prediction is enhanced by using the recurrent neural network(RNN)and long short term memory(LSTM)approaches that could process consecutive information.Applying the LSTM and RNN methods enhances bankruptcy predictive efficiency related to other classifier methods including techniques.The authors in[15]developed a DL-based method.This technique integrates Stacked AutoEncoder(SAE)and Borderline Synthetic Minority oversampling approach (BSM) depending upon the Softmax classification.The goal is to propose a reliable and accurate bankruptcy predictive system that involves the feature extraction method.Chen et al.[16]address bankruptcy predictive issue from the perception of learning with label proportion,whereas the unlabelled trained information is given in various bags and gives the bag-level proportion of instance belongs to a certain class.Next,contributed support vector machine (SVM)enabled two predictive systems named Boosted-pSVM and Bagged-pSVM,depending on proportion SVM and ensemble strategy includes boosting and bagging.Muneer et al.[17]introduced a multiobjective squirrel search optimization method using stacked autoencoder(MOSSA-SAE)for FCP in IoT.The aim is to describe the region of nearest neighbors and oversampling rate.Moreover,SAE method is employed as a classifier method for determining the class label of financial information.Simultaneously,the presented approach has been employed for properly selecting the ‘weight’and‘bias’values of the SAE.

    3 The Proposed Model

    This study has developed a new BSA-FMMNN model is to determine the financial status of a firm or company.The presented BSA-FMMNN model involves several subprocesses namely preprocessing,k-medoid clustering based outlier removal,FMMNN based classification,and BSA based parameter optimization.The utilization of proficient parameter selection process using BSA helps to accomplish maximum performance.Fig.1 illustrates the working process of BSA-FMMNN technique.

    3.1 Pre-processing

    To design a proper and effective learning model,it is needed to primarily normalize the input data.In this work,min-max normalization approach is employed as defined in the following.

    3.2 K-medoid Clustering Based Outlier Removal

    The K-medoid clustering is a statistical technique,used for the removal of outliers existing in the financial data[18].The traditional K-means technique computes and exploits the mean value of the data points in computation,specifically sensible to the existence of outliers in the financial data.For resolving these issues,a concept of medoid is utilized rather than the mean values in the cluster.Though k-Medoid approach exhibits high computation complexity,the k-medoid clusters are insensitive to the existence of clusters.It can be employed on continuous as well as discrete data domains.It reduces the total of the dissimilarity among the objects that exist in the cluster with the reference objects chosen for the clusters.In general,the input provided is thekvalue which denotes total cluster count involved in the data.For every individualkclusters,kreference points can be chosen.The rest of the points can be grouped into a cluster of reference points thereby the total dissimilarity among the reference objects and points in the cluster can be reduced.By the use of various initial medoids chosen,the clusters can be distinct.The variation among the K-means and K-medoid techniques is that the k-Means considered the mean value in a cluster to be a reference point and k-Medoids considered the points as reference objects for clusters.

    Figure 1:Working of BSA-FMMNN model

    3.3 Data Classification Using FMMNN Model

    For classification process,the FMMNN model can be employed for data classification.The FMM network contains 3 states of nodes such asFArefers the input state,FBsignifies the hidden state,andFCrepresents the output state[19].An input and output states comprise nodes equivalent from number to the amount of dimensional of the input pattern and the amount of target classes correspondingly.The hidden state is recognized as hyperbox state,which comprises nodes which are generated incrementally.All theFBnodes signify a hyperbox fuzzy set(HFS).FAtoFBconnection comprises the minimal and maximal points of hyperboxes,referred to as matricesVandWcorrespondingly.FBandFClinking are binary values,and are saved from matrixU.Eq.(2)has been utilized for assigning the values amongstFBandFCconnection,for instance,

    wherebjrefers thejthnodes andCkiskthnode.All theFCnodes signify the class.The outcome ofFCnode signifies the degree to thaththinput pattern,Ah=(ah1,ah2,...,ahn)∈In,fits in the classk.The transfer function to allFCnodes carry out the fuzzy union of suitable HFS value and has determined as:

    where the membership function (MF) tojthhyperbox,bj(Ah),0 ≤bj(Ah)≤ 1,has utilized for measuring the extents to thaththinput pattern,Ah,decreases outside hyperboxBj.The resultant of theFCclass nodes are utilized from 2 distinct approaches.During the analysis of soft decisions,the resultants were utilized directly.During the case of hard decision,theFCnode with maximum value are selected,and their node value has set to 1 for indicating that it can be neighboring pattern class,but otherFCnode value is fixed to 0,for instance,the rule of winner- takes-all.The HFSs was the essential element of FMM networks.The parameter called expansion co-efficient,θ?[0,1]has been utilized for controlling the hyperbox size.The smaller value ofθcauses to formation of huge amount of hyperboxes,and conversely.In order tondimensional input pattern,unit cube,Inhas determined,and the explanation of all the HFSsBjis:

