• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Single and Mitochondrial Gene Inheritance Disorder Prediction Using Machine Learning

    2022-11-10 02:30:16MuhammadUmarNasirMuhammadAdnanKhanMuhammadZubairTaherGhazalRaedSaidandHussamAlHamadi
    Computers Materials&Continua 2022年10期

    Muhammad Umar Nasir,Muhammad Adnan Khan,2,Muhammad Zubair,Taher M.Ghazal,Raed A.Said and Hussam Al Hamadi

    1Riphah School of Computing&Innovation,Faculty of Computing,Riphah International University Lahore Campus,Lahore,54000,Pakistan

    2Pattern Recognition and Machine Learning Lab,Department of Software,Gachon University,Seongnam,13120,Gyeonggido,Korea

    3Faculty of Computing,Riphah International University,Islamabad,45000,Pakistan

    4School of Information Technology,Skyline University College,Sharjah,1797,UAE

    5Network and Communication Technology Lab,Center for Cyber Security,Faculty of Information Science and Technology Universiti Kebangsaan Malaysia,43600,Malaysia

    6Canadian University,Dubai,00000,UAE

    7Cyber-Physical Systems,Khalifa University,Abu Dhabi,127788,UAE

    Abstract:One of the most difficult jobs in the post-genomic age is identifying a genetic disease from a massive amount of genetic data.Furthermore,the complicated genetic disease has a very diverse genotype,making it challenging to find genetic markers.This is a challenging process since it must be completed effectively and efficiently.This research article focuses largely on which patients are more likely to have a genetic disorder based on numerous medical parameters.Using the patient’s medical history,we used a genetic disease prediction algorithm that predicts if the patient is likely to be diagnosed with a genetic disorder.To predict and categorize the patient with a genetic disease,we utilize several deep and machine learning techniques such as Artificial neural network(ANN),K-nearest neighbors(KNN),and Support vector machine (SVM).To enhance the accuracy of predicting the genetic disease in any patient,a highly efficient approach was utilized to control how the model can be used.To predict genetic disease,deep and machine learning approaches are performed.The most productive tool model provides more precise efficiency.The simulation results demonstrate that by using the proposed model with the ANN,we achieve the highest model performance of 85.7%,84.9%,84.3%accuracy of training,testing and validation respectively.This approach will undoubtedly transform genetic disorder prediction and give a real competitive strategy to save patients’lives.

    Keywords:Genetic disorder;machine learning;deep learning;single gene inheritance gene disorder;mitochondrial gene inheritance disorder

    1 Introduction

    Complicated disorders with a significant genetic effect,such as Single gene inheritance disorder(SGID) and Mitochondrial gene inheritance disorder (MGID),may have numerous syndromes involving the number of genes.Latest developments in genetic technology have resulted in more accurate genetic data acquisition.Various major genetic investigations for SGID and MID,for example,have found hundreds of people with diseases[1,2].However,given the large volumes of data collected by this large-scale research,finding the actual genes causing diseases has become a difficult challenge.Worldwide child mortality rates have fallen rapidly in recent years,owing mostly to fewer fatalities from pathogens,diarrhea,and immunization illnesses.As a result,child mortality is now very reduced in many contexts,and program targets are moving to noncommunicable diseases,which now account for a higher share of all below five fatalities[3].

    In situations with very low acute disease mortality,genetically determined disorders account for a large fraction of stillbirths,infant mortality,and ongoing handicap.Genetically determined illnesses are classified into two categories:“single gene inheritance disorders”produced by strong gene variations and “genetic risk factors e-g mitochondrial gene inheritance disorders”caused by feeble genetic variations that cause disease only when associated with other genetic and/or environmental parameters.

    A single gene disease begins with a genetic change in one gene.Because this may happen in any gene,single-gene diseases can impact every element of functioning and are astonishingly varied[4].Despite their clinical differences,single-gene diseases all share the same biological foundation,have the ability to be carried down to children,and demand the same fundamental genetic and advisory services.Accurate diagnosis,risk assessment,and information for the afflicted individuals and their families,as well as access to risk management choices and assistance for sick adults and children.

    Mitochondrial gene inheritance disorders are by far the most common type of inborn metabolic mistake[5],accounting for 1.6 out of every 5 k people[6].The vast majority of organ involvement is multisystemic,with a preference for cells that require a lot of energy.These cells rely on the preservation of an efficient energy balance,and patients’symptoms are often moderate to severe and regressed during periods of metabolic stress.

