• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computer Vision with Machine Learning Enabled Skin Lesion Classification Model

    2022-11-10 02:30:02RomanyMansourSaraAlthubitiandFayadhAlenezi
    Computers Materials&Continua 2022年10期

    Romany F.Mansour,Sara A.Althubiti and Fayadh Alenezi

    1Department of Mathematics,Faculty of Science,New Valley University,El-Kharga,72511,Egypt

    2Department of Computer Science,College of Computer and Information Sciences,Majmaah University,Al-Majmaah,11952,Saudi Arabia

    3Department of Electrical Engineering,College of Engineering,Jouf University,Sakaka,72388,Saudi Arabia

    Abstract:Recently,computer vision(CV)based disease diagnosis models have been utilized in various areas of healthcare.At the same time,deep learning(DL) and machine learning (ML) models play a vital role in the healthcare sector for the effectual recognition of diseases using medical imaging tools.This study develops a novel computer vision with optimal machine learning enabled skin lesion detection and classification(CVOML-SLDC)model.The goal of the CVOML-SLDC model is to determine the appropriate class labels for the test dermoscopic images.Primarily,the CVOML-SLDC model derives a gaussian filtering(GF)approach to pre-process the input images and graph cut segmentation is applied.Besides,firefly algorithm(FFA)with EfficientNet based feature extraction module is applied for effectual derivation of feature vectors.Moreover,na?ve bayes (NB) classifier is utilized for the skin lesion detection and classification model.The application of FFA helps to effectually adjust the hyperparameter values of the EfficientNet model.The experimental analysis of the CVOML-SLDC model is performed using benchmark skin lesion dataset.The detailed comparative study of the CVOML-SLDC model reported the improved outcomes over the recent approaches with maximum accuracy of 94.83%.

    Keywords:Skin lesion detection;dermoscopic images;machine learning;deep learning;graph cut segmentation;EfficientNet

    1 Introduction

    Melanoma is one of the most dangerous types of cancer which is incurable.In many of the turnover of the cases is mortality.Occasionally,melanoma growth begins from cancer with variations containing its itchiness,color,and size[1].Earlier lesion diagnosis increases the survival rate to 100%,whereas late detection turns into 59%survival rate and deep melanoma is bigger when compared to three millimeters[2].Generally,non-melanoma is a common light type of cancer when compared to melanoma,however,melanoma is the major cause of skin lesion death.Initially,detection of malignant melanoma might significantly reduce morbidity and mortality[3].During the early stages,detection of malignant melanoma might save millions rather than treatment procedure of that deadliest disease.In contrast with other types of cancer,the ratio of melanoma increases rapidly,viz.a rise of 6%per annum.Skin lesion localization and detection in the image are essential to estimate image features for lesion diagnoses[4].It is important to precisely determined the cancer boundary thus measurement of boundary irregularity,maximal diameter,and features of color might be precisely computed.In detecting skin lesions,initially,boundary of the cancer is marked by the image segmentation method.The texture discriminated and distributions of color against the texture color images.By using the classification method,skin lesions can be detected at earlier stage[5].

    Due to the difference in skin texture and injury,detection of skin cancer is a complicated process.Consequently,dermatologist employs a non-invasive method called dermoscopy for detecting skin lesion at an earlier stage[6].The initial phase in dermoscopy is to employ the ointment to the diseased region.Next,a magnified image can be attained by utilizing a magnifying tool.The magnified image offers the best visualization to inspect the shape of the cancer region.The recognition performance is based on expert knowledge[7].Manual detection of skin lesions through dermoscopy,alternatively,is a laborious process with a higher risk of error,even for skilled dermatologists.Thus,researcher presents distinct computer-aided diagnostic (CAD) methods on the basis of deep learning (DL)and machine learning (ML) characteristics[8].The dermatologist uses CAD system for identifying skin lesions more accurately and quickly.A CAD scheme’s important step is skin image dataset attainment,classification,feature selection,and extraction.The usage of deep features for skin cancer classification and detection showed massive significance over the past decades than the conventional feature extraction technique[9].The deep feature is extracted from the FC layer of CNN method that is applied for the classification.Deep feature,contrasted with conventional techniques,namely shape,texture,and color,includes global and local data regarding an image[10].Fig.1 shows the different aspects of computer vision(CV)in healthcare sector.

    Figure 1:Different aspects of CV in healthcare

    This study develops a novel computer vision with optimal machine learning enabled skin lesion detection and classification (CVOML-SLDC) model.The goal of the CVOML-SLDC model is to determine the appropriate class labels for the test dermoscopic images.Primarily,the CVOML-SLDC model derives a Gaussian filtering (GF) approach to pre-process the input images and graph cut segmentation is applied.Besides,firefly algorithm(FFA)with EfficientNet based feature extraction module is applied for effectual derivation of feature vectors.Moreover,na?ve bayes (NB) classifier is utilized for the skin lesion detection and classification model.The experimental analysis of the CVOML-SLDC model is performed using benchmark skin lesion dataset.

