• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Fusion-Based Handcrafted with Deep Features for Brain Cancer Classification

    2022-11-10 02:29:56MahmoudRagabSultanahAlshammariAmerAsseriandWaleedAlmutiry
    Computers Materials&Continua 2022年10期

    Mahmoud Ragab,Sultanah M.Alshammari,Amer H.Asseri and Waleed K.Almutiry

    1Information Technology Department,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    2Center for Artificial Intelligence in Precision Medicines,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    3Mathematics Department,Faculty of Science,Al-Azhar University,Naser City,11884,Cairo,Egypt

    4Computer Science Department,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    5Biochemistry Department,Faculty of Science,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    6Department of Mathematics,College of Science and Arts in Ar Rass,Qassim University,Buryadah,52571,Saudi Arabia

    Abstract:Brain cancer detection and classification is done utilizing distinct medical imaging modalities like computed tomography (CT),or magnetic resonance imaging (MRI).An automated brain cancer classification using computer aided diagnosis (CAD) models can be designed to assist radiologists.With the recent advancement in computer vision (CV) and deep learning (DL) models,it is possible to automatically detect the tumor from images using a computer-aided design.This study focuses on the design of automated Henry Gas Solubility Optimization with Fusion of Handcrafted and Deep Features(HGSO-FHDF)technique for brain cancer classification.The proposed HGSO-FHDF technique aims for detecting and classifying different stages of brain tumors.The proposed HGSO-FHDF technique involves Gabor filtering(GF)technique for removing the noise and enhancing the quality of MRI images.In addition,Tsallis entropy based image segmentation approach is applied to determine injured brain regions in the MRI image.Moreover,a fusion of handcrafted with deep features using Residual Network (ResNet) is utilized as feature extractors.Finally,HGSO algorithm with kernel extreme learning machine(KELM)model was utilized for identifying the presence of brain tumors.For examining the enhanced brain tumor classification performance,a comprehensive set of simulations take place on the BRATS 2015 dataset.

    Keywords:Brain cancer;medical imaging;deep learning;fusion model;metaheuristics;feature extraction;handcrafted features

    1 Introduction

    The death rate because of brain cancer is the maximum in Asia[1].Brain cancer grows in the spinal cord or brain[2].The many symptoms of brain cancer involve frequent headaches,coordination issues,changes in speech,mood swings,seizures,memory loss,and difficulty in concentration.Brain cancer is a type of cancer that remains in the central nervous system or brain[3].It can be classified as to distinct types based on the origin,nature,progression stage,and rate of growth[4].Either,it is benign or malignant.Benign brain cancer cells hardly attack adjacent healthy cells,have a slower progression rate(for example,pituitary cancers,meningiomas,astrocytoma),and dissimilar boundaries.Malignant brain cancer cells (for example higher-grade astrocytoma,oligodendrogliomas,and so on) willingly invade adjacent cells in the spinal cord or brain,have rapid progression rates and fuzzy borders[5].Further,it is categorized into two kinds according to the origin:primary and secondary brain cancers.

    Primary cancer directly originates in the brain.When cancer develops in the brain because of cancer present in some other body organs like stomach,lungs,and so on,also it is called a metastasis or secondary brain cancer.Furthermore,grading of brain cancer can be performed according to the growth rate of tumorous cells.Also,Brain cancer is considered by the progression phases(Stage-0,1,2,3,and 4).Stage-0 represents tumorous cancer cells that are abnormal,however,it doesn’t spread to neighboring cells[6].Stages-1,2,and 3 denote cells that are tumorous and spread quickly.Lastly,in Stage-4 cancer spread all over the body.It is certain that a considerable number of people were saved when cancer was identified at an earlier phase via cost-effective and fast diagnoses methods[7].But it is complex for treating cancer at the highest stage where the survival rate is lower.The imaging modalities like magnetic resonance imaging (MRI),or computed tomography (CT) of the brain are safer and faster methods when compared to biopsy.This imaging modality assists radiotherapists to observe disease progression,discover brain disorders,and in operational procedures[8].