    Deep learning and machine learning have been applied effectively in a variety of biological situations in latest years.Deep learning and machine learning-based algorithms are effective enough to tackle enormous data sets with high levels of noise,complexity,and/or imperfection while making just a few guesses probability distributions and data creation techniques.Prediction is the central objective of deep learning and machine learning methods,as opposed to the inferential approach of traditional statistical methodologies[7].

    2 Literature Review

    People are 99.9% genetically related;we all have the same code of 6 billion letters of chemical compositions(A,T,C,and G),which join in base pairs to form our Deoxyribonucleic acid(DNA).What distinguishes us is the>1% of information that changes from individual to individual;these variances are known as genetic mutations.At least 4 M of these genetic variations is distinct from others[8].Researchers are divided on how to predict disorder.Some argue that most disorders are neither genetic or that there aren’t enough genetic differences to predict risk.Strokes and cardiovascular disease,for example,are not caused by a single or numerous mutations,but rather by genetic and behavioral variables.

    Greater genotyping and testing methods have resulted in an increase in genetic data collection.Although this expansion,the methods of action by which genetic variations cause disease progression to remain unknown.Despite the fact that genomic alleles and malignant variants are continually mapped,the majority of them still lack genomic information[9].The initial attempts to discovering non-experimental illness gene connections relied on association studies,which calculates the likelihood of seeing genotypes in an organism against chance.

    Previous researchers have also revealed that illnesses with contiguous sections have strong phenotypic and comorbidity characteristics[10].It has been proposed that genetic data are especially informative because distinct perturbations in a single disorder module frequently achieve similar phenotypes[11],and networks of phenomenon (where genes are endpoints that are attached if they indicate associated phenotypic statuses) are highly linked with proteins.Relationships between proteins and transcription factor networks[12].Furthermore,disorders located in the interactome remote neighbors cause distinct phenotypes[10].Several approaches for predicting genes disorder that incorporate these various forms of data have been presented[13].A collection of techniques combines the information into a single graph,which is subsequently utilized for prediction.

    Similar approaches have been used to predict disorder modules,a comparable challenge;disordered genes can be discovered within groups of these modules.Liu et al.[14]recover disease components by evaluating genetic data and expression network partitions;Ghiassian et al.[15]continuously add genes to categories using immediate neighbor analysis in nutrient interaction nets.It has been established that genetic risk prediction may have an influence on individuals and populations,for a certain period[16],but it is only significant developments in high-density genotyping technology that have brought genetic risk prediction within reach.Genes linked to cardiovascular disease may also be implicated in intermediate outcomes such as dyslipidemia,hypertension,or even smoking[17].Genetic variations implicated in intermediate variables will no more be relevant when put into a dependent variable with these intermediate factors,according to the fundamental principles of scientific studies.When genetic variations are engaged in undiscovered pathways or processes with immeasurable intermediary components,they can enhance illness prediction beyond established risk factors.Some diseases may be more prone to have new yet undiscovered pathways than others.A crucial but not improbable point is that gene findings may uncover novel etiological networks and intermediate biomarkers,which may be better predictors of disease than the genetic variant that brought to their discovery.

    As per previous researches,most genome disorders work based on genome sequencing.Major limitations in genome sequencing have stated below:

    ? Analytical and validity problem because it is possible during the prediction mostly genome segments could be read below the minimum coverage path of DNA sequence if this depth is not read sufficiently so it is possible that the base will not predict actual genome disorder in a person.

    ? Clinical interpretation problem,because with development of genetic technologies total prediction process has automated.So,without an individual,there is no way to predict DNA sequencing on automated algorithms.

    ? Clinical legitimacy.

    So,in our proposed model covered most of the limitations to improve the prediction of genetic disorders with the help of patients’medical history.

    3 Dataset

    The dataset is downloaded from Kaggle.The total patient records are 22083 with 35 features that are used to predict genetic disorders.In data pre-processing replaced the null values with the help of different data normalization techniques and for the best feature apply the linear regression technique to choose the best 14 features from 35 features with the help of a mean square error.

    4 Methodology

    Early detection of genetic disorders helps the patient to improve their health before any major consequences.Early detection of genetic disorders helps in health improvement and changes in lifestyle for patients.In our research article,we present the model of neural network using deep learning,SVM,and KNN model using machine learning for detection of a genetic disorder.After analysis,we will use the highest accurate model for genetic disorder prediction.Fig.1 shows our prediction framework.