    whereVj=(vj1,vj2,.....,vjn)refers to the minimal point ofBjandWj=(wj1,wj2,....,wjn)signifies the maximal point ofBj.Fundamentally,the MF has calculated interms of the minimal and maximal points of hyperbox,and for extending to that the input pattern fits as to the hyperbox.The integrated fuzzy set classifications thekthpattern class,Ck,is:

    whereKimplies the group of hyperboxes connected to classk.The FMM trained model was concentrated on establishing and fine-tune the class boundary.In FMM,hyperboxes in a similar class were allowable for overlapping one another.But,the overlapped region of hyperboxes in various classes requires that removed.The MF tojthhyperbox,bj(Ah),has been utilized for measuring the extent all components of input patterns are superior(or lesser)than the maximal(or minimal)point along all dimensions which decreases outside the minimal and maximal boundaries of hyperbox.Whilebj(Ah)develops quicker than 1,the point has said that“more”controlled from the respective hyperbox.The MF condition is the sum of 2 complements,namely,the average of maximal and minimal point violations.The resultant MF is:

    whereγrefers the sensitivity parameter which controls the speed the connection value reduces if the distance amongstAhandBjimproves.Fig.2 depicts the framework of FMMNN technique.

    3.4 Parameter Tuning Using BSA

    In order to tune the parameter values involved in the FMMNN model,the BSA can be employed.The BSA is a biological heuristic technique simulated in bird foraging,vigilance,and flight performance naturally[20].

    Foraging behavior:All the birds feed food on the fundamental of personal experiences or group experiences.When the arbitrary number is uniformly distributed amongst zero and one,afterward the bird is foraging for food.Then,the bird is vigilant.As demonstrated by Eq.(7):

    Vigilance behavior:The birds are attempt for moving to center of groups,and it is inevitably competing with everyone.Their performance is explained by the subsequent equations:

    wherek(ki)indicates the positive integer that is arbitrarily chosen amongst 1 and N.a1anda2refers the 2 positive constants from zero and two.sumFit signifies the sum of swarm’s optimum fitness values.pFitjindicates theithbird’s optimum fitness value.Erepresents the minimum constant from the computer,for avoiding zero-division error.meanjstands for the component of average places of the entire bird’s swarm.

    Figure 2:Structure of FMMNN model

    Flight behavior:Because of the threat of predators or other reasons,birds are flying to another location for searching for food.In several birds performing as producers,however the other need for getting food from producer.Based on Rule(4),the performance of producers and scroungers are explained in mathematical process that is as follows:

    whererandn(0,1)refers the arbitrary number of Gaussian distributions as 0,the standard deviation is 1.k(ki).FL∈(0,2)implies the scrounger is followed that producer for finding food.It can be supposing the flight frequency is FQ,Where FQ has a positive integer.The BSA is applied to tune the parameters contained in the FMMNN model.The BSA derives an objective function with the minimization of classification error rate.

    4 Performance Validation

    This section inspects the performance validation of the proposed model against three benchmark datasets such as qualitative,Polish,and Weislaw datasets (available at https://archive.ics.uci.edu/ml/datasets.php).

    Tab.1 reports the FCP outcomes of the BSA-FMMNN technique with recent techniques on Qualitative Bankruptcy dataset[21].Fig.3 depicts thesensyandspecyinspection of the BSA-FMMNN technique with existing techniques on qualitative bankruptcy dataset.The results indicated that the ant colony optimization (AC)-FCP and OlexG algorithms have obtained lower values ofsensyandspecy.At the same time,the FSC-Genetic ACO and Genetic ACO algorithms have obtained slightly increased values ofsensyandspecy.Along with that,the Optimal SAE,ACO-FCP,and IKMFSCGA methods have reached reasonably closer values ofsensyandspecy.However,the BSA-FMMNN technique has accomplished improvedsensyandspecyvalues of 99.960%and 99.985%respectively.