    2 Related Works

    In[11],a novel approach to multiclass skin lesion classifier utilizing DL feature fusion and an ELM was presented.The presented technique contains 5 main phases:image acquisition and contrast enhancement;DL feature extracting utilizing transfer learning(TL);optimum feature selection(FS)utilizing hybrid whale optimized and entropymutual information(EMI)technique;fusion of selective features utilizing a modified canonical correlation based technique;and,at last,ELM based classifier.Nasir et al.[12]presented a technique to classifier of benign and melanoma skin lesions.This technique combines pre-processing,lesion segmentation,features extracting,FS,and classifier.The pre-processing was implemented from the context of hair removal by DullRazor,but lesion texture and color data are employed for enhancing the lesion contrast.In lesion segmentation,a hybrid approach was executed and outcomes are fused utilizing additive law of probability.

    In[13],a new DL infrastructure was presented for lesion classification and segmentation.The presented method integrates 2 main phases.In order to lesion segmentation,Mask recurrent convolution neural network(Mask R-CNN)based structure was executed.During this method,Resnet50 together with feature pyramid network (FPN) was employed as backbone.Then,fully connected (FC) layer based features were mapped to the last mask generation.Reis et al.[14]presented InSiNet,a DL based CNN for detecting benign and malignant lesions.A comparative analysis is implemented amongst the presented technique and other ML approaches(DenseNet-201,RF,ResNet152V2,GoogleNet,LR,RBF-SVM,and EfficientNetB0).Benyahia et al.[15]examined the efficacy of utilizing 17 usually pretrained CNN infrastructures as feature extracting and 24 ML techniques for evaluating the classifier of skin lesion in 2 distinct data sets such as ISIC 2019 and PH2.

    3 The Proposed Model

    In this study,a new CVOML-SLDC technique has been developed to determine the appropriate class labels for the test dermoscopic images.Fig.2 offers a brief overall workflow of CVOMLSLDC model.The proposed CVOML-SLDC technique involves different levels of operations such as GF based pre-processing,graph cut segmentation,EfficientNet feature extraction,FFA based hyperparameter tuning,and NB classification.

    Figure 2:Workflow of CVOML-SLDC model

    3.1 Image Pre-processing:GF Technique

    Firstly,GF technique is applied for the removal of noise exist in the dermoscopic images.Initially,the GF method is employed for image pre-processing to eliminate the noise and increase the quality of the images.The 2D GF was widely utilized for noise smoothing and elimination.It needs massive processing resources and the effectiveness in implementing is a motivating study.The convolution operator is defined by the Gaussian operator,and proposal of Gaussian smoothing can be attained by a convolution.The Gaussian operator is in one dimensional is shown in the following:

    The optimum smoothing filter for image undergoes localization in the frequency and spatial domain,where the ambiguity relation is satisfied as follows:

    The Gaussian operator in two dimensional is given by

    In whichσ(sigma)denotes the standard deviation(SD)of Gaussian operator.When it comprises the highest value,the image smoothing would be higher.(x,y)characterize the Cartesian coordinate point of an image.

    3.2 Image Segmentation:Graphcut Technique

    At the time of image segmentation,the graphcut technique is utilized to determine the affected skin lesion regions.The resolve of graph cuts (GCs) segmentation is for extracting the tumor in the ROI accurately with increased data.The GCs method was generally utilized for medical image segmentation because of its benefits from global optima solution calculation.In GCs,segmentation has been expressed as the subsequent energy function minimized problem[16]:

    whereasPrefers the pixel set of imagesf,Nuthe 4-neighborhood of pixelsu,R(fu)the region term punishing individual pixel allocated for object and background,B(fu,fv)the boundary term punishing a discontinuity amongstuandv.During this case,the improved data created by non-linear mapping and gradient data attained in the original region of interest(ROI)are correspondingly executed to the region and boundary terms computation:

    whereasIuimplies the intensity of pixelsu,d(u,v)the spatial distance inutov,and η the standard deviation of variances computed by all 2 adjacent pixels from the imagefthat is determined as:

    In which,Tuimplies the pixel amount of setP.Ifλis small,the region term roles an important play from the GCs,and segmentation is mostly considered the improvement data that is outcome in many jagged edges and unpleasing particulars.While the enhance ofλ,the weighted boundary term rises,which leads to further precise and smooth segmentation.

    3.3 Feature Extraction:Optimal EfficientNet Model

    During feature extraction process,the EfficienNet model is applied[17].DL approach has been learned important feature in the input image at a dissimilar convolution level like human brain purpose.The DL was resolving complicated challenges generally with lower error rate and high classifier accuracy.The DL method contains distinct models (activation function,fully connected(FC),convolution,and pooling layers).The DL model has the ability to attain optimum presentation through the ML methods with higher computation difficulty.Unlike other present DL methods,the EfficientNet architecture was a compound scaling method which applies the compound coefficient for scaling network resolution,width,and depth uniformly.An EfficientNet contains 8 distinct models from B0 to B7.The presented method applies inverted bottleneck convolutions that are mainly recognized from the MobileNetV2 method viz.a layer that mostly increases the channel and compresses the network.The architecture reduces computation with the factor of 2 than standard convolution,in whichfdenotes the filter size.It is portrayed that EfficientNetB0 was the simplest of 8 methods and also uses minimal parameters.Hence,it is directly applied EfficientNetB0 for evaluating the efficiency.