    Figure 1:Proposed model of genetic disorder prediction

    The proper dataset selection before the training and preprocessing phase.In this study,we selected a labeled dataset for the use of our prediction framework.This dataset consists of 22083 instances with 35 features in which 34 features are independent and one feature(output class)is dependent.In pre-processing phase involves two steps first is data cleaning in this phase we replace missing values with the help of the normalization technique right after pre-processing,we used the linear regressing technique to choose the best fourteen independent features and the second step is data splitting which is done randomly in ratio,training data is 70%,testing data is 15%and validation data is 15%.After pre-processing phase,the training phase is a takeover and,in this phase,proposed model used three supervised classification techniques i-e ANN,KNN,and SVM.The training phase receives input from the pre-processing phase.In the Artificial Neural Network technique,model used five hidden layers and one hundred neurons for each layer and the backpropagation technique(Scaled Conjugate Gradient) to tune the weights.Every neuron in the hidden layer has an activation function which is the sigmoid function.After the testing phase,we choose the best prediction model based on testing parameters and present it in the result section.

    5 Artificial Neural Network

    In the artificial neural network technique,proposed model divides pre-processed data into three parts:70%for training,15%for validation,and 15%for testing the total pre-processed dataset.Preprocessed data is running on five hidden layers of neurons and train the model.Scaled conjugate gradient backpropagation activation function used in the training phase of ANN.In the artificial neural network,there are one hundred neurons for each layer and two neurons for the output layer,which contain two classes single gene inheritance disorder and mitochondrial gene inheritance disorder.The mathematical interpretation of artificial neural network is given below:

    There are fourteen input neurons which are represented asand in the hidden layer there are one hundred neurons on each layer (five hidden layers) which is represented asand the output layer is represented as out and the biases are signified asandrespectively.

    By using above mentioned Eqs.(2)-(5),we can calculateand out.

    The sigmoid function of the proposed prediction model can be interpreted as:

    Input derived from the output layer is

    The output layer activation function is

    6 Scaled Conjugate Gradient Algorithm

    Moller’s scaled conjugate gradient(SCG)method is based on conjugate gradients,but unlike other conjugate gradient techniques that need a linear search at every repetition,this approach somehow doesn’t execute a linear search at each iterative process.Scaled Conjugate Gradient was created to eliminate the need for time-consuming linear searches.

    In MATLAB,‘trainscg’is a network training function that modifies the weight and bias variables using the scaled conjugate gradient technique.Any network may be trained as long as its weight,netinput,and backpropagation contain derivatives.The phase margin in the SCG method is a quadratic estimate function of the error function,making it more resilient and independent of the user-defined parameters.

    A different method is used to estimate step size.The second order term is computed as follows:

    whereλk is a scalar and is adjusted each time according to the sign ofδk.

    7 Simulation Results

    Artificial Neural Network algorithm is more efficient in calculating the output of large datasets.So,the efficiency of the artificial neural network algorithm is analyzed as to its accuracy,miss classification rate,recall,precision,and F1 score.After transferring the dataset into the training phase in which data is trained by the artificial neural network,support vector machine,and KNN algorithm.After that trained data is transfer into the testing phase,in this phase data is tested from all trained models individually after this we selected the best prediction model based on prediction accuracy which is the artificial neural network.We explained the results of ANN because this proposed model gained the highest prediction accuracy as compared to the other models.Simulation results of ANN from the proposed model are explained below,

    The dataset of 22083 instances was into three-phase,first,model trained 70%data,second,model validate 15%data and at the end,and tested 15%data than model applied ANN on this data division,and all ANN simulation results obtained are shown and justified in graphical and tabular form.

    The simulation results in Fig.2 provide the training accuracy which is 85.7% and its miss classification rate is 14.3%.The recall value of the ANN training phase is 85.8% and precision is 99.7%.The F1 score of this simulation is 92.2%.In this simulation,model applied and explain the ANN algorithm because it gained the highest accuracy above all.The blue line of this simulation shows class 1 which is a single gene inheritance disorder and the lime green line represents class 2 which is mitochondrial gene inheritance disorder.

    Figure 2:Receiver operating characteristics curve of ANN training phase

    The simulation results in Fig.3 provide the validation accuracy which is 84.3% and its miss classification rate is 15.7%.The recall value of the ANN validation phase is 84.5% and precision is 99.6%.The F1 score of this simulation is 91.3%.The simulation results in Fig.4 provide the testing accuracy which is 84.9%and its miss classification rate is 15.1%.The recall value of the ANN testing phase is 85%and precision is 99.7%.The F1 score of this simulation is 92%.

    Figure 3:Receiver operating characteristics curve of ANN validation phase

    The simulation results in Fig.5 provide the detail about the best validation mean squared error which is 0.22,it means the prediction accuracy of ANN is outstanding,the lower the MSE the higher the predicted value.At 24 epoch regressions lines are equal to train,validation,and testing.