    Table 1:FCP Results Investigation of BSA-FMMNN model on Qualitative Bankruptcy Dataset

    Table 1:Continued

    Figure 3:Comparative sensy and specy analysis of BSA-FMMNN model on qualitative dataset

    Fig.4 portrays theaccuy,FscoreandMCCexamination of the BSA-FMMNN technique with recent techniques on qualitative bankruptcy dataset.The experimental results denoted that the ACo-FCP and OlexG algorithms have obtained lower values ofaccuy,FscoreandMCC.In line with,the FSCGenetic ACO and Genetic ACO algorithms reached somewhat improved values ofaccuy,FscoreandMCC.Besides,the Optimal SAE,ACO-FCP,and IKMFSC-GA methods have reached sensibly closer values ofaccuy,FscoreandMCC.But the BSA-FMMNN technique has resulted in betteraccuy,FscoreandMCCvalues of 99.964%,99.962%,and 99.420%respectively.

    Fig.5 demonstrates the accuracy inspection of the BSA-FMMNN model on the qualitative bankruptcy dataset.The results reported that the BSA-FMMNN model has the ability to obtain improved values of training and validation accuracies.It is observable that the validation accuracy values are slightly higher than training accuracy.

    A brief training and validation loss offered by the BSA-FMMNN model are reported in Fig.6 on the test qualitative dataset.The results portrayed that the BSA-FMMNN model has accomplished least values of training and validation losses on qualitative dataset.

    Figure 4:Comparative accuy,Fscore and MCC analysis of BSA-FMMNN model on qualitative dataset

    Figure 5:Accuracy graph of BSA-FMMNN model on qualitative dataset

    Figure 6:Loss graph of BSA-FMMNN model on qualitative dataset

    Tab.2 highlights the comparative study of the BSA-FMMNN technique on Polish dataset.Fig.7 depicts thesensyandspecyassessment of the BSA-FMMNN technique with existing techniques on Polish bankruptcy dataset.The table values demonstrated that the ACo-FCP and OlexG algorithms have obtained lower values ofsensyandspecy.Additionally,the FSC-Genetic ACO and Genetic ACO algorithms have reached certainly enhanced values ofsensyandspecy.Moreover,the Optimal SAE,ACO-FCP,and IKMFSC-GA methods have reached considerably increased values ofsensyandspecy.But the BSA-FMMNN technique has outperformed other methods with maximumsensyandspecyvalues of 99.216%and 99.954%respectively.

    Table 2:FCP results investigation of BSA-FMMNN model on Polish dataset

    Figure 7:Comparative sensy and specy analysis of BSA-FMMNN model on polish dataset

    Fig.8 reveals theaccuy,FscoreandMCCanalysis of the BSA-FMMNN technique with recent techniques on Polish bankruptcy dataset.The results indicated that the ACo-FCP and OlexG algorithms have obtained lower values ofaccuy,FscoreandMCC.Followed by,the FSC-Genetic ACO and Genetic ACO algorithms reached somewhat improved values ofaccuy,FscoreandMCC.In line with,the Optimal SAE,ACO-FCP,and IKMFSC-GA methods have reached sensibly closer values ofaccuy,FscoreandMCC.But the BSA-FMMNN technique has resulted in betteraccuy,FscoreandMCCvalues of 99.182%,99.075%,and 98.895%respectively.

    Figure 8:Comparative accuy,Fscore and MCC analysis of BSA-FMMNN model on polish dataset

    Fig.9 validates the accuracy assessment of the BSA-FMMNN model on the Polish bankruptcy dataset.The results described that the BSA-FMMNN model has the aptitude of gaining improved values of training and validation accuracies.It is visible that the validation accuracy values are slightly higher than training accuracy.

    Figure 9:Accuracy graph of BSA-FMMNN model on polish dataset

    Figure 10:Loss graph of BSA-FMMNN model on polish dataset

    A brief training and validation loss offered by the BSA-FMMNN model are reported in Fig.10 on the test Polish dataset.The results revealed that the BSA-FMMNN model has accomplished minimum values of training and validation losses on Polish dataset.

    Fig.11 represents thesensyandspecyvaluation of the BSA-FMMNN technique with existing techniques on Weislaw bankruptcy dataset.The table values established that the ACo-FCP and OlexG algorithms have gained lower values ofsensyandspecy.Furthermore,the FSC-Genetic ACO and Genetic ACO algorithms have gotten certainly boosted values ofsensyandspecy.Also,the Optimal SAE,ACO-FCP,and IKMFSC-GA methods have extended to noticeably better values ofsensyandspecy.But the BSA-FMMNN technique has outdone other methods with supremesensyandspecyvalues of 99.146%and 99.563%respectively.