    Brain image reading or brain scans to cure disorder is subjected to inter-reader accuracy and variability based on the ability of the doctor[9].Various studies have been conducted for developing a robust and accurate solution for the automated classification of brain cancer.But,because of higher inter and intra contrast,shape,and texture dissimilarities,it remains a challenge.The conventional machine learning(ML)method is based on hand-engineered features that restrain the strength of the solution.While the deep learning-based approach extracts useful features that provide good results[10].Deep learning (DL)-based technique requires a huge number of interpreted information for training,and acquiring this information is a difficult process.Kang et al.[11]presented a technique to brain tumor classifier utilizing an ensemble of deep feature and ML techniques.During this presented structure,can be adapted the model of transfer learning utilizes a different pre-trained deep convolutional neural network(DCNN)for extracting deep features in brain MRI.The extracting deep feature is then estimated by different ML techniques.

    The authors in[12]established a multi-level attention process to the task of brain tumor detection.The presented multi-level attention network (MANet) comprises both spatial and crosschannel attention that not only efforts on prioritized tumor region.The authors in[13]presented a novel technique that utilizes DCNNs to classify brain tumors as normal and 3 distinct varieties.The tumor has primarily segmented in the MRI utilizing an improved Independent Component Analysis (ICA) mixture mode method.From the segmentation image,deep feature is extracted and classified.The authors in[14]concentrated on a 3-class classifier problem for distinguishing amongst glioma,meningioma,and pituitary tumors that procedure 3 prominent varieties of brain tumor.The presented classifier method adapts the model of deep transfer learning(TL)and utilizes a pre-trained GoogLeNet for extracting features in brain MRI images.

    The authors in[15]presented an intelligent diagnostic model to initial recognition of brain tumor dependent upon radial basis function neural network (RBFNN) and effective deep feature of MRI scan.During the segmentation element,Grab cut approach was executed to segment the tumor region.During the feature extracting component,a CNN was employed to extract of novel deep feature in a segmented image.The extracting deep feature is fed as to RBFNN from the classifier modules.Devnath et al.[16]present a method for automatically detecting pneumoconiosis utilizing a deep features based binary classification.A CNN technique pre-trained with TL in a CheXNet method is primarily utilized for extracting deep features in the X-Ray image,afterward,the deep feature is mapped to high dimension feature space to classifier utilizing SVM and CNN based feature aggregation techniques.

    This study focuses on the design of automated Henry Gas Solubility Optimization with Fusion of Handcrafted and Deep Features (HGSO-FHDF) technique for brain cancer classification.The proposed HGSO-FHDF technique involves Gabor filtering (GF) technique for removing the noise and enhancing the quality of the MRI images.In addition,Tsallis entropy based image segmentation approach is applied to determine injured brain regions in the MRI image.Moreover,a fusion of handcrafted with deep features using Residual Network(ResNet)is utilized as feature extractors.Finally,HGSO algorithm with kernel extreme learning machine(KELM)model was utilized for identifying presence of brain tumors.For examining the enhanced brain tumor classification performance,a comprehensive set of simulations take place on the BRATS 2015 dataset.

    2 The Proposed HGSO-FHDF Model

    In this study,a new HGSO-FHDF technique has been developed for the identification and classification of brain cancer.The presented HGSO-FHDF technique comprises several steps(as shown in Fig.1)such as GF based pre-processing,Tsallis segmentation,fusion based feature extraction,KELM classifier,and HGSO based parameter optimization.At the final stage,the HGSO algorithm with KELM model was utilized for identifying presence of brain tumors.

    Figure 1:Overall workflow of the proposed model

    2.1 Image Pre-processing Using GF Technique

    At the primary stage,the input images are preprocessed by the use of GF technique.Gabor transform has a unique biological background.The Gabor filter is the same as the direct representation and frequency of the human visual scheme in terms of direction and frequency,also extracting local data of distinct directions,frequencies,and spatial positions of an image.A main benefit of GF is invariant to translation,scale,and rotation.The purpose why Gabor wavelet is utilized for facial expression detection is that once expression change occurs,the main portions of the face like eyebrows,eyes,and mouth undergoes great change because of muscle change.This part is reflected in the image as grayscale changes.Now,the real and imaginary portions of the wavelet vary,hence the amplitude response of the GF would be very clear,hence it is better suited for extracting local features.In image processing,2D Gabor filtering is commonly utilized for processing the image.The kernel function of the 2D Gabor wavelet is given as follows:

    Whereasuandvrepresents the direction and frequency of Gabor wavelet kernel,z=(x,y)signifies the location of pixel in an image,σsignifies the filter bandwidth,and |kuv|2/σ2is utilized for compensating the attenuation of energy spectrum defined by the frequency.The Gabor feature of the image is attained by convolving the Gabor wavelet kernel and the facial expression image.Assume that the gray values of(x,y)point in the facial expression image is fixed tok,it can be expressed as follows

    WhereasGuv(x,y)denotes the Gabor feature of the extracted image,ψUV(x,y)denotes the kernel function of 2S Gabor wavelet,and*indicates the convolutional process.