    Figure 4:Receiver operating characteristics curve of ANN test phase

    Figure 5:Mean squared error of ANN

    In Tab.1 the accuracy,miss classification rate,recall,precision,and F1 score values are calculated by using the formulas mentioned below.

    Table 1:Proposed model results of ANN

    Tab.1 shown the proposed model ANN results of single and mitochondrial gene inheritance disorder in training,testing and validation phase.Proposed model divides total 22083 attributes into training,testing,validation of 15459,3312,3312 respectively.During the training phase proposed model predict 13229,15,29,2129 attributes of true positive,true negative,false positive and false negative respectively.Furthermore,during the testing phase proposed model predict 2812,1,6,493 attributes of true positive,true negative,false positive and false negative respectively and in validation phase proposed model achieved 2793 true positive attributes and 1,8,510 attributes of true negative,false positive and false negative respectively.

    Tab.2 shown the comparative results of all model’s accuracy and miss classification value.It clearly observed that proposed model achieved accuracy 84.9%,60.1%,54% from ANN,SVM and KNN respectively and proposed model miss rate 15.1%,39.9%,46%of ANN,SVM and KNN respectively.

    Table 2:Comparison of all prediction models

    8 Conclusion and Future Work

    The machine and deep learning approach usually uses to predict gene disorders in the medical field.In this study,proposed model doing binary classification of genetic disorders by using different experimental techniques of supervised learning and their comparison.Proposed model assessed the stability of these experimental techniques with respect to their testing accuracy.Prediction results showed the artificial neural network performed best based on accuracy,miss classification rate,and validation mean squared error.As we used the medical history of patient data which easily overcome the genetic disorder prediction limitation on genetic sequence data for prediction.So,to remove this prediction uncertainty proposed model performed binary classification of genetic disorder prediction on patient medical history which gives best whether patient present on time or not.Therefore,this study will be helpful to predict the genetic disorder before time on basis of medical history,and with the help of this process,we can easily save many adult and pre-mature lives.In the future,we will do genetic disorder classification by using multifactor gene inheritance disorder based on vast medical history.