    To fine tune the hyperparameters of the EfficientNet model,the FFA is utilized.Levy walk(LW)is a random walk that step size differs based on the Lévy likelihood distribution.It is helpful for the simulated environment in which target is dispersed randomly and sparsely Lévy distribution for step size is evaluated in the following.

    WhereasUdenotes uniform distribution value within[0,1],andl0andβdenotes variables to be tuned for better fitting a provided landscape.l0andSlrepresents,a scale parameter and the step length.FFA was initially designed by Yang[18].It is stimulated by the flashing pattern of FF that is utilized for attracting potential prey and mating partner.It is effective in handling global optimization,multimodal,nonlinear,and multidimensional issues.InFFA,the two major problems are the distinction of the design of attractiveness and light intensity.FFA employs the ideal rule:

    ? FF is unisex thus one FF would be attracted to another FFs nevertheless of their sex.

    ? The attraction is proportionate to the brightness.Furthermore,it is lesser while the distance improves.Consequently,assumed two flashing FFs,lesser brightness moves toward bright one.A FF randomly moves until a bright FF is positioned.

    ? The landscape of objective function defined the FF brightness

    ? Since a FF attraction is proportionate to the light intensity observed by the neighboring FFs,

    the distinction of attractivenessβwith the distanceris shown below[18]:

    ? The FF movementi(at locationxi) i.e.,attracted by other FFsj(at locationxj) is defined as follows:

    ? whereasβ0,γ,rij,α,andξt irepresents,the attraction in distancer,absorbent coefficient,the distance amongxjandxj,a control variable,and a random parameter.The major benefits of the FFA are given in the following:

    ? Automated partitioning of the population into subclasses thus every subclass could swarm near the local mode.Therefore,FFA could handle multi-modeling optimization;

    ? The attraction method of the FFA accelerates the convergence.It is non-linear and,therefore,it might be richer interms of dynamic features;

    ? FFA effectively handles a variegated range of optimization problems while it includes SA,PSO,and DE with certain cases.

    3.4 Image Classification:NB Classifier

    At the final stage,the NB classifier is employed for the proper identification of skin lesion classification process[19].It is an extremely practical Bayesian learning approach.This classification generates utilization of Bayes principle that considers independence amongst predictors.In other words,NB classifier postulate which the presence of attributes from the class is not connected to occurrence of some other attribute.The Bayes principle computes conditional probability.The mathematically stated,this is revealed in Eq.(11).The variables in Eqs.(11)-(13)are determined as:

    ?P(Y|X)refers the posterior probability of classYprovided forecaster(X).

    ?P(Y)signifies the prior probability of class.

    ?P(X|Y)implies the probability of forecaster that is then recognized as a possibility.

    ?P(X)represents the prior probability of forecaster By utilizing this approach,every feature is supposed independent based on Bayes theorem that represents there is no dependency amongst the element value on provided class and another attribute[12].The Bayes theorem allows us for expressing the posterior probability with respect to the prior probability(Y),class-conditional probabilityP(X|Y),and evidence,P(X)as illustrated in Eq.(11).The NB classifier work by evaluating the class-conditional probability.Thereby,it considers that attribute is conditional independence,provided the class labely.The mathematical process of conditional independence assumption was provided as:

    In Eq.(12),all the attributes setX:{X,X2....Xd} has ofdelement features.For classifying a test data set,NB classifier works by computing the posterior probability of all the classesYutilizing Eq.(13).

    In Eq.(13),P(X)refers the static to allY,so the class which maximize the expressionis selected.NB classifier utilizes the conditional independence assumption for calculating the conditional probability of allXiprovidedY,before calculating the class conditional probability ofXi.

    4 Performance Validation

    The experimental validation of the CVOML-SLDC model is validated using benchmark skin lesion dataset that comprises images under 6 classes[20].Totally,730 images exist under Actinic Keratosis (ACK) class,845 images under Basal Cell Carcinoma of skin (BCC),52 images under Malignant Melanoma(MEL),244 images under Melanocytic Nevus of Skin(NEV),192 images under Squamous Cell Carcinoma(SCC),and 235 images under Seborrheic Keratosis(SEK).Fig.3 illustrates some sample test images.

    Fig.4 illustrates a confusion matrix generated by the CVOML-SLDC model on the whole skin lesion dataset.The figure indicated that the CVOML-SLDC model has identified 666 images into ACK,814 images into BCC,16 images under MEL,183 images under NEV,142 images under SCC,and 138 images under SEK classes.

    Figure 3:Sample images

    Figure 4:Confusion matrix of CVOML-SLDC model on entire dataset

    Fig.5 demonstrates an overall precision-recall examination of the CVOML-SLDC model on the entire test dataset.The figure reported that the CVOML-SLDC model has accomplished effectual performance on the classification of distinct class labels.

    Fig.6 portrays a clear ROC investigation of the CVOML-SLDC model on the entire test dataset.The figure portrayed that the CVOML-SLDC model has resulted in proficient results with maximum ROC values under distinct class labels.