    2.2 Tsallis Entropy Based Segmentation

    Here,Tsallis entropy is applied to segment the affected regions.The entropy is related to the chaos metric in the system.Primarily,Shannon indicated that when the physical systems are separated into 2 statistical free subsystemA&B,entropy value can be defined as follows:

    Based on Shannon concept,a non-extensive entropy concept is derived as given below.

    whereTsignifies the system potential,qdesignates the entropic index,andpidenotes likelihood of every statei.The Tsallis entropySqsatisfies Shannon entropy byq→1.The entropy value is defined by the use of pseudo additive rule as given below:

    The Tsallis entropy is employed for identifying optimal thresholds of the images.ConsiderLgray levels in the interval{0,1,...,L-1}with probability distributionpi=p0,p1,...,pL-1.So,the Tsallis multilevel thresholding is defined using following equations.

    whereas

    2.3 Feature Extraction

    ResNet comprises a residual learning unit in resolving the weakening of DL models.It enables to allow the inclusion of new inputs and outputs[18].Fig.2 shows the structure of residual blocks.A major benefit is an improvement in classifier results with no inclusion of model complexities.The ResNet152 model has been developed by the integration of 3-layer blocks,which is less complicated compared to other models.The connections among the residual block are advantages.It helps to maintain the data attained via training and improves model building time.

    Figure 2:Structure of Residual Blocks

    2.4 KELM Based Classification

    Next to feature extraction process,the KELM model has been developed for the identification of breast cancer[19].An extreme learning machine(ELM)resultant function under the case of single resultant node is:

    where is the resultant weight amongst theithnode of hidden and output states andβ=[β1,...,βL]Trepresents the resultant weight vector.G(ai,bi,x)signifies the output ofithhidden state node and the node parameter has arbitrarily created.h(x)=[G(a1,b1,x),...,G(aL,bL,x)]Tsignifies the resultant vector of hidden state comparative to input.Then introduced the kernel function,the kernel matrix of KELM is determined as:

    The resultant function of ELM classification is more expressed as:

    whereIrefers the identity matrix,λimplies the regularized co-efficient,andTstands for the trained set label.Afterward,it can utilize this technique,it does not require knowing the particular method of feature maph(x)then utilizing the kernel function for resultant calculation.

    2.5 Optimal Parameter Adjustment Using HGSO Algorithm

    At the final stage,the HGSO algorithm has been employed to optimally tune the parameters involved in it[20].According to Henry’s law,it reproduces the huddling performance of gas for balancing exploitation as well as exploration from the searching space and avoiding local optimum.The core functions needed for this work are listed as follows.Henry’s co-efficient is computed utilizing in Eq.(15).

    whereT(m)refers the temperature ofmthgeneration.T(m)= exp(-m/MaxIter).Tθ= 298.15.The population has been separated as to equivalent clusters corresponding to the amount of gas types.All the clusters share the similar Henry’s constant value(Hj).A primary generation co-efficientHj(1)=0.05·rand().rand()implies the function which creates an arbitrary number amongst zero and one.Another co-efficientCj=0.01.rand().The solubility has been obtained utilizing Eq.(15).

    whereSi,j(m)signifies the solubility of gasifrom the clusterjofmthgeneration.Ksrefer the constant.Pi,j(m)represents the partial pressure on gasifrom the clusterjofmthgeneration.The place here relates to the SVR parameter in this work.This function is very serious and upgrades utilizing in Eq.(17).

    whereXi,j(m)denotes the place of gasifrom the clusterjofmthgeneration.Xi,j(m+1)indicates the next place ofXi,j(m).rstands for the arbitrary value amongst zero and one.α=1.βrefers the constant.Frepresents the flag which changes the direction of searching agent and offers diversity= ±.Xj,opt(m)defines the optimum gas from the clusterjofmthgeneration.Xopt(m)demonstrated the optimum gas ofmthgeneration.Fopt(m)signifies the fitness of optimum gas ofmthgeneration.F(m)means the fitness of gasifrom the clusterjofmthgeneration.The rank and choose the amount of worse individuals(Nw)utilizing in Eq.(18).