    Acknowledgement:Thanks to our families&colleagues who supported us morally.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    黄片播放在线免费| 成人毛片a级毛片在线播放| 亚洲中文av在线| 91精品一卡2卡3卡4卡| 亚洲人成网站在线播| 国产日韩欧美在线精品| 久久久久久久久久久丰满| 日本黄大片高清| 制服诱惑二区| 国产高清三级在线| 91精品一卡2卡3卡4卡| 日韩在线高清观看一区二区三区| 黑丝袜美女国产一区| 女性生殖器流出的白浆| 在线观看一区二区三区激情| 岛国毛片在线播放| a级毛片在线看网站| 日本av免费视频播放| 久久久精品94久久精品| 欧美日韩av久久| 在线观看人妻少妇| 中国美白少妇内射xxxbb| 男女免费视频国产| 91国产中文字幕| 九九久久精品国产亚洲av麻豆| 欧美成人精品欧美一级黄| 久久狼人影院| 91久久精品电影网| 大片电影免费在线观看免费| 欧美精品亚洲一区二区| 91精品国产九色| 妹子高潮喷水视频| 久久婷婷青草| 亚洲精品乱码久久久久久按摩| 777米奇影视久久| 午夜福利影视在线免费观看| 夜夜爽夜夜爽视频| 免费观看av网站的网址| 亚洲精品乱久久久久久| 美女cb高潮喷水在线观看| 精品亚洲乱码少妇综合久久| 久久女婷五月综合色啪小说| 国产精品 国内视频| 视频区图区小说| 久久综合国产亚洲精品| 啦啦啦啦在线视频资源| 美女视频免费永久观看网站| 亚洲,欧美,日韩| 国产在线免费精品| 三级国产精品欧美在线观看| 有码 亚洲区| 欧美日韩成人在线一区二区| av播播在线观看一区| 18在线观看网站| 99热国产这里只有精品6| 国产欧美日韩综合在线一区二区| 国产永久视频网站| 免费播放大片免费观看视频在线观看| 亚洲内射少妇av| 精品少妇内射三级| 在线免费观看不下载黄p国产| 久久久久久久久久久丰满| 中国美白少妇内射xxxbb| 色94色欧美一区二区| 国产精品 国内视频| 又大又黄又爽视频免费| 一级片'在线观看视频| 91在线精品国自产拍蜜月| 精品人妻熟女av久视频| 制服人妻中文乱码| 欧美精品高潮呻吟av久久| 亚洲av福利一区| 99热这里只有是精品在线观看| 亚洲国产日韩一区二区| 精品久久国产蜜桃| 人妻 亚洲 视频| 免费日韩欧美在线观看| 2018国产大陆天天弄谢| 久久国产精品大桥未久av| 欧美 亚洲 国产 日韩一| 69精品国产乱码久久久| 欧美激情极品国产一区二区三区 | 亚洲国产欧美在线一区| 麻豆精品久久久久久蜜桃| 欧美另类一区| av.在线天堂| 夜夜骑夜夜射夜夜干| 久久精品国产自在天天线| 国产在线免费精品| 黄色欧美视频在线观看| 蜜桃国产av成人99| 国产毛片在线视频| 午夜福利视频在线观看免费| 亚洲欧美清纯卡通| 麻豆成人av视频| 高清毛片免费看| 亚洲精品日本国产第一区| 久久人人爽av亚洲精品天堂| 亚洲综合色惰| 日本av免费视频播放| 亚洲人成77777在线视频| 国产色爽女视频免费观看| av在线播放精品| 超色免费av| 亚洲精品自拍成人| 国产高清不卡午夜福利| 老女人水多毛片| 久久ye,这里只有精品| 极品人妻少妇av视频| 亚洲精品美女久久av网站| 青春草国产在线视频| 国产高清有码在线观看视频| 寂寞人妻少妇视频99o| 在线精品无人区一区二区三| 在线观看一区二区三区激情| 插阴视频在线观看视频| av福利片在线| 2022亚洲国产成人精品| 考比视频在线观看| av电影中文网址| av国产精品久久久久影院| 视频中文字幕在线观看| 日本爱情动作片www.在线观看| 一级毛片电影观看| 91午夜精品亚洲一区二区三区| 天天躁夜夜躁狠狠久久av| 国产精品 国内视频| 成年美女黄网站色视频大全免费 | 久久久国产一区二区| 免费久久久久久久精品成人欧美视频 | 性色avwww在线观看| 校园人妻丝袜中文字幕| 国国产精品蜜臀av免费| 欧美性感艳星| 啦啦啦视频在线资源免费观看| 欧美日韩国产mv在线观看视频| 啦啦啦视频在线资源免费观看| 国产免费一区二区三区四区乱码| 免费日韩欧美在线观看| 99热这里只有是精品在线观看| 婷婷色av中文字幕| 久久午夜福利片| 老司机影院成人| 黄色视频在线播放观看不卡| 少妇熟女欧美另类| 亚洲精品国产av蜜桃| 日日啪夜夜爽| 