• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep Learning Enabled Computer Aided Diagnosis Model for Lung Cancer using Biomedical CT Images

    2022-11-10 02:31:22MohammadAlamgeerHananAbdullahMengashRadwaMarzoukMohamedNour
    Computers Materials&Continua 2022年10期

    Mohammad Alamgeer,Hanan Abdullah Mengash,Radwa Marzouk,Mohamed K Nour,

    Anwer Mustafa Hilal4,*,Abdelwahed Motwakel4,Abu Sarwar Zamani4 and Mohammed Rizwanullah4

    1Department of Information Systems,College of Science&Art at Mahayil,King Khalid University,Saudi Arabia

    2Department of Information Systems,College of Computer and Information Sciences,Princess Nourah Bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    3Department of Computer Sciences,College of Computing and Information System,Umm Al-Qura University,Saudi Arabia

    4Department of Computer and Self Development,Preparatory Year Deanship,Prince Sattam bin Abdulaziz University,AlKharj,Saudi Arabia

    Abstract:Early detection of lung cancer can help for improving the survival rate of the patients.Biomedical imaging tools such as computed tomography(CT)image was utilized to the proper identification and positioning of lung cancer.The recently developed deep learning (DL) models can be employed for the effectual identification and classification of diseases.This article introduces novel deep learning enabled CAD technique for lung cancer using biomedical CT image,named DLCADLC-BCT technique.The proposed DLCADLC-BCT technique intends for detecting and classifying lung cancer using CT images.The proposed DLCADLC-BCT technique initially uses gray level co-occurrence matrix(GLCM)model for feature extraction.Also,long short term memory (LSTM) model was applied for classifying the existence of lung cancer in the CT images.Moreover,moth swarm optimization(MSO)algorithm is employed to optimally choose the hyperparameters of the LSTM model such as learning rate,batch size,and epoch count.For demonstrating the improved classifier results of the DLCADLC-BCT approach,a set of simulations were executed on benchmark dataset and the outcomes exhibited the supremacy of the DLCADLC-BCT technique over the recent approaches.

    Keywords:Biomedical images;lung cancer;deep learning;machine learning;metaheuristics;hyperparameter tuning

    1 Introduction

    Lung cancer is the primary cause of mortality around the world.Even though targeted therapeutics and different chemotherapy regimens were adopted for treating cancer,still it is challenging to thoroughly cure advanced lung cancer[1].The earlier diagnoses of lung cancer are identified as the significant approach for increasing the possibility of survival.Hence,there is need for developing accurate and efficient lung nodule diagnoses for the detection of possible malignant cancer[2].The medical doctor detects lung cancer through examining the pulmonary nodules in CT scans,however,this process is challenging for physicians,and factors including fatigue,inattention and lack of knowledge might impact the consequences[3].Computer-aided diagnosis (CAD) technique was designed for relieving the burden on physicians and enhance the efficiency and accuracy of diagnoses.Even though authors earlier on considered the concept of applying computers to perform automated diagnoses,a lack of respective technologies and theories intended that the expansion of CAD technique was still in early stages,once the idea advanced from automated computer diagnoses to CAD[4,5].Now,computer technologies and corresponding theories have been rapidly emerging.Each factor collectively supports the growth of CAD technology.

    Artificial intelligence (AI) is the competency for machine to stimulate the behavior of human that is very proficient to handle wide-ranging number of information.The machine learning (ML)method is the application of AI technology that enables computer systems to automatically train from knowledge without explicitly being programmed[6].Basically,ML methods learn from the training of utilizing algorithms to parse data,later make a decision or prediction regarding the upcoming situations of novel datasets[7].In cancer,ML method has been previously utilized for exploring the prognostic and survival prediction method in bladder cancer,pancreatic cancer,breast cancer,and advanced nasopharyngeal carcinoma[8].In few instances,the efficiency had accomplished similar to human experts[9].ML methods have appeared as methods of developing the approach through learning from understanding and improving its efficiency.This model aims at discovering efficient parameters and the relations among themselves.In the last decade,the domain of AI has stirred from theoretic study to real time application[10].The application of AI in various fields is currently related to greater expectation and simultaneously exists a greater vacancy in cancer study particularly lung lesions.

    This article introduces novel deep learning enabled CAD technique to lung cancer using biomedical CT image,named DLCADLC-BCT technique.The proposed DLCADLC-BCT technique intends for detecting and classifying lung cancer utilizing CT image.The proposed DLCADLC-BCT technique initially uses gray level co-occurrence matrix(GLCM)model for feature extraction.Also,long short term memory (LSTM) model was executed for classifying the existence of lung cancer in the CT images.Moreover,moth swarm optimization(MSO)algorithm is employed to optimally choose the hyperparameters of the LSTM model such as learning rate,batch size,and epoch count.For demonstrating the improved classifier results of the DLCADLC-BCT approach,a set of simulations were carried out on benchmark dataset.