    Assume that the worse individual recreates in the numerical range utilized in Eq.(19).

    whereGkrefers the place or worse individuals.1 ≤k≤Nw.rastands for the arbitrary value amongst zero and one.

    3 Results and Discussion

    The performance validation of the HGSO-FHDF technique is tested using the Figshare dataset[21].The dataset includes three class labels with 150 images under Meningioma,150 images under Glioma,and 150 images under Pituitary classes.Fig.3 demonstrates the sample set of test images.

    Fig.4 highlights the confusion matrices of the HGSO-FHDF model under different hidden layers(HLs).The figure indicated that the HGSO-FHDF model has effectually recognized all the classes under all HLs.

    Tab.1 reports comprehensive classification outcomes of the HGSO-FHDF model under different numbers of hidden layers(HLs).The experimental values denoted that the HGSO-FHDF model has accomplished maximum outcome under all HLs.

    Figure 3:Sample images

    Figure 4:Confusion matrices of HGSO-FHDF model

    Table 1:Overall classification results of HGSO-FHDF model

    Fig.5 demonstrates the classifier results of the HGSO-FHDF model under HL of 5.The figure indicated that the HGSO-FHDF model has effectually identified all the classes.For instance,with Meningioma class,the HGSO-FHDF model has offeredsensyof 92.67%,specyof 97.67%,accuyof 96%,andFscoreof 93.92%respectively.Along with that,with Glioma class,the HGSO-FHDF model has providedsensyof 93.33%,specyof 96.67%,accuyof 95.56%,andFscoreof 94.08%respectively.Moreover,with Pituitary class,the HGSO-FHDF model has reachedsensyof 95.33%,specyof 96.33%,accuyof 96%,andFscoreof 94.08%respectively.

    Figure 5:Classification results of HGSO-FHDF model under HL-5

    Fig.6 validates the classifier results of the HGSO-FHDF model under HL of 10.The figure designated that the HGSO-FHDF model has effectively recognized all the classes.For instance,with Meningioma class,the HGSO-FHDF model has presentedsensyof 92%,specyof 95.67%,accuyof 94.44%,andFscoreof 91.69% respectively.Also,with Glioma class,the HGSO-FHDF model has providedsensyof 94.67%,specyof 96.33%,accuyof 95.78%,andFscoreof 93.73% respectively.Also,with Pituitary class,the HGSO-FHDF model has reachedsensyof 92.67%,specyof 97.67%,accuyof 96%,andFscoreof 93.92%respectively.

    Figure 6:Classification results of HGSO-FHDF model under HL-10

    Fig.7 provides the classification outcomes of the HGSO-FHDF model under HL of 10.The figure designated that the HGSO-FHDF model has effectively recognized all the classes.For instance,with Meningioma class,the HGSO-FHDF model has presentedsensyof 91.33%,specyof 98.33%,accuyof 96%,andFscoreof 93.84% respectively.Likewise,with Glioma class,the HGSO-FHDF model has providedsensyof 95.33%,specyof 97%,accuyof 96.44%,andFscoreof 94.70% respectively.Likewise,with Pituitary class,the HGSO-FHDF model has reachedsensyof 98%,specyof 97.00%,accuyof 97.33%,andFscoreof 96.08%respectively.

    Figure 7:Classification results of HGSO-FHDF model under HL-15

    Fig.8 showcases the accuracy and loss graphs offered by the HGSO-FHDF technique on the training and validation datasets under varying numbers of hidden layers.The figure portrayed that the HGSO-FHDF technique has resulted in increased accuracy and reduced loss.

    Figure 8:(Continued)

    Figure 8:Accuracy and Loss Graph of HGSO-FHDF model

    For demonstrating the better outcomes of the HGSO-FHDF technique,a detailed comparison study is made with existing techniques[22]in Tab.2.Fig.9 demonstrates thekappaexamination of the HGSO-FHDF model with existing techniques.The figure represented that the ResNet50,Inc.V3,and M-Net V2 models have attained lesserkappavalues of 90.52%,88.67%,and 86.67%.Besides,the DNet201 model has resulted in certainly improvedkappavalue of 90.24%.However,the HGSOFHDF model has reached better performance with a higherkappaof 92.33%.