99久久精品一区二区三区| 国产毛片在线视频| 高清午夜精品一区二区三区| av网站免费在线观看视频| 亚洲精品,欧美精品| 亚洲av成人精品一二三区| 一级毛片 在线播放| 丰满迷人的少妇在线观看| 久久 成人 亚洲| 男人爽女人下面视频在线观看| 韩国高清视频一区二区三区| 老熟女久久久| 国产一区有黄有色的免费视频| 免费观看在线日韩| 青春草国产在线视频| 99久久人妻综合| 91精品国产九色| 国产一区有黄有色的免费视频| 日韩欧美一区视频在线观看| 成年女人在线观看亚洲视频| 亚洲无线观看免费| 熟女电影av网| 国产精品人妻久久久久久| 国产女主播在线喷水免费视频网站| 各种免费的搞黄视频| 丝袜美足系列| 精品一区二区三区视频在线| 精品视频人人做人人爽| 久久久国产精品麻豆| 亚洲国产精品一区二区三区在线| 一级毛片 在线播放| 18禁在线无遮挡免费观看视频| 最近2019中文字幕mv第一页| 亚洲欧美色中文字幕在线| 国产在线免费精品| 成人黄色视频免费在线看| 99九九线精品视频在线观看视频| 国产精品久久久久久精品电影小说| 久久精品国产亚洲av天美| 十八禁网站网址无遮挡| 精品国产露脸久久av麻豆| 日韩av不卡免费在线播放| 有码 亚洲区| 国产精品熟女久久久久浪| 伊人久久国产一区二区| 伊人久久精品亚洲午夜| 日产精品乱码卡一卡2卡三| 黑人猛操日本美女一级片| 午夜激情av网站| 日韩一区二区视频免费看| 亚洲国产精品一区二区三区在线| 日韩中文字幕视频在线看片| 欧美 亚洲 国产 日韩一| 在线观看人妻少妇| 久久久久久久久久人人人人人人| 91aial.com中文字幕在线观看| 国产精品女同一区二区软件| 简卡轻食公司| 亚洲国产毛片av蜜桃av| .国产精品久久| 亚洲国产av新网站| 91精品国产国语对白视频| 999精品在线视频| 亚洲国产精品999| 亚洲国产精品一区二区三区在线| 各种免费的搞黄视频| 一本大道久久a久久精品| 久久久国产欧美日韩av| 亚洲国产毛片av蜜桃av| 日本免费在线观看一区| 观看av在线不卡| 久久 成人 亚洲| 亚洲少妇的诱惑av| 色网站视频免费| 18禁裸乳无遮挡动漫免费视频| 久久久久视频综合| 精品一区在线观看国产| 一边摸一边做爽爽视频免费| 91成人精品电影| 女人久久www免费人成看片| 久久久久久久久大av| 一区二区三区乱码不卡18| 国产亚洲精品第一综合不卡 | 国产又色又爽无遮挡免| 精品熟女少妇av免费看| 国产精品一国产av| av免费观看日本| 日韩中文字幕视频在线看片| 我要看黄色一级片免费的| 久久久a久久爽久久v久久| 狠狠婷婷综合久久久久久88av| 日韩精品有码人妻一区| 国产免费视频播放在线视频| 中文字幕免费在线视频6| 伊人久久精品亚洲午夜| 国产极品粉嫩免费观看在线 | 一级黄片播放器| 亚洲精华国产精华液的使用体验| 日本与韩国留学比较| 亚洲精品久久午夜乱码| 麻豆精品久久久久久蜜桃| 熟女av电影| av播播在线观看一区| av国产精品久久久久影院| 国产精品一二三区在线看| 亚洲人成网站在线观看播放| 中文字幕人妻丝袜制服| 欧美精品国产亚洲| 熟女人妻精品中文字幕| 亚洲三级黄色毛片| 边亲边吃奶的免费视频| 日韩av免费高清视频| 丝袜美足系列| videosex国产| 制服丝袜香蕉在线| 一本色道久久久久久精品综合| 日日爽夜夜爽网站| 欧美成人午夜免费资源| 免费高清在线观看日韩| 男人操女人黄网站| 久久韩国三级中文字幕| 亚洲少妇的诱惑av| 91久久精品电影网| 丰满迷人的少妇在线观看| 香蕉精品网在线| 国产精品一区二区在线观看99| 亚洲国产欧美在线一区| 水蜜桃什么品种好| 中国美白少妇内射xxxbb| 亚洲美女黄色视频免费看| 亚洲欧美日韩卡通动漫| av在线app专区| 天堂中文最新版在线下载| 亚洲内射少妇av| 国模一区二区三区四区视频| 特大巨黑吊av在线直播| kizo精华| 亚洲精品久久久久久婷婷小说| 欧美日韩视频高清一区二区三区二| 国产精品久久久久久久久免| 色94色欧美一区二区| 精品久久蜜臀av无| 亚洲欧美日韩卡通动漫| 免费黄频网站在线观看国产| a级毛片在线看网站| 久久影院123| 久久精品国产鲁丝片午夜精品| 免费观看在线日韩| 国产高清国产精品国产三级| 亚洲av综合色区一区| 欧美日韩综合久久久久久| 国产成人精品婷婷| 建设人人有责人人尽责人人享有的| 