    2 Related Works

    In[11],lung patient CT scans are utilized for detecting and classifying the lung nodules and to distinguish the malignancy level.The CT scans are classified by utilizing U-Net framework.The study presents three-dimensional multi-path VGG-like network that is estimated on three dimensional cubes.Prediction from U-Net and three-dimensional multi-path VGG-like networks are integrated for concluding outcomes.In[12],the 121-layer convolution neural networks called DenseNet-121 and the transfer learning system was examined as a method of categorizing lung lesion with chest x-ray image.The algorithm has been trained on lung nodule datasets beforehand training on the lung cancer datasets for alleviating the issue of utilizing a smaller data set.

    Tian et al.[13]focus on achieving high detection and classification performance of benign and malignant glands on the basis of metaheuristics and DL method.In our work,firstly,the CT scans of the lung are preprocessed and later pattern segmentation region can be accomplished by an enhanced version of fuzzy possibilistic c-ordered mean based novel version of meta-heuristic,named Converged Search and Rescue(CSAR)model.Next,Enhanced Capsule Networks(ECN)are utilized for concluding diagnoses.

    Sun et al.[14]focus on analyzing the capacity of automatically extracting produced features through deep structured algorithm in lung nodule CT scan diagnoses.The Three multi-channel ROI based deep structured algorithm has been implemented and designed:deep belief network (DBN),stacked denoising autoencoder (SDAE),and convolution neural network (CNN).In[15],explored an Extreme Learning Machine(ELM)and analysis model based Deep Transfer Convolution Neural Network(DTCNN),that integrates the synergy of 2 approaches to manage benign-malignant nodule classification.

    3 The Proposed Model

    In this study,a novel DLCADLC-BCT approach was established for detecting and classifying of lung cancer using CT images.The presented DLCADLC-BCT technique employed GLCM model for deriving feature vectors.Moreover,LSTM model is applied for classifying the existence of lung cancer from the CT images.Furthermore,MSO technique was employed to optimally choose the hyperparameters of the LSTM model such as learning rate,batch size,and epoch count.

    3.1 Feature Extraction:GLCM Model

    Primarily,the GLCM model[16]is used to derive a useful set of features from the test CT images.A GLCM always signifies the matrix where the count of rows and columns were corresponding to the amount of gray levels,G.The matrix componentp(x,y|d1,d2)represents the equal separation by pixel distance(d1 andd2).The GLCMs were accomplished of collecting appropriate data in them by implies of greyco-props operation that furnishes examines demonstrating the texture of images[16].The particulars being:

    ? Contrast

    ? Correlation

    ? Entropy

    ? Energy

    Energy

    During the GLCM,the Angular Second Moment is also named as Uniformity or Energy refers the sum entire of squares of the entry.It is called‘uniformity’.The value of energy to a set image has considered that one.The formula to evaluate the energy was provided as:

    where,p(x,y)represents the pixel value in pointx,yof texture images of the sizes(M×N).

    Entropy

    During the area of image,the entropy offers an assisting influence to signify the texture image and for evaluating the distribution alteration.The demonstrating parameter effectually estimates the condition of images.If the image doesn’t perform that textually same,the amount of GLCM components include negligible value,exposing the detail that entropy was extremely large.The entropy was measured as per the subsequent formula.

    Contrast

    It is termed as CON in small procedure.The name of Contrast is ‘Sum of Square Variance’.It accepts the computation of intensity contrasts connecting pixel and their neighbor on every image.A continuous image contrast value has 0.The weight improved proportionally(0,1,4,9)has remained in the diagonal from contrast measured.

    While(i-j)enhances the contrast endures for improvement proportionally.Ifiandjare equivalent for instancei-j= 0.With no contrast.Onceiandjare varied by 1,smaller contrast has 1.Onceiandjvary on 2,the contrast was increasing and weighted has 4.

    Correlation

    It permissions the computation of correlation of the pixels and their neighbor on the entire image implies it finds out linear dependences of gray levels on individuals of neighboring pixel.During the cause of constant image,their value hasNaN..Range=[-1,1]and the expressed as:

    3.2 Image Classification:LSTM Model

    The derived features are passed into the LSTM model[17]for the detection and classification of lung cancer.Usually,the RNN network studies the input hidden sequential design by concatenating the preceding data with existing data in combination of spatial and temporal dimensional and forecasting the future order.While RNN removes the hidden time-series pattern from consecutive data (for instance,video/audio,sensor data),it can be ineffective for remembering or holding longer data to longer periods and generally failed to manage the issue containing long-term sequence.Such a kind of issue has signified as gradient exploding/vanishing gradients that are overcoming with special type of RNNs is called as LSTM containing the abilities for remembering data to longer time.The internal structure of LSTM contains different gates (comprises input,forget,and output gate),whereas all gates process the input in the preceding gate and forwarded it the next gate so monitoring the data flow nearby the last output.Fig.1 illustrates the structure of LSTM.