    Table 2:Comparative analysis of HGSO-FHDF model

    Fig.10 illustrates theaccuyinvestigation of the HGSO-FHDF model with recent methods.The figure portrayed that the ResNet50,Inc.V3,and M-Net V2 models have obtained loweraccuyvalues of 93.16%,93.04%,and 93.19%.At the same time,the DNet201 model has gained a slightly increasedaccuyvalue of 94.50%.However,the HGSO-FHDF model has accomplished a superior outcome with a maximumaccuyof 96.59%.The above mentioned tables and figures reported that the HGSO-FHDF model has resulted in maximum classification outcomes over the other methods.

    Figure 9:Comparative classification results of HGSO-FHDF model in terms of accuy

    Figure 10:Comparative classification results of HGSO-FHDF model in terms of kappa

    4 Conclusion

    In this study,a new HGSO-FHDF technique has been developed for the identification and classification of brain cancer.The presented HGSO-FHDF technique comprises GF based preprocessing,Tsallis segmentation,fusion based feature extraction,KELM classifier,and HGSO based parameter optimization.At the final stage,the HGSO algorithm with KELM model was utilized for identifying presence of brain tumors.For examining the enhanced brain tumor classification performance,a comprehensive set of simulations occur on BRATS 2015 dataset.The comparative study of the HGSO-FHDF technique can be utilized as a proficient approach for brain cancer classification.Therefore,the HGSO-FHDF approach is employed as an effective tool for brain cancer detection.In future,advanced DL based segmentation models can be introduced to improve classification results.

    Acknowledgement:The authors extend their appreciation to the Deputyship for Research and Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPHI-180-612-2020)and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.