    Figure 5:Precision-Recall of CVOML-SLDC model on entire dataset

    Figure 6:ROC of CVOML-SLDC model on entire dataset

    Fig.7 demonstrates a confusion matrix produced by the CVOML-SLDC model on 70% of training skin lesion dataset.The figure specified that the CVOML-SLDC model has recognized 468 images into ACK,589 images into BCC,11 images under MEL,125 images under NEV,90 images under SCC,and 93 images under SEK classes.

    Figure 7:Confusion matrix of CVOML-SLDC model on 70%of training data

    Fig.8 validates a complete precision-recall examination of the CVOML-SLDC model on 70%of training dataset.The figure stated that the CVOML-SLDC model has gained proficient outcomes on the classification of distinct class labels.

    Figure 8:Precision-Recall of CVOML-SLDC model on 70%of training dataset

    Fig.9 reveals a clear ROC examination of the CVOML-SLDC model on 70%of training dataset.The figure exposed that the CVOML-SLDC model has resulted in proficient results with supreme ROC values under different class labels.

    Figure 9:ROC of CVOML-SLDC model on 70%of training dataset

    Fig.10 exemplifies a confusion matrix created by the CVOML-SLDC model on the 30%testing skin lesion dataset.The figure specified that the CVOML-SLDC model has acknowledged 198 images into ACK,225 images into BCC,5 images under MEL,58 images under NEV,52 images under SCC,and 45 images under SEK classes.

    Figure 10:Confusion matrix of CVOML-SLDC model on 30%of testing dataset

    Fig.11 establishes an overall precision-recall examination of the CVOML-SLDC model on 30%of testing dataset.The figure reported that the CVOML-SLDC model has accomplished effectual performance on the classification of distinct class labels.

    Figure 11:Precision-Recall of CVOML-SLDC model on 30%of testing dataset

    Fig.12 describes a clear ROC investigation of the CVOML-SLDC model on 30% of testing dataset.The figure represented that the CVOML-SLDC model has resulted in capable results with maximum ROC values under distinct class labels.

    Figure 12:ROC of CVOML-SLDC model on 30%of testing dataset

    Tab.1 and Fig.13 reported the overall skin lesion classification results of the CVOML-SLDC model under distinct measures and aspects.The experimental results stated that the CVOML-SLDC model has gained effectual outcomes on all datasets.For instance,with entire dataset,the CVOMLSLDC model has resulted in an overallaccuy,precn,sensy,specy,AUC of 95.08%,85.20%,71%,96.53%,and 83.76%respectively.Along with that,with 70%of training dataset,the CVOML-SLDC model has provided an overallaccuy,precn,sensy,specy,AUC of 95.19%,85.09%,70.72%,96.55%,and 83.63%respectively.Moreover,with 30%of testing dataset,the CVOML-SLDC model has reached to overallaccuy,precn,sensy,specy,AUC of 94.83%,85.95%,71.62%,96.46%,and 84.04%respectively.

    Table 1:Overall skin cancer classification outcomes of CVOML-SLDC model on distinct classes

    Finally,a detailed comparative study of the CVOML-SLDC model with recent models is made in Tab.2[21,22].The experimental results indicated that the k-nearest neighbour(KNN)-Fusion and neural network (NN)-Fusion models have reached worse performance over the other methods.At the same time,the KNN-CNN and multi-class support vector machine (MSVM)-Fusion models have reached slightly enhanced outcomes.Followed by,the NN-CNN and MSVM-CNN models have accomplished moderately improved outcomes.However,the CVOML-SLDC model has reached maximum performance withsensyof 71.62%,specyof 96.46%,precnof 85.95%,andaccuyof 94.83%.

    Figure 13:Comparison study of CVOML-SLDC model on benchmark dataset

    Table 2:Comparative results of CVOML-SLDC model with existing models

    After observing the above mentioned tables and figures,it is demonstrated that the CVOMLSLDC model has resulted in maximum performance on the test datasets.