    Figure 1:LSTM structure

    Every gate is generally by sigmoid ortanhactivation function,i.e.,an input gateizhas responsible for updating data.The forget gate processes the input data in the input gateizand the state of preceding cellCz-1,it also extracts the data in the existing stateCzif it is required.But the resultant gate 0zforwarded the last output to next LSTM unit and hold the resultant value to the next order forecast.Conversely,the recurrent unitCzevaluates the state of pervious cellCz-1and present input valuexzemployingtanhactivation function.But,the value ofhzis estimated by scalar product of 0zandtanhofCz.Eventually,the final result is attained by passinghzto softmax classifier Mathematical the functions of aforementioned gate are formulated as:

    3.3 Hyperparameter Tuning:MSO Algorithm

    For effectually modifying the hyperparameter values of the LSTM model,the MSO algorithm can be employed to it.MSO is a type of bug,that usually belongs to the Lepidoptera family[18].Generally,160,000 moth classes were found which exit mainly at nighttime.In comparison to other moth features,the Levy flight (LF) and phototaxis were considered as important feature that is mentioned in the following.Consequently,weight of NN is given as input.This technique recognizes the optimization weight by implementing the exploration process.Fig.2 depicts the steps involved in MSO technique.

    Figure 2:Steps involved in MSO

    Phototaxis

    The process behindhand moth fly is that it encircles the light is called phototaxis.But,a precise algorithm of phototaxis couldn’t be discovered,which has foremost hypothesis to define the phototaxis method.Amongst other algorithms,it is critical hypotheses in celestial navigation that are conducted in transverse direction when flying.For saving a feasible angle for celestial light namely moon,moth travels directly.At the same time,the angle that exists from source light and moth can be focused on,however,it is incapable of seeking the transformation because the celestial object is recognized as outlying distance.It moves to the source light since moth will adapt the flight direction to the best location.Consequently,it permits airborne moths to fall downward.It forms a spiral route for travelling near light sources.

    Levy flights

    Heavy-tailed,non-Gaussian statistics are identified as common models in distinct functions of enormous animals and insects.The LF is a type of arbitrary progression,hence in natural surroundings,we considered as the major flight model.Other moth flies,the Drosophila shows the LF,however,the flight is estimated as a power law supply comprising the feature exponent nearer to 3/2.Generally,the Levy distribution is showing in the kind of power-law as follows,

    Whereas,1<β≤3 represents an index.

    The moth individual contains the distance as adjacent the optimum one would fly in the LF process almost the suitable one.If not,it would inform the location by using the LF,however,the moth is informed by using subsequent formula:

    Here,Wmaxdenotes maximum walk step andWmaxis set according to the open problem.L(s)in the abovementioned formula is reformulated by

    Thesfound maximum when compared to 0.Γ(x),denotes the gamma function.As above mentioned,theL(s)containα=1.5 the moth LF can be derived.

    Fly straight

    The existing moth is detached from light source flutter directly to the light.This representation ofjmoth can be expressed by using Eq.(16):

    If not,the moth would fly further than the source light to termination location.It can be expressed by the following equation:

    For integrity,the location of moth j is informed by implementing the Eqs.(24) &(25),by half percentage probability.The optimal,actual,and updated location of moth can be denoted byXj,Xj,newand,Xbest.λ,deals with the technique meet speed and enhance diversity of the population.

    4 Results and Discussion

    In this section,a detailed experimental result analysis of the DLCADLC-BCT model is carried out under several dimensions using benchmark lung image database(available at http://www.via.cornell.edu/lungdb.html).The results are inspected under training and testing processes.

    Fig.3 demonstrates the confusion matrix generated by the DLCADLC-BCT method on the training dataset.The figure reported that the DLCADLC-BCT model has categorized 24 images into Normal class,19 images into malignant class,and 20 images into benign class.

    Figure 3:Confusion matrix of DLCADLC-BCT technique under training dataset

    Fig.4 reveals the confusion matrix produced by the DLCADLC-BCT model on the testing dataset.The figure described that the DLCADLC-BCT model has classified 7 images into Normal class,9 images into malignant class,and 10 images into benign class.

    Figure 4:Confusion matrix of DLCADLC-BCT technique under testing dataset

    Tab.1 depicts the overall classification results of the DLCADLC-BCT technique under ten distinct runs.Fig.5 inspects the comparativesensyandspecyanalysis of the DLCADLC-BCT method under distinct runs.The results indicated that the DLCADLC-BCT approach has obtained enhanced values ofsensyandspecy.

    Table 1:Result analysis of DLCADLC-BCT technique with different runs interms of various measures

    Figure 5:Sensy and Specy analysis of DLCADLC-BCT technique with distinct runs

    For instance,on run-1,the DLCADLC-BCT model has offeredsensyandspecyof 96.98% and 93.88%respectively.In addition,on run-2,the DLCADLC-BCT model has attainedsensyandspecyof 97.99% and 94.33% respectively.Also,on run-3,the DLCADLC-BCT model has demonstratedsensyandspecyof 97.05%and 93.25%respectively.Besides,on run-4,the DLCADLC-BCT model has accomplishedsensyandspecyof 97.44%and 94.62%respectively.