    Funding Statement:This research work was funded by Institutional fund projects under grant no.(IFPHI-180-612-2020).Therefore,the authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产伦一二天堂av在线观看| 日本午夜av视频| 国产三级在线视频| 国产精品一区二区三区四区久久| 亚洲最大成人手机在线| 欧美3d第一页| 看片在线看免费视频| 亚洲中文字幕日韩| 精品一区二区免费观看| 国产黄色小视频在线观看| 久99久视频精品免费| 色尼玛亚洲综合影院| 国产成人freesex在线| 男的添女的下面高潮视频| 97超视频在线观看视频| 男人的好看免费观看在线视频| 免费看av在线观看网站| 国产探花极品一区二区| 日本五十路高清| 国产一区二区亚洲精品在线观看| 中文字幕精品亚洲无线码一区| 我的老师免费观看完整版| 3wmmmm亚洲av在线观看| 91精品伊人久久大香线蕉| 欧美丝袜亚洲另类| a级一级毛片免费在线观看| 欧美日韩综合久久久久久| 亚洲成人中文字幕在线播放| 欧美激情在线99| 乱系列少妇在线播放| 中文字幕制服av| 亚洲成人久久爱视频| videossex国产| 久久99热6这里只有精品| 久久久久久久亚洲中文字幕| 中文在线观看免费www的网站| 日韩欧美在线乱码| 国产成人精品久久久久久| 国产午夜精品久久久久久一区二区三区| 日韩三级伦理在线观看| 亚洲欧美精品自产自拍| 国产免费福利视频在线观看| 成人毛片60女人毛片免费| 日韩av在线免费看完整版不卡| 成人毛片60女人毛片免费| 人体艺术视频欧美日本| 哪个播放器可以免费观看大片| 国产亚洲91精品色在线| 日韩大片免费观看网站 | 亚洲av福利一区| 一区二区三区四区激情视频| 六月丁香七月| 久久久色成人| 18禁动态无遮挡网站| 观看免费一级毛片| 人妻系列 视频| 男女那种视频在线观看| 国产成人freesex在线| 国产伦在线观看视频一区| 三级男女做爰猛烈吃奶摸视频| 人妻夜夜爽99麻豆av| 亚洲国产精品sss在线观看| 亚洲美女视频黄频| 久久精品夜夜夜夜夜久久蜜豆| 久久精品综合一区二区三区| 国模一区二区三区四区视频| 啦啦啦韩国在线观看视频| 观看免费一级毛片| av专区在线播放| 免费一级毛片在线播放高清视频| 黄色欧美视频在线观看| 少妇的逼水好多| 国产精品.久久久| 精品一区二区三区人妻视频| 亚洲国产精品sss在线观看| 亚洲伊人久久精品综合 | 99在线视频只有这里精品首页| 精品无人区乱码1区二区| 国产一区有黄有色的免费视频 | 国产精品.久久久| 午夜久久久久精精品| av黄色大香蕉| 亚洲在线自拍视频| 国产又色又爽无遮挡免| 黄色日韩在线| 最新中文字幕久久久久| 最后的刺客免费高清国语| 国产av一区在线观看免费| 色网站视频免费| 久久精品久久久久久噜噜老黄 | 免费在线观看成人毛片| 99热精品在线国产| 亚洲中文字幕一区二区三区有码在线看| 亚洲一级一片aⅴ在线观看| 一区二区三区乱码不卡18| 国产在视频线在精品| 插逼视频在线观看| 国产一区二区在线av高清观看| 欧美色视频一区免费| 美女被艹到高潮喷水动态| 国产高潮美女av| 久久人人爽人人爽人人片va| 三级国产精品片| 中文资源天堂在线| 久久精品国产自在天天线| 女人十人毛片免费观看3o分钟| 国产精品久久电影中文字幕| 三级国产精品欧美在线观看| 亚洲精品国产成人久久av| 成人性生交大片免费视频hd| 亚洲性久久影院| 成人三级黄色视频| 国产在视频线精品| 国产欧美日韩精品一区二区| 日韩一本色道免费dvd| 日韩强制内射视频| 一级黄片播放器| 亚洲欧美成人精品一区二区| 男人舔女人下体高潮全视频| 亚洲高清免费不卡视频| 色尼玛亚洲综合影院| av天堂中文字幕网| 国产亚洲91精品色在线| 国产一级毛片在线| 国产熟女欧美一区二区| 有码 亚洲区| 欧美xxxx性猛交bbbb| kizo精华| 在线观看一区二区三区| 日韩亚洲欧美综合| 久久久欧美国产精品| 亚洲欧美精品专区久久| av在线播放精品| 亚洲av电影不卡..在线观看| 欧美日韩综合久久久久久| 亚洲国产欧美在线一区| 熟女人妻精品中文字幕| 不卡视频在线观看欧美| 久久久久久久久久黄片| 99热这里只有是精品在线观看| 一个人看视频在线观看www免费| 村上凉子中文字幕在线| 免费搜索国产男女视频| 青春草视频在线免费观看| 日韩人妻高清精品专区| 综合色丁香网| 亚洲av成人精品一区久久| 日韩一本色道免费dvd| 午夜亚洲福利在线播放| 久久久a久久爽久久v久久| 成人毛片a级毛片在线播放| 久久久久久久午夜电影| 成人鲁丝片一二三区免费| 黄色配什么色好看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色吧在线观看| av女优亚洲男人天堂| 人人妻人人看人人澡| 精华霜和精华液先用哪个| 精品久久久久久久末码| 麻豆一二三区av精品| 久久国产乱子免费精品| 国产精华一区二区三区| 国产伦理片在线播放av一区| 