    Figure 11:Comparative sensy and specy analysis of BSA-FMMNN model on weislaw dataset

    Fig.12 exposes theaccuy,FscoreandMCCanalysis of the BSA-FMMNN technique with recent techniques on Weislaw bankruptcy dataset.The results designated that the ACo-FCP and OlexG algorithms have obtained lower values ofaccuy,FscoreandMCC.After that,the FSC-Genetic ACO and Genetic ACO algorithms reached slightly enhanced values ofaccuy,FscoreandMCC.In line with,the Optimal SAE,ACO-FCP,and IKMFSC-GA methods have reached sensibly closer values ofaccuy,FscoreandMCC.But the BSA-FMMNN technique has resulted in superioraccuy,FscoreandMCCvalues of 99.313%,99.025%,and 98.722%respectively.

    Figure 12:Comparative accuy,Fscore and MCC analysis of BSA-FMMNN model on weislaw dataset

    Fig.13 demonstrates the accuracy inspection of the BSA-FMMNN model on the Weislaw dataset.The results reported that the BSA-FMMNN model has the ability to obtain improved values of training and validation accuracies.It is observable that the validation accuracy values are slightly higher than training accuracy.

    Figure 13:Accuracy graph of BSA-FMMNN model on weislaw dataset

    A brief training and validation loss offered by the BSA-FMMNN model are reported in Fig.14 on the Weislaw dataset.The results portrayed that the BSA-FMMNN model has accomplished least values of training and validation losses on Weislaw dataset.The above mentioned results ensured the supremacy of the BSA-FMMNN model over the recent models.