    Fig.6 reviews the comparativeprecnandaccuyanalysis of the DLCADLC-BCT technique under distinct runs.The results specified that the DLCADLC-BCT system has obtained enhanced values ofprecnandaccuy.For instance,on run-1,the DLCADLC-BCT model has offeredprecnandaccuyof 93%and 99.42%respectively.Besides,on run-2,the DLCADLC-BCT model has obtainedprecnandaccuyof 94.80%and 99.42%respectively.Moreover,on run-3,the DLCADLC-BCT model has reachedprecnandaccuyof 96.92%and 99.50%respectively.Furthermore,on run-4,the DLCADLC-BCT model has resulted toprecnandaccuyof 93.37%and 99.14%respectively.

    Figure 6:Precn and accy analysis of DLCADLC-BCT technique with distinct runs

    A comparative classifier result inspection of the DLCADLC-BCT model with recent methods takes place in Tab.2[19].Fig.7 offers a briefsensyandspecyinvestigation of the DLCADLC-BCT model with recent ones.The figure portrayed that the DLCADLC-BCT model has accomplished enhanced values ofsensyandspecy.With respect tosensy,the DLCADLC-BCT model has offered highersensyof 97.22%whereas the optimal DNN,RBF,LDC,KNN,and DNN models have obtained lowersensyvalues of 93.41%,91.55%,96.33%,92.61%,and 97.22%respectively.Similarly,with respect tosensy,the DLCADLC-BCT model has resulted in increasedsensyof 93.34% whereas the optimal DNN,RBF,LDC,KNN,and DNN models have accomplished reducedsensyvalues of 89.70%,46.46%,31.60%,87.31%,and 92.35%respectively.

    Table 2:Comparative analysis of DLCADLC-BCT technique with existing approaches

    Figure 7:Comparative analysis of DLCADLC-BCT technique interms of Sensy and Specy

    Fig.8 exhibits a detailedprecnandrecalexamination of the DLCADLC-BCT model with recent ones.The figure depicted that the DLCADLC-BCT model has gained improved values ofprecnandaccuy.Based onprecn,the DLCADLC-BCT model has reached increasedprecnof 94.08% whereas the optimal DNN,RBF,LDC,KNN,and DNN models have attained decreasedprecnvalues of 85.57%,91.65%,87.85%,73.16%,and 74.18%respectively.In the same way,with respect toaccuy,the DLCADLC-BCT model has resulted in increasedsensyof 99.33%whereas the optimal DNN,RBF,LDC,KNN,and DNN models have attained leastaccuyvalues of 99.25%,84.13%,76.17%,97.92%,and 91.55%respectively.From the result and discussion,it is ensured that the DLCADLC-BCT model has obtained effectual classification results over the other methods.

    Figure 8:Comparative analysis of DLCADLC-BCT technique interms of Precn and Accy

    5 Conclusion

    In this study,a novel DLCADLC-BCT approach was established for the detecting and classifying of lung cancer using CT images.The proposed DLCADLC-BCT technique employed GLCM model for deriving feature vectors.Moreover,LSTM model is applied for classifying the existence of lung cancer in the CT images.Furthermore,MSO technique was employed to optimally choose the hyperparameters of the LSTM model such as learning rate,batch size,and epoch count.For demonstrating the improved classifier results of the DLCADLC-BCT method,a set of simulations were executed on benchmark dataset and the outcomes exhibited the supremacy of the DLCADLCBCT technique over the recent approaches.In future,deep instance segmentation models can be derived to boost the classification outcomes.

    Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/180/43).Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R114),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR03).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    日日撸夜夜添| 国产成人免费观看mmmm| 深夜a级毛片| av在线天堂中文字幕| 少妇高潮的动态图| av专区在线播放| 免费电影在线观看免费观看| 亚洲美女搞黄在线观看| eeuss影院久久| 亚洲最大成人av| 中文字幕av在线有码专区| 国产精品三级大全| 欧美潮喷喷水| 麻豆国产97在线/欧美| av又黄又爽大尺度在线免费看 | 七月丁香在线播放| 精品久久国产蜜桃| 午夜亚洲福利在线播放| 观看美女的网站| 精品免费久久久久久久清纯| 亚洲av熟女| 国国产精品蜜臀av免费| 日本爱情动作片www.在线观看| 国内精品宾馆在线| 国产单亲对白刺激| 亚洲国产精品久久男人天堂| 国产精品麻豆人妻色哟哟久久 | 成人高潮视频无遮挡免费网站| 亚洲电影在线观看av| 国产高潮美女av| 少妇丰满av| 亚洲av福利一区| 久久精品影院6| 国产国拍精品亚洲av在线观看| av在线天堂中文字幕| 69av精品久久久久久| 国模一区二区三区四区视频| 午夜老司机福利剧场| 亚洲欧美日韩高清专用| 女的被弄到高潮叫床怎么办| 国产成人a区在线观看| 欧美激情久久久久久爽电影| 日本黄色视频三级网站网址| 精品一区二区三区人妻视频| 日本色播在线视频| 亚洲av福利一区| 亚洲av熟女| 午夜爱爱视频在线播放| 中文字幕亚洲精品专区| 国产乱人偷精品视频| 国产成人午夜福利电影在线观看| 成人亚洲欧美一区二区av| 人妻夜夜爽99麻豆av| 久久久成人免费电影| 我要搜黄色片| 久久人人爽人人片av| 永久免费av网站大全| 网址你懂的国产日韩在线| 国产精品久久久久久久电影| 国产三级中文精品| 菩萨蛮人人尽说江南好唐韦庄 | 熟女人妻精品中文字幕| 直男gayav资源| 日韩,欧美,国产一区二区三区 | 国产精品一二三区在线看| 黄色欧美视频在线观看| 日韩成人伦理影院| av天堂中文字幕网| 国内少妇人妻偷人精品xxx网站| 哪个播放器可以免费观看大片| 一级毛片电影观看 | 免费人成在线观看视频色| 国产老妇女一区| 欧美日韩精品成人综合77777| 美女国产视频在线观看| 亚洲最大成人av| 18禁裸乳无遮挡免费网站照片| 青春草国产在线视频| 男女那种视频在线观看| 精品少妇黑人巨大在线播放 | 日本免费a在线| 亚洲欧美中文字幕日韩二区| 老司机福利观看| 国产精品麻豆人妻色哟哟久久 | 美女脱内裤让男人舔精品视频| 国内精品美女久久久久久| 亚洲精品亚洲一区二区| 欧美日韩精品成人综合77777| 国产精品人妻久久久影院| 最近视频中文字幕2019在线8| 精品久久久久久久末码| 亚洲人与动物交配视频| 欧美极品一区二区三区四区| 黄色欧美视频在线观看| 精品少妇黑人巨大在线播放 | 春色校园在线视频观看| 18禁动态无遮挡网站| 搞女人的毛片| 久久婷婷人人爽人人干人人爱| 国模一区二区三区四区视频| 国产在线男女| 精品久久久久久久久亚洲| 少妇猛男粗大的猛烈进出视频 | 干丝袜人妻中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 国产不卡一卡二| 美女内射精品一级片tv| av专区在线播放| 蜜臀久久99精品久久宅男| 日本免费a在线| 内地一区二区视频在线| 在线a可以看的网站| 亚洲欧洲国产日韩| 丰满少妇做爰视频| 国产成人午夜福利电影在线观看| 搡女人真爽免费视频火全软件| 一级毛片我不卡| 久久久精品大字幕| 亚洲国产精品sss在线观看| 69av精品久久久久久| 国产在视频线在精品| 日本-黄色视频高清免费观看| 国产一区二区亚洲精品在线观看| 中文字幕制服av| av福利片在线观看| 久久久久久久午夜电影| 久久久久久久国产电影| av在线蜜桃| 国国产精品蜜臀av免费| 成年av动漫网址| 全区人妻精品视频| 欧美性猛交╳xxx乱大交人| 国产精品蜜桃在线观看| 两个人的视频大全免费| 搡老妇女老女人老熟妇| 国产精品麻豆人妻色哟哟久久 | 日韩强制内射视频| 欧美成人精品欧美一级黄| 黄色日韩在线| 久久久久久大精品| 久久精品国产鲁丝片午夜精品| 国产一级毛片七仙女欲春2| 