    5 Conclusion

    In this study,a new CVOML-SLDC technique has been developed to determine the appropriate class labels for the test dermoscopic images.The proposed CVOML-SLDC technique involves different levels of operations such as GF based pre-processing,graph cut segmentation,EfficientNet feature extraction,FFA based hyperparameter tuning,and NB classification.The application of FFA helps to effectually adjust the hyperparameter values of the EfficientNet model.The experimental analysis of the CVOML-SLDC model is performed using benchmark skin lesion dataset.The detailed comparative study of the CVOML-SLDC model reported the improved outcomes over the recent approaches interms of different evaluation metrics.Therefore,the CVOML-SLDC technique can be utilized as an effectual tool for skin lesion classification.In future,deep instance segmentation techniques can be derived to improve the detection outcomes of the CVOML-SLDC technique.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    成人国产综合亚洲| 国产亚洲精品av在线| 五月玫瑰六月丁香| 久久香蕉精品热| 级片在线观看| 国产成人aa在线观看| 欧美黄色片欧美黄色片| 成人欧美大片| 精品久久久久久成人av| 欧美日韩一级在线毛片| 噜噜噜噜噜久久久久久91| 国产不卡一卡二| 久久精品国产亚洲av涩爱 | 亚洲自拍偷在线| 婷婷精品国产亚洲av| 欧美一级a爱片免费观看看| 级片在线观看| 国产又黄又爽又无遮挡在线| 在线观看日韩欧美| 国产亚洲av嫩草精品影院| 久久精品国产清高在天天线| 成人国产一区最新在线观看| 精品国产超薄肉色丝袜足j| 波野结衣二区三区在线 | 婷婷精品国产亚洲av在线| 精品一区二区三区人妻视频| 欧美+日韩+精品| 一区二区三区国产精品乱码| 亚洲av成人精品一区久久| 欧美中文日本在线观看视频| 久久久国产成人精品二区| 中国美女看黄片| 欧美日韩中文字幕国产精品一区二区三区| 在线免费观看的www视频| 深夜精品福利| 久久国产乱子伦精品免费另类| 99视频精品全部免费 在线| 亚洲午夜理论影院| 亚洲在线自拍视频| 亚洲不卡免费看| 国产aⅴ精品一区二区三区波| 丁香六月欧美| 中文字幕久久专区| 午夜久久久久精精品| 在线播放国产精品三级| 日本撒尿小便嘘嘘汇集6| 国产淫片久久久久久久久 | 哪里可以看免费的av片| 91av网一区二区| 色老头精品视频在线观看| 少妇的逼水好多| 99精品在免费线老司机午夜| 亚洲人成网站高清观看| 美女高潮的动态| 国产亚洲精品久久久com| av视频在线观看入口| 欧美黄色片欧美黄色片| 亚洲乱码一区二区免费版| 变态另类成人亚洲欧美熟女| 两性午夜刺激爽爽歪歪视频在线观看| 黑人欧美特级aaaaaa片| 99久国产av精品| 非洲黑人性xxxx精品又粗又长| 国产精华一区二区三区| 俄罗斯特黄特色一大片| 91麻豆精品激情在线观看国产| 日本黄色视频三级网站网址| 免费无遮挡裸体视频| 中文资源天堂在线| a级一级毛片免费在线观看| 亚洲人成网站高清观看| 国产成人av教育| 观看美女的网站| 成年女人永久免费观看视频| 午夜影院日韩av| 动漫黄色视频在线观看| 一区二区三区国产精品乱码| 欧美日本亚洲视频在线播放| 国产精品99久久99久久久不卡| 制服人妻中文乱码| 18禁黄网站禁片午夜丰满| 国产亚洲欧美98| 精品日产1卡2卡| 夜夜爽天天搞| 深夜精品福利| 日韩欧美精品v在线| 国产黄片美女视频| 亚洲在线自拍视频| 欧美大码av| 国产又黄又爽又无遮挡在线| 看片在线看免费视频| 久久伊人香网站| 亚洲性夜色夜夜综合| 观看美女的网站| 精品久久久久久久末码| 狂野欧美白嫩少妇大欣赏| 女警被强在线播放| 少妇人妻精品综合一区二区 | 国产老妇女一区| 99国产极品粉嫩在线观看| 亚洲美女视频黄频| 亚洲18禁久久av| 日韩欧美免费精品| 欧美xxxx黑人xx丫x性爽| 三级毛片av免费| 最新美女视频免费是黄的| 香蕉久久夜色| 叶爱在线成人免费视频播放| 在线免费观看的www视频| 精品国产美女av久久久久小说| 欧美在线黄色| 不卡一级毛片| 国产伦一二天堂av在线观看| 国产伦一二天堂av在线观看| 久久精品国产综合久久久| 看片在线看免费视频| av专区在线播放| 国产欧美日韩精品一区二区| a级一级毛片免费在线观看| 搞女人的毛片| 老熟妇乱子伦视频在线观看| 成年女人看的毛片在线观看| 亚洲精品成人久久久久久| 亚洲精品美女久久久久99蜜臀| 熟妇人妻久久中文字幕3abv| 亚洲av电影不卡..