亚洲精品美女久久av网站| 亚洲av.av天堂| 简卡轻食公司| 91精品一卡2卡3卡4卡| 亚洲欧洲国产日韩| 美女cb高潮喷水在线观看| 日韩欧美一区视频在线观看| 日本av免费视频播放| 高清欧美精品videossex| 在线播放无遮挡| 国产精品成人在线| 亚洲欧美日韩卡通动漫| 亚洲精品国产av蜜桃| 永久免费av网站大全| 欧美性感艳星| 亚洲精品中文字幕在线视频| 色94色欧美一区二区| 丰满迷人的少妇在线观看| 亚洲欧美色中文字幕在线| 亚洲国产精品一区二区三区在线| xxxhd国产人妻xxx| 极品少妇高潮喷水抽搐| 边亲边吃奶的免费视频| 久久综合国产亚洲精品| 欧美亚洲日本最大视频资源| 看十八女毛片水多多多| 色婷婷av一区二区三区视频| 亚洲综合精品二区| 蜜桃在线观看..| 亚洲伊人久久精品综合| 日韩欧美精品免费久久| 午夜视频国产福利| 最新的欧美精品一区二区| 多毛熟女@视频| 日本色播在线视频| 久久影院123| 日本黄色片子视频| 不卡视频在线观看欧美| 精品国产一区二区久久| 校园人妻丝袜中文字幕| 高清毛片免费看| 国产av精品麻豆| 各种免费的搞黄视频| av不卡在线播放| 中国美白少妇内射xxxbb| 七月丁香在线播放| 好男人视频免费观看在线| 久久这里有精品视频免费| av播播在线观看一区| 亚洲情色 制服丝袜| 亚洲精品第二区| 国产精品99久久久久久久久| 亚洲一级一片aⅴ在线观看| 在线观看www视频免费| 欧美日本中文国产一区发布| 超色免费av| 亚洲高清免费不卡视频| 久久久国产欧美日韩av| 2022亚洲国产成人精品| 久久精品人人爽人人爽视色| 国产午夜精品久久久久久一区二区三区| 久久综合国产亚洲精品| av线在线观看网站| 亚洲成色77777| 国产熟女午夜一区二区三区 | 精品国产一区二区久久| 丝袜美足系列| 国产色婷婷99| 草草在线视频免费看| 在线观看免费高清a一片| 一级毛片我不卡| 国产精品一区二区在线不卡| 能在线免费看毛片的网站| 国产亚洲av片在线观看秒播厂| 黄色一级大片看看| 亚洲精品日韩av片在线观看| 国产片内射在线| 亚洲少妇的诱惑av| 国产成人精品无人区| 成人18禁高潮啪啪吃奶动态图 | 国产精品久久久久久久久免| 五月开心婷婷网| 只有这里有精品99| 久久午夜福利片| 国产亚洲av片在线观看秒播厂| 国产熟女午夜一区二区三区 | 伊人久久精品亚洲午夜| 日韩三级伦理在线观看| 欧美丝袜亚洲另类| 国产精品久久久久久久电影| 丰满迷人的少妇在线观看| 精品一区二区三卡| 爱豆传媒免费全集在线观看| 久久精品国产亚洲网站| 久久精品国产亚洲av涩爱| 欧美变态另类bdsm刘玥| 中文字幕人妻丝袜制服| 少妇猛男粗大的猛烈进出视频| 美女中出高潮动态图| 三级国产精品欧美在线观看| 久久青草综合色| 精品久久久噜噜| 久久鲁丝午夜福利片| 国产成人91sexporn| 成人二区视频| 欧美精品一区二区大全| 亚洲欧美日韩卡通动漫| 黄色欧美视频在线观看| 日本色播在线视频| 国产精品国产三级国产专区5o| 国产高清三级在线| 交换朋友夫妻互换小说| 一本—道久久a久久精品蜜桃钙片| a级毛片黄视频| 亚洲成色77777| 成人漫画全彩无遮挡| 国产亚洲精品第一综合不卡 | 肉色欧美久久久久久久蜜桃| 国产精品欧美亚洲77777| 亚洲av不卡在线观看| 免费观看在线日韩| 日本wwww免费看| 多毛熟女@视频| 中文字幕制服av| 大话2 男鬼变身卡| 久久青草综合色| 亚洲欧美色中文字幕在线| 国产成人91sexporn| 国产精品99久久99久久久不卡 | 国产白丝娇喘喷水9色精品| 一级毛片黄色毛片免费观看视频| 日韩中文字幕视频在线看片| 日本黄色片子视频| 精品人妻偷拍中文字幕| 国产精品久久久久成人av| 免费看光身美女| 日本猛色少妇xxxxx猛交久久| 伊人久久国产一区二区| videos熟女内射| 亚洲精品日韩av片在线观看| 狂野欧美激情性bbbbbb| 日韩视频在线欧美| 亚洲国产av影院在线观看| 另类精品久久| 久久久久久久久久久免费av| 亚洲内射少妇av| 超碰97精品在线观看| 免费大片黄手机在线观看| 日韩中文字幕视频在线看片| 久久久久久人妻| 午夜日本视频在线| 国产成人av激情在线播放 | 欧美日本中文国产一区发布| 综合色丁香网| 黑人巨大精品欧美一区二区蜜桃 | 亚洲熟女精品中文字幕| 曰老女人黄片| 