色综合站精品国产| 国产一级毛片在线| 国产极品精品免费视频能看的| 亚洲国产欧美人成| 色尼玛亚洲综合影院| 永久网站在线| 国产高清有码在线观看视频| 老师上课跳d突然被开到最大视频| 人妻夜夜爽99麻豆av| 一级二级三级毛片免费看| 中文字幕亚洲精品专区| 22中文网久久字幕| 91在线精品国自产拍蜜月| 国产在视频线在精品| 午夜福利高清视频| 亚洲五月天丁香| 大又大粗又爽又黄少妇毛片口| 亚洲精品久久久久久婷婷小说 | 色5月婷婷丁香| 国内揄拍国产精品人妻在线| 国产成人aa在线观看| 一个人看视频在线观看www免费| 搡女人真爽免费视频火全软件| 日韩亚洲欧美综合| 赤兔流量卡办理| 亚洲成人中文字幕在线播放| 亚洲成人久久爱视频| 国产免费男女视频| av又黄又爽大尺度在线免费看 | ponron亚洲| 一级毛片久久久久久久久女| 又黄又爽又刺激的免费视频.| 又粗又爽又猛毛片免费看| 91在线精品国自产拍蜜月| 男女那种视频在线观看| 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区国产| 亚洲av二区三区四区| 一边亲一边摸免费视频| 亚洲美女搞黄在线观看| 男女那种视频在线观看| 国产精品久久久久久久电影| 成人午夜高清在线视频| 免费一级毛片在线播放高清视频| 日本wwww免费看| 久久久久网色| 国产精品乱码一区二三区的特点| 国产一区亚洲一区在线观看| 日本黄色片子视频| av在线蜜桃| 国产黄片视频在线免费观看| 天堂av国产一区二区熟女人妻| 亚洲精品日韩av片在线观看| 精品欧美国产一区二区三| 特级一级黄色大片| 变态另类丝袜制服| 天堂影院成人在线观看| 少妇人妻一区二区三区视频| 简卡轻食公司| 少妇高潮的动态图| 成年女人永久免费观看视频| 女人被狂操c到高潮| 九九在线视频观看精品| 校园人妻丝袜中文字幕| 一级爰片在线观看| 村上凉子中文字幕在线| 免费大片18禁| 中文字幕精品亚洲无线码一区| 国产在视频线在精品| 最近中文字幕2019免费版| 久久精品国产自在天天线| 男女国产视频网站| 成人av在线播放网站| 国产激情偷乱视频一区二区| 永久网站在线| 欧美日本亚洲视频在线播放| АⅤ资源中文在线天堂| 国产成人精品婷婷| 亚洲最大成人av| 女人十人毛片免费观看3o分钟| 一区二区三区免费毛片| 国产亚洲一区二区精品| 午夜免费男女啪啪视频观看| 久久久亚洲精品成人影院| 深夜a级毛片| 久久婷婷人人爽人人干人人爱| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 18禁在线播放成人免费| 亚洲国产精品专区欧美| 男女啪啪激烈高潮av片| 亚洲成人av在线免费| 伦精品一区二区三区| 精品久久久噜噜| 国产v大片淫在线免费观看| 亚洲欧美日韩高清专用| av在线播放精品| 日本猛色少妇xxxxx猛交久久| 3wmmmm亚洲av在线观看| 国内少妇人妻偷人精品xxx网站| 伦理电影大哥的女人| 午夜视频国产福利| 亚洲美女搞黄在线观看| 中文字幕精品亚洲无线码一区| 精品久久久久久久末码| 我要看日韩黄色一级片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美一区二区精品小视频在线| 国产白丝娇喘喷水9色精品| 免费一级毛片在线播放高清视频| 欧美成人午夜免费资源| 精品无人区乱码1区二区| 男插女下体视频免费在线播放| 在线观看美女被高潮喷水网站| 亚洲国产欧洲综合997久久,| eeuss影院久久| 日日啪夜夜撸| 永久网站在线| 国产白丝娇喘喷水9色精品| 国产精品不卡视频一区二区| 久久久a久久爽久久v久久| 超碰97精品在线观看| 国产淫片久久久久久久久| 一个人观看的视频www高清免费观看| 欧美一区二区国产精品久久精品| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久电影网 | 性插视频无遮挡在线免费观看| 欧美性猛交╳xxx乱大交人| 久久精品影院6| 久久久久久久久大av| 日本色播在线视频| 波多野结衣高清无吗| 国产午夜福利久久久久久| 国产精品国产高清国产av| 中文资源天堂在线| 欧美潮喷喷水| 久久久久久久亚洲中文字幕| 亚洲图色成人| 干丝袜人妻中文字幕| 午夜激情欧美在线| 老司机影院成人| 国模一区二区三区四区视频| 国产高清有码在线观看视频| 免费看a级黄色片| 日本免费一区二区三区高清不卡| 欧美日韩综合久久久久久| 免费看光身美女| 18+在线观看网站| 免费人成在线观看视频色| 国产高清三级在线| 九九爱精品视频在线观看| 