在线观看| av黄色大香蕉| 9191精品国产免费久久| 九九在线视频观看精品| av中文乱码字幕在线| 在线观看一区二区三区| 五月玫瑰六月丁香| 嫩草影院精品99| 男人的好看免费观看在线视频| 99精品久久久久人妻精品| 免费观看的影片在线观看| 国产成人系列免费观看| 2021天堂中文幕一二区在线观| 精品乱码久久久久久99久播| АⅤ资源中文在线天堂| 听说在线观看完整版免费高清| 嫩草影院精品99| 欧美成人一区二区免费高清观看| 91久久精品国产一区二区成人 | 国模一区二区三区四区视频| 看免费av毛片| 老汉色∧v一级毛片| 一进一出抽搐gif免费好疼| 久久精品国产99精品国产亚洲性色| 欧美激情久久久久久爽电影| 国产色婷婷99| 国内久久婷婷六月综合欲色啪| 一二三四社区在线视频社区8| 一本精品99久久精品77| 亚洲av熟女| 黄色视频,在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品一卡2卡三卡4卡5卡| 久久久色成人| 亚洲人成伊人成综合网2020| 国产成人福利小说| 国产精品亚洲一级av第二区| 老司机福利观看| 两个人视频免费观看高清| 熟女少妇亚洲综合色aaa.| 国产三级在线视频| 99国产极品粉嫩在线观看| 日韩欧美国产一区二区入口| 一级黄色大片毛片| 99久久九九国产精品国产免费| 蜜桃久久精品国产亚洲av| 观看免费一级毛片| 欧美3d第一页| 欧美大码av| 观看免费一级毛片| 午夜精品一区二区三区免费看| av黄色大香蕉| 淫妇啪啪啪对白视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 一区二区三区高清视频在线| 不卡一级毛片| 成人特级黄色片久久久久久久| 日韩中文字幕欧美一区二区| 在线a可以看的网站| 波野结衣二区三区在线 | 亚洲性夜色夜夜综合| 免费电影在线观看免费观看| 免费电影在线观看免费观看| 长腿黑丝高跟| 亚洲精品色激情综合| 床上黄色一级片| 女生性感内裤真人,穿戴方法视频| 搡女人真爽免费视频火全软件 | 国产乱人伦免费视频| 99精品久久久久人妻精品| 十八禁网站免费在线| 欧美日韩国产亚洲二区| 欧美日韩国产亚洲二区| 岛国在线观看网站| 午夜两性在线视频| 五月伊人婷婷丁香| 国产一区二区亚洲精品在线观看| 日韩欧美精品免费久久 | 日本黄色片子视频| 脱女人内裤的视频| 婷婷精品国产亚洲av| av天堂在线播放| 国产精品久久久人人做人人爽| 一个人免费在线观看电影| 国产精品美女特级片免费视频播放器| 国内久久婷婷六月综合欲色啪| 国产探花极品一区二区| 一区二区三区激情视频| 在线视频色国产色| 长腿黑丝高跟| 禁无遮挡网站| av女优亚洲男人天堂| 亚洲人成网站在线播| 亚洲无线观看免费| 精品电影一区二区在线| 亚洲18禁久久av| 日韩 欧美 亚洲 中文字幕| 免费电影在线观看免费观看| 欧美黑人巨大hd| 老司机午夜福利在线观看视频| 日日夜夜操网爽| 九九在线视频观看精品| avwww免费| 九色成人免费人妻av| 男人的好看免费观看在线视频| 最新在线观看一区二区三区| 久久久久久久亚洲中文字幕 | 国产精品一及| 国产一区二区在线av高清观看| 夜夜爽天天搞| 老司机午夜福利在线观看视频| 久久久久免费精品人妻一区二区| 欧美+亚洲+日韩+国产| 久久婷婷人人爽人人干人人爱| 最近最新中文字幕大全免费视频| 国产成人影院久久av| 九色成人免费人妻av| tocl精华| 中文资源天堂在线| 老司机午夜福利在线观看视频| 久久天躁狠狠躁夜夜2o2o| 欧美zozozo另类| 国模一区二区三区四区视频| 国产伦精品一区二区三区四那| 日韩成人在线观看一区二区三区| 国产精华一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲精品不卡| 亚洲人成伊人成综合网2020| 日本黄大片高清| 久久久精品欧美日韩精品| 亚洲成a人片在线一区二区| 91在线观看av| 久久久成人免费电影| 午夜精品久久久久久毛片777| 好看av亚洲va欧美ⅴa在| 久久这里只有精品中国| 国产成人aa在线观看| 99久久精品一区二区三区| 特级一级黄色大片| 五月玫瑰六月丁香| 精品久久久久久久毛片微露脸| 一级作爱视频免费观看| 日日夜夜操网爽| 