    Figure 14:Loss graph of BSA-FMMNN model on weislaw dataset

    5 Conclusion

    This study has developed a new BSA-FMMNN model is to determine the financial status of a firm or company.The presented BSA-FMMNN model involves several subprocesses namely preprocessing,k-medoid clustering based outlier removal,FMMNN based classification,and BSA based parameter optimization.The classification process is carried out using the FMMNN model and the parameters involved in it are tuned by the use of BSA.The utilization of proficient parameter selection process using BSA helps to accomplish maximum performance.The experimental result analysis of the BSAFMMNN model is validated using benchmark dataset and the comparative outcomes highlighted the supremacy of the BSA-FMMNN model over the recent approaches.In future,metaheuristics based feature selection models can be developed for improving the classification performance of the FMMNN model.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    一本综合久久免费| 精品一区二区三区av网在线观看 | 久久亚洲国产成人精品v| 亚洲男人天堂网一区| 亚洲七黄色美女视频| 成年人黄色毛片网站| 在线av久久热| 午夜福利影视在线免费观看| 亚洲国产欧美日韩在线播放| 国产一卡二卡三卡精品| 丝袜人妻中文字幕| 午夜久久久在线观看| 精品久久久精品久久久| av天堂在线播放| 捣出白浆h1v1| 一区在线观看完整版| av一本久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久人人做人人爽| 黄色视频,在线免费观看| 中文欧美无线码| 欧美中文综合在线视频| 久久久久国产精品人妻一区二区| 欧美午夜高清在线| 国产精品 国内视频| 视频区图区小说| 久久久精品94久久精品| 久久国产精品影院| avwww免费| 免费女性裸体啪啪无遮挡网站| 女警被强在线播放| 9191精品国产免费久久| 久久久久久久国产电影| 91成年电影在线观看| 麻豆国产av国片精品| 国产日韩一区二区三区精品不卡| 天堂俺去俺来也www色官网| 午夜福利乱码中文字幕| 免费看十八禁软件| 青春草亚洲视频在线观看| 国产精品免费视频内射| 国产精品香港三级国产av潘金莲| 最近最新中文字幕大全免费视频| 欧美另类一区| 国产精品国产三级国产专区5o| 精品一品国产午夜福利视频| 国产伦人伦偷精品视频| 日本撒尿小便嘘嘘汇集6| 脱女人内裤的视频| 天天躁夜夜躁狠狠躁躁| 精品乱码久久久久久99久播| 嫁个100分男人电影在线观看| 夫妻午夜视频| 狂野欧美激情性bbbbbb| 91麻豆精品激情在线观看国产 | 亚洲精品国产区一区二| 久久久久精品人妻al黑| 日韩人妻精品一区2区三区| 精品国产乱码久久久久久小说| 日韩大码丰满熟妇| 精品国产超薄肉色丝袜足j| 精品国产国语对白av| 国产在视频线精品| 丝袜美足系列| 男人爽女人下面视频在线观看| 韩国高清视频一区二区三区| 午夜视频精品福利| 亚洲少妇的诱惑av| 另类亚洲欧美激情| 国产免费现黄频在线看| 亚洲国产欧美一区二区综合| 嫁个100分男人电影在线观看| 99久久国产精品久久久| 熟女少妇亚洲综合色aaa.