久久精品国产99精品国产亚洲性色| 熟女人妻精品中文字幕| 久久久色成人| 免费观看的影片在线观看| 嫩草影院入口| 免费搜索国产男女视频| 综合色丁香网| 国产精品精品国产色婷婷| 九九热线精品视视频播放| 国产国拍精品亚洲av在线观看| 国产成年人精品一区二区| 色综合亚洲欧美另类图片| 欧美bdsm另类| 哪个播放器可以免费观看大片| 中文欧美无线码| 国产精品国产三级专区第一集| 久久久久久九九精品二区国产| 国产成人精品久久久久久| 夫妻性生交免费视频一级片| 亚洲国产精品合色在线| 国产午夜精品论理片| 国产精品人妻久久久久久| 日韩欧美在线乱码| 精品久久久久久久人妻蜜臀av| 国产精品电影一区二区三区| 欧美一级a爱片免费观看看| 国产成人精品一,二区| 夜夜爽夜夜爽视频| 99热精品在线国产| av专区在线播放| 赤兔流量卡办理| 91精品一卡2卡3卡4卡| 尾随美女入室| 精品少妇黑人巨大在线播放 | 亚洲一级一片aⅴ在线观看| 99热网站在线观看| 国产成人精品婷婷| 久99久视频精品免费| 国产久久久一区二区三区| 伦精品一区二区三区| 亚洲精品乱码久久久久久按摩| 亚洲18禁久久av| 欧美zozozo另类| 国产精品久久视频播放| 国产老妇伦熟女老妇高清| 国产中年淑女户外野战色| 色视频www国产| 男人狂女人下面高潮的视频| 99热这里只有精品一区| 乱码一卡2卡4卡精品| 欧美一级a爱片免费观看看| 国产精品野战在线观看| 免费av观看视频| 伊人久久精品亚洲午夜| 女人久久www免费人成看片 | 欧美性猛交╳xxx乱大交人| 最近中文字幕高清免费大全6| 欧美成人午夜免费资源| 在线观看66精品国产| 欧美bdsm另类| 综合色丁香网| 亚洲一区高清亚洲精品| 国产成人午夜福利电影在线观看| 欧美精品一区二区大全| 亚洲国产欧洲综合997久久,| 最近手机中文字幕大全| 99久久精品国产国产毛片| 99热全是精品| 国产久久久一区二区三区| 亚洲三级黄色毛片| 特级一级黄色大片| 色网站视频免费| 欧美精品一区二区大全| 亚洲欧美日韩无卡精品| 精品久久久久久电影网 | 成人亚洲精品av一区二区| 国产精品麻豆人妻色哟哟久久 | 蜜桃久久精品国产亚洲av| 99热这里只有是精品50| 人人妻人人看人人澡| www.av在线官网国产| 精品熟女少妇av免费看| 亚洲av中文av极速乱| 男女下面进入的视频免费午夜| 亚洲18禁久久av| 免费看美女性在线毛片视频| 好男人视频免费观看在线| 水蜜桃什么品种好| 亚洲av电影不卡..在线观看| 久久久a久久爽久久v久久| 免费av观看视频| 在线观看66精品国产| 国产乱人视频| 在线观看一区二区三区| 国产国拍精品亚洲av在线观看| 国产成人免费观看mmmm| 国产一区二区亚洲精品在线观看| 国产高清有码在线观看视频| 一本一本综合久久| 婷婷色av中文字幕| 久久久久久久亚洲中文字幕| 国产午夜精品论理片| 欧美日韩一区二区视频在线观看视频在线 | 欧美bdsm另类| 亚洲av男天堂| 男人舔女人下体高潮全视频| 亚洲怡红院男人天堂| 欧美bdsm另类| 一级毛片电影观看 | 简卡轻食公司| 欧美高清性xxxxhd video| 波多野结衣巨乳人妻| 老司机影院毛片| 2022亚洲国产成人精品| www.色视频.com| or卡值多少钱| 99久久精品国产国产毛片| 国产单亲对白刺激| 中文字幕久久专区| 看免费成人av毛片| 国产乱人视频| 高清日韩中文字幕在线| 久久综合国产亚洲精品| 国产精品熟女久久久久浪| 蜜桃亚洲精品一区二区三区| 成人综合一区亚洲| 国产精品.久久久| 久久久亚洲精品成人影院| 亚洲av.av天堂| 69人妻影院| 少妇熟女欧美另类| 国产高清三级在线| 国产精品.久久久| 国产av在哪里看| 长腿黑丝高跟| 午夜老司机福利剧场| 国产v大片淫在线免费观看| 亚洲三级黄色毛片| 免费无遮挡裸体视频| 国产精品福利在线免费观看| 久久人人爽人人爽人人片va| 久久午夜福利片| 国产精品久久久久久久久免| 国产精品电影一区二区三区| 色网站视频免费| 少妇被粗大猛烈的视频| 舔av片在线| 国产真实乱freesex| 又爽又黄a免费视频| 国产成人freesex在线| 两个人的视频大全免费| 99热网站在线观看| 一个人观看的视频www高清免费观看| 久久99热6这里只有精品| 国产伦精品一区二区三区四那| 插逼视频在线观看| 久久精品久久久久久噜噜老黄 | videos熟女内射| 少妇熟女aⅴ在线视频| 国产精品福利在线免费观看| 97在线视频观看| 亚洲国产色片| 国产成人精品一,二区| 美女脱内裤让男人舔精品视频| 男人舔女人下体高潮全视频| 成人午夜高清在线视频| 在线播放无遮挡| 国产一区二区在线av高清观看| 观看免费一级毛片| 亚洲av成人精品一二三区| 免费黄色在线免费观看| 最近中文字幕高清免费大全6| 18禁动态无遮挡网站| 国内精品美女久久久久久| 成人漫画全彩无遮挡| 尤物成人国产欧美一区二区三区| 国产乱人视频| 天天躁日日操中文字幕| 国产成人a区在线观看| 国产免费福利视频在线观看| 国产一区亚洲一区在线观看| 91久久精品国产一区二区成人| 18禁动态无遮挡网站| 精品酒店卫生间| 草草在线视频免费看| 免费搜索国产男女视频| 内地一区二区视频在线| 亚洲经典国产精华液单| www.