全区人妻精品视频| 麻豆国产97在线/欧美| 久99久视频精品免费| 国产久久久一区二区三区| 熟妇人妻久久中文字幕3abv| 无限看片的www在线观看| 精品人妻偷拍中文字幕| 国产精品影院久久| 亚洲精品色激情综合| 麻豆国产97在线/欧美| 91字幕亚洲| 美女黄网站色视频| 亚洲欧美日韩无卡精品| 九色成人免费人妻av| 午夜福利视频1000在线观看| 成人亚洲精品av一区二区| 淫妇啪啪啪对白视频| 两性午夜刺激爽爽歪歪视频在线观看| 97人妻精品一区二区三区麻豆| 日日干狠狠操夜夜爽| 两人在一起打扑克的视频| 88av欧美| 最好的美女福利视频网| 久久精品国产清高在天天线| 日韩av在线大香蕉| 尤物成人国产欧美一区二区三区| 岛国在线观看网站| 国产蜜桃级精品一区二区三区| 岛国在线免费视频观看| 亚洲精品乱码久久久v下载方式 | 久久中文看片网| 男插女下体视频免费在线播放| 午夜久久久久精精品| 窝窝影院91人妻| 三级男女做爰猛烈吃奶摸视频| 欧美日韩中文字幕国产精品一区二区三区| 一边摸一边抽搐一进一小说| 国产aⅴ精品一区二区三区波| 午夜精品在线福利| 欧美一区二区亚洲| 日本a在线网址| 午夜免费激情av| 欧美黄色淫秽网站| 色在线成人网| 日韩成人在线观看一区二区三区| 欧美激情在线99| 成人18禁在线播放| 国产精品久久久久久亚洲av鲁大| 成人性生交大片免费视频hd| 亚洲一区二区三区色噜噜| 最近最新中文字幕大全免费视频| 国产伦一二天堂av在线观看| 91麻豆精品激情在线观看国产| 97超级碰碰碰精品色视频在线观看| 亚洲中文字幕日韩| 午夜老司机福利剧场| 国产伦一二天堂av在线观看| 乱人视频在线观看| 99热精品在线国产| 亚洲激情在线av| 在线观看免费午夜福利视频| 熟女电影av网| 亚洲欧美日韩卡通动漫| 国产伦在线观看视频一区| 国产高清视频在线观看网站| 国产高清三级在线| 高清日韩中文字幕在线| 熟女少妇亚洲综合色aaa.| 人人妻人人澡欧美一区二区| 亚洲成人久久爱视频| 亚洲成av人片在线播放无| 国产高清视频在线观看网站| 国产精品一区二区免费欧美| 国产私拍福利视频在线观看| 精品人妻一区二区三区麻豆 | 亚洲精品粉嫩美女一区| 欧美大码av| 一a级毛片在线观看| 精品一区二区三区视频在线 | 男人的好看免费观看在线视频| 色老头精品视频在线观看| 露出奶头的视频| 亚洲人成网站高清观看| 午夜免费观看网址| 熟女人妻精品中文字幕| 天堂影院成人在线观看| 日本熟妇午夜| 久久国产乱子伦精品免费另类| 草草在线视频免费看| 欧美成人a在线观看| 淫妇啪啪啪对白视频| 97碰自拍视频| 制服丝袜大香蕉在线| 国产激情欧美一区二区| 亚洲国产欧洲综合997久久,| 日本在线视频免费播放| av欧美777| 中出人妻视频一区二区| 午夜影院日韩av| 精品无人区乱码1区二区| ponron亚洲| 国模一区二区三区四区视频| 一级黄色大片毛片| www.www免费av| 国产精品一区二区三区四区免费观看 | 国产不卡一卡二| 最新在线观看一区二区三区| 婷婷精品国产亚洲av在线| 久久九九热精品免费| 久久香蕉精品热| 国产黄色小视频在线观看| 人妻丰满熟妇av一区二区三区| 热99在线观看视频| svipshipincom国产片| 日韩欧美精品v在线| 97超级碰碰碰精品色视频在线观看| 好男人电影高清在线观看| 超碰av人人做人人爽久久 | 国产爱豆传媒在线观看| 国产精品三级大全| 啦啦啦免费观看视频1| 最近最新免费中文字幕在线| 亚洲av美国av| 国产中年淑女户外野战色| 国产亚洲精品久久久久久毛片| 久久精品综合一区二区三区| 亚洲第一欧美日韩一区二区三区| 在线a可以看的网站| 午夜福利免费观看在线| 亚洲不卡免费看| 国产三级中文精品| 两个人视频免费观看高清| 亚洲av电影不卡..在线观看| 亚洲专区国产一区二区| 最近最新中文字幕大全免费视频| 欧美不卡视频在线免费观看| 51午夜福利影视在线观看| netflix在线观看网站| 一二三四社区在线视频社区8| 国产成人av激情在线播放| 91av网一区二区| 中文字幕精品亚洲无线码一区| 国产精品1区2区在线观看.| 天天躁日日操中文字幕| 久久国产精品影院| 美女cb高潮喷水在线观看| 国产老妇女一区| 中亚洲国语对白在线视频| 国产精品1区2区在线观看.| 亚洲精华国产精华精| 国产探花极品一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产免费男女视频| 五月玫瑰六月丁香| 在线播放国产精品三级| 国产三级在线视频| 午夜激情欧美在线| 色哟哟哟哟哟哟| 精品免费久久久久久久清纯| 18+在线观看网站| 久久精品影院6| 黄色丝袜av网址大全| 人妻夜夜爽99麻豆av| 免费看十八禁软件| 中文资源天堂在线| 亚洲精品粉嫩美女一区| 午夜福利成人在线免费观看| 神马国产精品三级电影在线观看| 久久久久久久精品吃奶| 9191精品国产免费久久| 亚洲激情在线av| 成人亚洲精品av一区二区| 91久久精品电影网| 女警被强在线播放| 神马国产精品三级电影在线观看| 久久久国产成人精品二区| 丁香欧美五月| 性欧美人与动物交配| 亚洲乱码一区二区免费版| www国产在线视频色| 中文字幕人成人乱码亚洲影| 99视频精品全部免费 在线| 在线视频色国产色| 国产麻豆成人av免费视频| 精品午夜福利视频在线观看一区| 成人18禁在线播放| av在线蜜桃| 51午夜福利影视在线观看| 免费一级毛片在线播放高清视频| www.