国产白丝娇喘喷水9色精品| xxx大片免费视频| 内地一区二区视频在线| 欧美+日韩+精品| 91精品三级在线观看| 国产成人精品婷婷| 国产日韩欧美在线精品| 色婷婷av一区二区三区视频| 三上悠亚av全集在线观看| 国产精品一国产av| 五月天丁香电影| 伦理电影大哥的女人| 极品人妻少妇av视频| 久久99精品国语久久久| 亚洲无线观看免费| 97在线视频观看| 嘟嘟电影网在线观看| 18在线观看网站| 大码成人一级视频| 在线 av 中文字幕| 国产探花极品一区二区| 在线观看国产h片| 精品一品国产午夜福利视频| 亚洲综合色惰| 午夜91福利影院| 美女福利国产在线| 色5月婷婷丁香| 久久ye,这里只有精品| 中国美白少妇内射xxxbb| 狂野欧美激情性xxxx在线观看| 国产av一区二区精品久久| 色哟哟·www| 99久久精品一区二区三区| 精品午夜福利在线看| 亚洲国产毛片av蜜桃av| 国产一区亚洲一区在线观看| 丁香六月天网| 亚洲国产欧美在线一区| av在线老鸭窝| 国产精品一区二区在线观看99| 日韩中字成人| 大香蕉97超碰在线| 久久人妻熟女aⅴ| 欧美日韩国产mv在线观看视频| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 久久精品人人爽人人爽视色| 热re99久久国产66热| 日韩伦理黄色片| 国产视频内射| 欧美日韩成人在线一区二区| 国产精品蜜桃在线观看| 日本wwww免费看| 日本91视频免费播放| 久久久久视频综合| 一区二区日韩欧美中文字幕 | 男女免费视频国产| 欧美精品亚洲一区二区| 国产成人精品无人区| 日韩 亚洲 欧美在线| 精品人妻偷拍中文字幕| 麻豆精品久久久久久蜜桃| 美女主播在线视频| av线在线观看网站| 十分钟在线观看高清视频www| 亚洲国产成人一精品久久久| 91aial.com中文字幕在线观看| 国产亚洲一区二区精品| 22中文网久久字幕| av女优亚洲男人天堂| 欧美xxⅹ黑人| 精品一区二区三区视频在线| a级毛片在线看网站| 麻豆乱淫一区二区| 亚洲精品亚洲一区二区| 国产一级毛片在线| 欧美人与性动交α欧美精品济南到 | 中文字幕人妻熟人妻熟丝袜美| 亚洲成人av在线免费| 精品少妇内射三级| 色网站视频免费| 老司机亚洲免费影院| 永久免费av网站大全| 99热这里只有是精品在线观看| 美女主播在线视频| 亚洲不卡免费看| 桃花免费在线播放| 99久久精品一区二区三区| 人人澡人人妻人| 国产精品.久久久| 中国国产av一级| 免费黄网站久久成人精品| 中国三级夫妇交换| 丁香六月天网| 欧美少妇被猛烈插入视频| 男人添女人高潮全过程视频| 菩萨蛮人人尽说江南好唐韦庄| 老熟女久久久| 亚洲国产av影院在线观看| 亚洲精品456在线播放app| 国产精品偷伦视频观看了| 精品人妻熟女av久视频| 久久女婷五月综合色啪小说| 亚洲精品国产av成人精品| 久久热精品热| 一级毛片 在线播放| 日日爽夜夜爽网站| 色网站视频免费| 国产精品嫩草影院av在线观看| 男女边摸边吃奶| 一本一本综合久久| 在线看a的网站| 精品人妻熟女av久视频| 亚洲精品久久久久久婷婷小说| 久久久久久久国产电影| 91aial.com中文字幕在线观看| 亚洲av在线观看美女高潮| 国产午夜精品久久久久久一区二区三区| 久久久久久久久久久丰满| 国产亚洲欧美精品永久| 国产av一区二区精品久久| 国产av国产精品国产| 国产精品.久久久| 成年人午夜在线观看视频| 在线观看免费日韩欧美大片 | 久久热精品热| 特大巨黑吊av在线直播| 最近最新中文字幕免费大全7| 久热这里只有精品99| 国产精品免费大片| 人妻 亚洲 视频| 欧美性感艳星| 成人亚洲精品一区在线观看| 一本久久精品| 99精国产麻豆久久婷婷| 精品久久久精品久久久| 波野结衣二区三区在线| 免费高清在线观看日韩| 亚洲欧美日韩卡通动漫| 色网站视频免费| 人妻少妇偷人精品九色| 欧美日韩在线观看h| 欧美3d第一页| 亚洲综合色惰| 久久久精品免费免费高清| 亚洲欧洲日产国产| 亚洲精品一区蜜桃| 久久久精品94久久精品| 精品酒店卫生间| 中文乱码字字幕精品一区二区三区| 这个男人来自地球电影免费观看 | 欧美成人午夜免费资源| 2018国产大陆天天弄谢| 80岁老熟妇乱子伦牲交| 最近中文字幕高清免费大全6| 国产亚洲av片在线观看秒播厂| 又粗又硬又长又爽又黄的视频| 人人妻人人爽人人添夜夜欢视频|