色视频.com| 男插女下体视频免费在线播放| 最近最新中文字幕大全电影3| 人体艺术视频欧美日本| 国产精品日韩av在线免费观看| 久久久色成人| 国产精品电影一区二区三区| 亚洲av日韩在线播放| 亚洲18禁久久av| 又爽又黄a免费视频| 亚洲成人精品中文字幕电影| 久久久久九九精品影院| 国产伦一二天堂av在线观看| 亚洲一级一片aⅴ在线观看| 欧美丝袜亚洲另类| 欧美最新免费一区二区三区| 国产高清国产精品国产三级 | 国产精品嫩草影院av在线观看| 久久这里有精品视频免费| 国产乱人视频| 午夜亚洲福利在线播放| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 亚洲av.av天堂| 国产淫片久久久久久久久| 18+在线观看网站| www日本黄色视频网| 美女内射精品一级片tv| 亚洲在线观看片| 久久久午夜欧美精品| 精品免费久久久久久久清纯| 高清毛片免费看| 日本黄大片高清| 国产亚洲最大av| 国产v大片淫在线免费观看| 夫妻性生交免费视频一级片| 亚洲国产欧洲综合997久久,| 在线免费观看不下载黄p国产| 特级一级黄色大片| 久久婷婷人人爽人人干人人爱| 2021少妇久久久久久久久久久| 免费一级毛片在线播放高清视频| 国产三级在线视频| 亚洲aⅴ乱码一区二区在线播放| 在线播放国产精品三级| av在线蜜桃| 美女xxoo啪啪120秒动态图| 蜜桃久久精品国产亚洲av| 亚洲第一区二区三区不卡| 丰满乱子伦码专区| 特大巨黑吊av在线直播| 一级黄色大片毛片| 一级毛片电影观看 | 亚洲天堂国产精品一区在线| 久久久久久九九精品二区国产| 免费观看人在逋| 中文字幕人妻熟人妻熟丝袜美| 1000部很黄的大片| 午夜亚洲福利在线播放| 老女人水多毛片| 亚洲精品日韩在线中文字幕| 女人十人毛片免费观看3o分钟| 日本一本二区三区精品| 人人妻人人澡欧美一区二区| 久久韩国三级中文字幕| 青春草视频在线免费观看| 国产 一区精品| 一本一本综合久久| 内射极品少妇av片p| 国产成年人精品一区二区| 久久精品久久久久久久性| 中文亚洲av片在线观看爽| 乱人视频在线观看| 日韩欧美国产在线观看| 亚洲精品久久久久久婷婷小说 | 狂野欧美白嫩少妇大欣赏| 网址你懂的国产日韩在线| 成年女人永久免费观看视频| 久久久久久久国产电影| ponron亚洲| 六月丁香七月| 日日摸夜夜添夜夜添av毛片| 国产精品,欧美在线| 桃色一区二区三区在线观看| 中文亚洲av片在线观看爽| 亚洲av一区综合| 国产日韩欧美在线精品| av免费观看日本| 久99久视频精品免费| 一个人看的www免费观看视频| 欧美一区二区国产精品久久精品| 色尼玛亚洲综合影院| 人人妻人人澡欧美一区二区| 免费观看的影片在线观看| 亚洲,欧美,日韩| 亚洲av福利一区| 亚洲精品乱码久久久v下载方式| 午夜福利在线观看免费完整高清在| 国产黄色小视频在线观看| 日韩视频在线欧美| 久久精品夜夜夜夜夜久久蜜豆| 欧美激情在线99| 日本一本二区三区精品| eeuss影院久久| 99热全是精品| 亚洲精品aⅴ在线观看| av国产久精品久网站免费入址| 麻豆成人av视频| 少妇的逼好多水| 国产亚洲av片在线观看秒播厂 | 成年av动漫网址| 国产三级在线视频| 能在线免费观看的黄片| 国产精品久久久久久久电影| 日日摸夜夜添夜夜爱| 欧美日韩国产亚洲二区| 国产亚洲午夜精品一区二区久久 | 天堂中文最新版在线下载 | 卡戴珊不雅视频在线播放| 亚洲无线观看免费| 国产黄a三级三级三级人| 国产亚洲av片在线观看秒播厂 | 老师上课跳d突然被开到最大视频| 精华霜和精华液先用哪个| 建设人人有责人人尽责人人享有的 | 日本与韩国留学比较| 青春草国产在线视频| 菩萨蛮人人尽说江南好唐韦庄 | 日韩人妻高清精品专区| 一级av片app| 精品久久久久久电影网 | 两个人的视频大全免费| 免费观看的影片在线观看| 99视频精品全部免费 在线|