色视频.com| 又爽又黄无遮挡网站| 1000部很黄的大片| 最近最新免费中文字幕在线| 亚洲av成人精品一区久久| 两个人看的免费小视频| 国产精品综合久久久久久久免费| АⅤ资源中文在线天堂| 特大巨黑吊av在线直播| 一进一出抽搐gif免费好疼| 啪啪无遮挡十八禁网站| netflix在线观看网站| 国产国拍精品亚洲av在线观看 | 中文字幕高清在线视频| 淫秽高清视频在线观看| 久久精品亚洲精品国产色婷小说| 国产一区二区亚洲精品在线观看| 欧美日韩国产亚洲二区| 丝袜美腿在线中文| 黄色成人免费大全| 精品欧美国产一区二区三| 久久久久久九九精品二区国产| 老司机午夜十八禁免费视频| 一级a爱片免费观看的视频| 蜜桃久久精品国产亚洲av| 宅男免费午夜| 最近最新中文字幕大全电影3| 色在线成人网| www.www免费av| 久久天躁狠狠躁夜夜2o2o| 人人妻人人看人人澡| 国产精品久久久久久精品电影| 真人一进一出gif抽搐免费| 岛国在线观看网站| 欧美激情在线99| 女同久久另类99精品国产91| 成年人黄色毛片网站| 又粗又爽又猛毛片免费看| 少妇人妻精品综合一区二区 | 一区二区三区国产精品乱码| 草草在线视频免费看| 国产麻豆成人av免费视频| 一进一出抽搐动态| 757午夜福利合集在线观看| 午夜亚洲福利在线播放| 搞女人的毛片| 亚洲七黄色美女视频| 免费无遮挡裸体视频| 一个人免费在线观看电影| 国产精品1区2区在线观看.| 成年人黄色毛片网站| 亚洲av成人不卡在线观看播放网| 首页视频小说图片口味搜索| 一级a爱片免费观看的视频| 国产在视频线在精品| 国产黄a三级三级三级人| 波多野结衣巨乳人妻| 欧美性感艳星| 岛国在线观看网站| 亚洲最大成人手机在线| 日韩中文字幕欧美一区二区| bbb黄色大片| 91av网一区二区| 亚洲天堂国产精品一区在线| 欧美一区二区国产精品久久精品| 亚洲欧美日韩东京热| 高清毛片免费观看视频网站| 久久精品人妻少妇| 亚洲av不卡在线观看| 国产欧美日韩一区二区三| 国产探花在线观看一区二区| 观看美女的网站| 欧美日韩精品网址| 午夜精品久久久久久毛片777| 亚洲美女黄片视频| 亚洲天堂国产精品一区在线| 久久久久久大精品| 国产乱人伦免费视频| 麻豆国产av国片精品| 村上凉子中文字幕在线| 法律面前人人平等表现在哪些方面| 五月玫瑰六月丁香| 欧美+日韩+精品| 欧美xxxx黑人xx丫x性爽| 身体一侧抽搐| av片东京热男人的天堂| 一进一出好大好爽视频| 久久久久久久久中文| 丝袜美腿在线中文| 两个人的视频大全免费| 蜜桃亚洲精品一区二区三区| 精品国产美女av久久久久小说| 欧美一级a爱片免费观看看| 久久久精品欧美日韩精品| 婷婷精品国产亚洲av| 精品熟女少妇八av免费久了| 国产真人三级小视频在线观看| 日韩欧美国产在线观看| 国产一区二区三区在线臀色熟女| 一个人看的www免费观看视频| 别揉我奶头~嗯~啊~动态视频| 国产成人系列免费观看| 国产成人a区在线观看| 免费看美女性在线毛片视频| 亚洲色图av天堂| 我要搜黄色片| 精品国产亚洲在线| 少妇人妻精品综合一区二区 | 12—13女人毛片做爰片一| 国产成人欧美在线观看| 精品国产美女av久久久久小说| 午夜视频国产福利| av在线天堂中文字幕| 亚洲国产日韩欧美精品在线观看 | 日本黄大片高清| 欧美色视频一区免费| 在线观看免费视频日本深夜| 国内毛片毛片毛片毛片毛片| 九色国产91popny在线| 欧美bdsm另类| 一级作爱视频免费观看| 国产视频一区二区在线看| 搡老妇女老女人老熟妇| 99久久精品一区二区三区| 久久久久久国产a免费观看| 午夜福利成人在线免费观看| 成人av一区二区三区在线看| 男人的好看免费观看在线视频| 国产精品99久久99久久久不卡| 狠狠狠狠99中文字幕| 欧美绝顶高潮抽搐喷水| 91在线精品国自产拍蜜月 | 美女 人体艺术 gogo| 久久久成人免费电影| 免费av观看视频| 18禁裸乳无遮挡免费网站照片| 国产男靠女视频免费网站| 国产单亲对白刺激| 波多野结衣高清作品| 国内精品一区二区在线观看| 午夜精品在线福利| 欧美在线黄色| 成人欧美大片| 女人十人毛片免费观看3o分钟| 老熟妇仑乱视频hdxx| 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 天堂av国产一区二区熟女人妻| 日韩欧美免费精品| 免费无遮挡裸体视频| 在线免费观看不下载黄p国产 | 日韩欧美精品v在线| 欧美一级a爱片免费观看看| 亚洲av熟女| 日韩中文字幕欧美一区二区| 两人在一起打扑克的视频| 深夜精品福利|