| 日日爽夜夜爽网站| 欧美日韩av久久| 婷婷成人精品国产| 国产精品麻豆人妻色哟哟久久| 国产精品av久久久久免费| 国产麻豆69| 亚洲 欧美一区二区三区| 午夜视频精品福利| 免费观看人在逋| 首页视频小说图片口味搜索| 曰老女人黄片| 十八禁网站免费在线| 超色免费av| 伦理电影免费视频| 丰满饥渴人妻一区二区三| 精品乱码久久久久久99久播| 欧美精品一区二区免费开放| 国产成人免费无遮挡视频| 黄色 视频免费看| 久久久久精品人妻al黑| 老司机午夜十八禁免费视频| 国产精品熟女久久久久浪| 天天影视国产精品| 又大又爽又粗| 啦啦啦中文免费视频观看日本| 少妇粗大呻吟视频| 亚洲av美国av| 国产极品粉嫩免费观看在线| 国产在视频线精品| 国产精品国产av在线观看| 亚洲精品日韩在线中文字幕| 天堂8中文在线网| 不卡一级毛片| 日韩熟女老妇一区二区性免费视频| 女警被强在线播放| 99国产精品一区二区三区| 国产xxxxx性猛交| 亚洲一码二码三码区别大吗| 男女国产视频网站| 美女视频免费永久观看网站| 久久av网站| 青草久久国产| 真人做人爱边吃奶动态| 美女午夜性视频免费| 满18在线观看网站| 成人影院久久| 999精品在线视频| 亚洲精品国产精品久久久不卡| 国产欧美日韩综合在线一区二区| 99国产精品99久久久久| 国产成人系列免费观看| 在线看a的网站| 一级毛片电影观看| 丝袜在线中文字幕| 久久中文字幕一级| 欧美另类一区| 国产一级毛片在线| 日韩欧美免费精品| 一级毛片电影观看| 在线亚洲精品国产二区图片欧美| 欧美日韩中文字幕国产精品一区二区三区 | 精品一区二区三卡| 在线观看免费日韩欧美大片| 国产成人精品久久二区二区免费| av欧美777| 麻豆av在线久日| 久久热在线av| 欧美乱码精品一区二区三区| 国产精品久久久人人做人人爽| 青草久久国产| 一区二区三区乱码不卡18| 波多野结衣av一区二区av| 免费观看人在逋| 亚洲欧洲日产国产| 国产高清视频在线播放一区 | 夜夜骑夜夜射夜夜干| 国产在线观看jvid| 亚洲五月婷婷丁香| 大片免费播放器 马上看| av在线app专区| 久久精品国产亚洲av高清一级| 多毛熟女@视频| 日韩中文字幕欧美一区二区| 国产一区二区三区在线臀色熟女 | 美女高潮喷水抽搐中文字幕| 国产成人免费观看mmmm| 亚洲中文字幕日韩| 久久国产精品大桥未久av| 国产男人的电影天堂91| 婷婷色av中文字幕| 国产福利在线免费观看视频| 亚洲精品久久午夜乱码| 97在线人人人人妻| 亚洲精品久久久久久婷婷小说| 日日爽夜夜爽网站| 人妻 亚洲 视频| 亚洲黑人精品在线| 高潮久久久久久久久久久不卡| 99久久人妻综合| 国产精品av久久久久免费| 亚洲第一欧美日韩一区二区三区 | 嫩草影视91久久| 亚洲精品中文字幕一二三四区 | 热re99久久精品国产66热6| 国产精品九九99| 可以免费在线观看a视频的电影网站| 黄色视频在线播放观看不卡| 亚洲中文av在线| 久久久久国产一级毛片高清牌| 一级黄色大片毛片| 一区福利在线观看| 国产精品一区二区在线观看99| 永久免费av网站大全| 纵有疾风起免费观看全集完整版| 亚洲欧美成人综合另类久久久| 久久久久久久久免费视频了| 一边摸一边做爽爽视频免费| 自线自在国产av| 自拍欧美九色日韩亚洲蝌蚪91| 精品一区二区三区四区五区乱码| 国产99久久九九免费精品| 国产无遮挡羞羞视频在线观看| 欧美在线黄色| 丝袜美腿诱惑在线| tocl精华| av在线播放精品| 狠狠精品人妻久久久久久综合| 国产成人精品在线电影| 99久久精品国产亚洲精品| 亚洲国产欧美网| 成人国产一区最新在线观看| 国产在线免费精品| av福利片在线| 亚洲av成人一区二区三| 国产一级毛片在线| 午夜福利,免费看| 18在线观看网站| 中文字幕人妻熟女乱码| 啦啦啦在线免费观看视频4| 男人舔女人的私密视频| 国产精品国产av在线观看| 亚洲九九香蕉| tocl精华| 久久青草综合色| 亚洲精品在线美女| 另类亚洲欧美激情| 麻豆av在线久日| 亚洲精品乱久久久久久| 国产免费视频播放在线视频| 国产无遮挡羞羞视频在线观看| 欧美老熟妇乱子伦牲交| 69av精品久久久久久 | 亚洲熟女毛片儿| 女人高潮潮喷娇喘18禁视频| 国产在线免费精品| 99精品欧美一区二区三区四区| 十八禁人妻一区二区| 高清在线国产一区| 国产精品一区二区精品视频观看| 精品亚洲乱码少妇综合久久| 视频区欧美日本亚洲| 精品福利永久在线观看| 亚洲精品国产一区二区精华液| 国产成人免费无遮挡视频| 在线亚洲精品国产二区图片欧美| 日本精品一区二区三区蜜桃| 亚洲欧美一区二区三区黑人| 夜夜夜夜夜久久久久| 色视频在线一区二区三区| 国产一级毛片在线| 五月开心婷婷网| 狂野欧美激情性xxxx| 欧美激情久久久久久爽电影 | 黑人巨大精品欧美一区二区mp4| 欧美在线黄色| 狠狠狠狠99中文字幕| 亚洲avbb在线观看| 亚洲自偷自拍图片 自拍| 悠悠久久av| 精品人妻熟女毛片av久久网站| 男女边摸边吃奶| 日本av手机在线免费观看| 成年人午夜在线观看视频| tube8黄色片| 亚洲精华国产精华精| 熟女少妇亚洲综合色aaa.| 亚洲国产精品成人久久小说| 美女午夜性视频免费| 最近中文字幕2019免费版| 性少妇av在线| 亚洲精品久久成人aⅴ小说| 国产精品av久久久久免费| 亚洲免费av在线视频| 在线 av 中文字幕| 考比视频在线观看| 亚洲五月婷婷丁香| av一本久久久久| 久久久久久免费高清国产稀缺| 国产欧美日韩精品亚洲av| 久久精品久久久久久噜噜老黄| 精品少妇久久久久久888优播| 久久久久久久国产电影| 成人亚洲精品一区在线观看| 女人精品久久久久毛片| av不卡在线播放| 在线观看一区二区三区激情| 啪啪无遮挡十八禁网站| 国产精品 欧美亚洲| 国产亚洲一区二区精品| 91麻豆精品激情在线观看国产 | 狂野欧美激情性xxxx| 人人妻人人添人人爽欧美一区卜| 超碰成人久久| 成年动漫av网址| 最近最新中文字幕大全免费视频| 亚洲欧洲精品一区二区精品久久久| 国产亚洲av高清不卡| 在线精品无人区一区二区三| 欧美成狂野欧美在线观看| 亚洲精品久久午夜乱码| 韩国高清视频一区二区三区| 黄片小视频在线播放| 视频在线观看一区二区三区| 国产高清国产精品国产三级| 亚洲三区欧美一区| 国产精品.久久久| 国产精品亚洲av一区麻豆| 欧美人与性动交α欧美软件| 国产又爽黄色视频| 老司机影院毛片| av福利片在线| 青春草亚洲视频在线观看| 久久久久国产精品人妻一区二区| 国产老妇伦熟女老妇高清| 不卡一级毛片| 欧美 日韩 精品 国产| 岛国毛片在线播放| 两性夫妻黄色片| 天堂8中文在线网| 蜜桃国产av成人99| 亚洲久久久国产精品| 免费人妻精品一区二区三区视频| 久久青草综合色| 亚洲精品一区蜜桃| 美女高潮喷水抽搐中文字幕| 成年人免费黄色播放视频| 90打野战视频偷拍视频| 黄频高清免费视频| 电影成人av| 精品熟女少妇八av免费久了| 黑人操中国人逼视频| 久久久久久免费高清国产稀缺| 国产主播在线观看一区二区| 国产精品成人在线| 日日夜夜操网爽| 亚洲五月色婷婷综合| 他把我摸到了高潮在线观看 | 国产精品久久久久成人av| 男女午夜视频在线观看| 久久亚洲精品不卡| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频 | 国产精品久久久久久精品古装| 日韩视频一区二区在线观看| 视频区图区小说| 窝窝影院91人妻| 欧美精品高潮呻吟av久久| 国产三级黄色录像| 别揉我奶头~嗯~啊~动态视频 | 午夜免费观看性视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av电影在线观看一区二区三区| 午夜福利影视在线免费观看| 成人av一区二区三区在线看 | 一级毛片电影观看| 欧美精品亚洲一区二区| 大陆偷拍与自拍| 99热国产这里只有精品6| 免费av中文字幕在线| 国产精品国产三级国产专区5o| 精品一品国产午夜福利视频| 老鸭窝网址在线观看| 高清在线国产一区| 欧美人与性动交α欧美软件| 在线观看一区二区三区激情| 十八禁人妻一区二区| 久久久精品94久久精品| 色婷婷久久久亚洲欧美| 国产精品九九99| 免费观看a级毛片全部| 91老司机精品| 无遮挡黄片免费观看| 最近最新中文字幕大全免费视频| 日韩制服骚丝袜av| 亚洲专区国产一区二区| 国产精品麻豆人妻色哟哟久久| 日韩,欧美,国产一区二区三区| 亚洲av日韩在线播放| 亚洲精品国产一区二区精华液| 一边摸一边抽搐一进一出视频| 在线永久观看黄色视频| av片东京热男人的天堂| 国产成+人综合+亚洲专区| 国产淫语在线视频| 99精国产麻豆久久婷婷| 亚洲国产中文字幕在线视频| 日韩制服丝袜自拍偷拍| 国产男女超爽视频在线观看| 亚洲精品国产一区二区精华液| 黄色视频在线播放观看不卡| 国产日韩欧美在线精品| 岛国毛片在线播放| 日本撒尿小便嘘嘘汇集6| 丰满少妇做爰视频| 欧美变态另类bdsm刘玥| 超碰成人久久| 搡老岳熟女国产| 最新的欧美精品一区二区| 亚洲第一欧美日韩一区二区三区 | 老司机影院毛片| 日韩有码中文字幕| 久久热在线av| 欧美在线黄色| 91国产中文字幕| 欧美大码av| 国产深夜福利视频在线观看| 91精品三级在线观看| 2018国产大陆天天弄谢| 曰老女人黄片| 国产免费av片在线观看野外av| cao死你这个sao货| 91精品伊人久久大香线蕉| 天天躁狠狠躁夜夜躁狠狠躁| tocl精华| 精品国产乱子伦一区二区三区 | 久久久精品免费免费高清| 黄片大片在线免费观看| 一级毛片精品| 午夜福利乱码中文字幕| 日韩三级视频一区二区三区| 欧美成狂野欧美在线观看| 色综合欧美亚洲国产小说| 黑人操中国人逼视频| av视频免费观看在线观看| 丝袜人妻中文字幕| 国产成人a∨麻豆精品| 午夜精品国产一区二区电影| 19禁男女啪啪无遮挡网站| 欧美一级毛片孕妇| 97人妻天天添夜夜摸| 欧美变态另类bdsm刘玥| 首页视频小说图片口味搜索| 国产精品99久久99久久久不卡| 精品国产乱码久久久久久男人| 精品一区在线观看国产| 亚洲精品中文字幕在线视频| 亚洲av欧美aⅴ国产| 高清在线国产一区| 人人妻,人人澡人人爽秒播| 国产精品偷伦视频观看了| 大片免费播放器 马上看| 欧美黄色片欧美黄色片| 在线观看免费日韩欧美大片| 精品少妇内射三级| 一本一本久久a久久精品综合妖精| 少妇人妻久久综合中文| 久久久久久久大尺度免费视频| 叶爱在线成人免费视频播放| 搡老乐熟女国产| 男人添女人高潮全过程视频| 亚洲人成电影免费在线| 999精品在线视频| 亚洲国产av新网站| 欧美日韩亚洲高清精品| 亚洲美女黄色视频免费看| 老熟妇乱子伦视频在线观看 | 久久久精品国产亚洲av高清涩受| 亚洲国产成人一精品久久久| 久久女婷五月综合色啪小说| 一级毛片女人18水好多| 在线观看免费视频网站a站| 狂野欧美激情性xxxx| 另类精品久久| 视频在线观看一区二区三区| 久久久久久久国产电影| 99香蕉大伊视频| 久久久久久久精品精品| 日韩视频一区二区在线观看| 亚洲av片天天在线观看| 国产成人精品久久二区二区91| 美女国产高潮福利片在线看| 日韩一卡2卡3卡4卡2021年| www日本在线高清视频| 欧美在线黄色| 亚洲色图 男人天堂 中文字幕| 搡老熟女国产l中国老女人| 精品亚洲成国产av| 中文欧美无线码| 精品国产乱码久久久久久小说| 在线十欧美十亚洲十日本专区| 国产欧美亚洲国产| 欧美另类一区| 久久久久久久国产电影| 亚洲av国产av综合av卡| 亚洲精品av麻豆狂野| 99国产极品粉嫩在线观看| 亚洲黑人精品在线| 国精品久久久久久国模美| 国产一卡二卡三卡精品| 美女主播在线视频| 欧美国产精品va在线观看不卡| 人人妻人人爽人人添夜夜欢视频| 男人操女人黄网站| 亚洲va日本ⅴa欧美va伊人久久 | 男女无遮挡免费网站观看| 亚洲天堂av无毛| 日日爽夜夜爽网站| 亚洲成人免费av在线播放| 超色免费av| 欧美乱码精品一区二区三区| 在线永久观看黄色视频| 久久这里只有精品19| a 毛片基地| www.av在线官网国产| 精品第一国产精品| 亚洲av成人不卡在线观看播放网 | 男女高潮啪啪啪动态图| 91字幕亚洲| 欧美亚洲 丝袜 人妻 在线| 精品国产国语对白av| 精品少妇黑人巨大在线播放| 成人影院久久| videosex国产| 91精品伊人久久大香线蕉| 亚洲黑人精品在线| av免费在线观看网站| 91av网站免费观看| 秋霞在线观看毛片| 亚洲人成电影观看| 国产亚洲精品第一综合不卡| 99热国产这里只有精品6| 精品国产超薄肉色丝袜足j| 国产97色在线日韩免费| 亚洲精品第二区| 51午夜福利影视在线观看| 99久久综合免费| 久久亚洲国产成人精品v| 国产精品 欧美亚洲| 国产在线免费精品| 成年女人毛片免费观看观看9 | 亚洲五月色婷婷综合| 久久久国产成人免费| 亚洲熟女毛片儿| tocl精华| 热re99久久精品国产66热6| 一本—道久久a久久精品蜜桃钙片| 极品少妇高潮喷水抽搐| 亚洲熟女精品中文字幕| 亚洲第一av免费看| 首页视频小说图片口味搜索| 18禁国产床啪视频网站| 中文精品一卡2卡3卡4更新| 国产精品香港三级国产av潘金莲| 国精品久久久久久国模美| 国产在线免费精品| 国产精品99久久99久久久不卡| 亚洲国产精品一区二区三区在线| 12—13女人毛片做爰片一| 男人操女人黄网站| 成年av动漫网址| 极品人妻少妇av视频| 18禁国产床啪视频网站| 青青草视频在线视频观看| 国产在线观看jvid| 日韩大码丰满熟妇| 国产老妇伦熟女老妇高清| 久9热在线精品视频| 色婷婷久久久亚洲欧美| 亚洲人成电影观看| 12—13女人毛片做爰片一| 中文精品一卡2卡3卡4更新| 国产日韩欧美亚洲二区| 91老司机精品| 亚洲精品粉嫩美女一区| 国产精品免费视频内射| 亚洲精品久久久久久婷婷小说| 亚洲成人免费av在线播放| 精品欧美一区二区三区在线| 亚洲精品国产精品久久久不卡| 男男h啪啪无遮挡| 一级,二级,三级黄色视频| 岛国在线观看网站| 国产一区二区三区av在线| 999精品在线视频| 各种免费的搞黄视频| 欧美变态另类bdsm刘玥| 一本久久精品| 欧美日韩亚洲综合一区二区三区_| 欧美日韩黄片免| 操出白浆在线播放| 男女无遮挡免费网站观看| 一级片'在线观看视频| 欧美 日韩 精品 国产| www.精华液| 欧美黄色片欧美黄色片| 欧美激情久久久久久爽电影 | 久久精品亚洲av国产电影网| av在线老鸭窝| 免费av中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 高清欧美精品videossex| 亚洲天堂av无毛| 18禁观看日本| 国产人伦9x9x在线观看| 51午夜福利影视在线观看| 色婷婷久久久亚洲欧美| 久久久精品国产亚洲av高清涩受| 1024香蕉在线观看| 啦啦啦中文免费视频观看日本| 色精品久久人妻99蜜桃| tube8黄色片| 国产99久久九九免费精品| 国产免费现黄频在线看| 欧美日韩av久久| 国产区一区二久久| 久久狼人影院| 咕卡用的链子| 成年人黄色毛片网站| 老熟女久久久| 黑人欧美特级aaaaaa片| 成年美女黄网站色视频大全免费| 亚洲精品成人av观看孕妇| 如日韩欧美国产精品一区二区三区| 欧美+亚洲+日韩+国产| 午夜激情久久久久久久| 国产精品香港三级国产av潘金莲| 淫妇啪啪啪对白视频 | 午夜福利免费观看在线| 高清欧美精品videossex| 中文欧美无线码| 精品人妻一区二区三区麻豆|