色综合亚洲欧美另类图片| 久久国内精品自在自线图片| 看片在线看免费视频| av免费观看日本| 一区二区三区免费毛片| 欧美高清成人免费视频www| 少妇人妻一区二区三区视频| 久久久色成人| 成年版毛片免费区| 国产精品精品国产色婷婷| 久久久久久久久久久丰满| 两个人的视频大全免费| 国产免费视频播放在线视频 | 天堂中文最新版在线下载 | 久久精品人妻少妇| 日韩欧美精品免费久久| 高清视频免费观看一区二区 | 18禁裸乳无遮挡免费网站照片| 啦啦啦韩国在线观看视频| 97人妻精品一区二区三区麻豆| 亚洲欧美清纯卡通| 午夜视频国产福利| 免费av毛片视频| 中文字幕精品亚洲无线码一区| 国产精品一区二区三区四区免费观看| 日韩三级伦理在线观看| 亚洲人成网站在线播| 国产女主播在线喷水免费视频网站 | 午夜福利在线观看免费完整高清在| av在线天堂中文字幕| 99久久人妻综合| 一区二区三区高清视频在线| 我要看日韩黄色一级片| 韩国av在线不卡| 午夜福利成人在线免费观看| 亚洲国产欧洲综合997久久,| 免费看美女性在线毛片视频| 三级国产精品片| 亚洲在线自拍视频| 高清视频免费观看一区二区 | 22中文网久久字幕| 中文精品一卡2卡3卡4更新| 久久午夜福利片| 乱码一卡2卡4卡精品| 中文资源天堂在线| 欧美成人午夜免费资源| 午夜免费男女啪啪视频观看| 亚洲精品aⅴ在线观看| 国产极品天堂在线| 国产免费一级a男人的天堂| 亚洲精品国产成人久久av| 国产69精品久久久久777片| 欧美人与善性xxx| 久久99蜜桃精品久久| 免费看美女性在线毛片视频| 建设人人有责人人尽责人人享有的 | 尤物成人国产欧美一区二区三区| 国产精品.久久久| 久久这里只有精品中国| videossex国产| 十八禁国产超污无遮挡网站| 99视频精品全部免费 在线| 在线免费观看的www视频| 国产精华一区二区三区| 日本一二三区视频观看| 国产精品麻豆人妻色哟哟久久 | 国产白丝娇喘喷水9色精品| 亚洲国产精品sss在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产精品蜜桃在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕av成人在线电影| 国产精品一区二区三区四区久久| 久久人人爽人人片av| 久久久久国产网址| 日韩三级伦理在线观看| 成年免费大片在线观看| 国产精品国产高清国产av| 少妇被粗大猛烈的视频| 久久精品综合一区二区三区| 麻豆av噜噜一区二区三区| 国产高清三级在线| 麻豆久久精品国产亚洲av| 欧美一区二区国产精品久久精品| 99热这里只有是精品在线观看| 欧美日韩国产亚洲二区| 日韩av在线免费看完整版不卡| 听说在线观看完整版免费高清| 最近的中文字幕免费完整| 国产探花在线观看一区二区| 高清视频免费观看一区二区 | 菩萨蛮人人尽说江南好唐韦庄 | 国产亚洲av片在线观看秒播厂 | 亚州av有码| 一本久久精品| 赤兔流量卡办理| 3wmmmm亚洲av在线观看| 天天躁日日操中文字幕| 午夜久久久久精精品| 亚洲av二区三区四区| 在线观看一区二区三区| 久久韩国三级中文字幕| 男人狂女人下面高潮的视频| 黄色一级大片看看| 日韩制服骚丝袜av| 欧美性感艳星| 国产精品久久久久久久久免| 久久久久久久久久久免费av| 听说在线观看完整版免费高清| 欧美另类亚洲清纯唯美| 久久精品91蜜桃| 亚洲av福利一区| 一区二区三区乱码不卡18| 亚洲国产精品久久男人天堂| 熟妇人妻久久中文字幕3abv| 国产一区二区三区av在线| 免费看美女性在线毛片视频| 亚洲精华国产精华液的使用体验| 国国产精品蜜臀av免费| 日韩视频在线欧美| 日韩欧美三级三区| av黄色大香蕉| 久久精品国产自在天天线| 青春草国产在线视频| 纵有疾风起免费观看全集完整版 | 18禁裸乳无遮挡免费网站照片| 久久99热这里只有精品18| 国产成人一区二区在线| 欧美日韩在线观看h| 日韩高清综合在线| 国产探花在线观看一区二区| 人人妻人人澡欧美一区二区| 我要搜黄色片| 国产久久久一区二区三区| 日本免费在线观看一区| 国产一区亚洲一区在线观看| 久99久视频精品免费| 精品少妇黑人巨大在线播放 | 欧美一区二区亚洲| 国产视频首页在线观看| 国产亚洲一区二区精品| 大香蕉久久网| 亚洲av免费在线观看| 国产精品一区www在线观看| 亚洲国产日韩欧美精品在线观看| 91午夜精品亚洲一区二区三区| 在线观看一区二区三区| 美女cb高潮喷水在线观看| 青春草视频在线免费观看| 久久欧美精品欧美久久欧美| 深爱激情五月婷婷| 亚洲精品乱码久久久v下载方式| 国产免费福利视频在线观看| 亚洲av成人av| 韩国高清视频一区二区三区| 亚洲精华国产精华液的使用体验| 在线播放国产精品三级| 永久免费av网站大全| 丰满乱子伦码专区| 国产一级毛片在线| 大又大粗又爽又黄少妇毛片口| 日本免费在线观看一区| 九色成人免费人妻av| 久久久国产成人精品二区| 日日摸夜夜添夜夜添av毛片| 亚洲人成网站高清观看| 亚洲精品乱码久久久久久按摩| 日本免费a在线| 我要看日韩黄色一级片| 高清av免费在线| 欧美bdsm另类| 亚洲aⅴ乱码一区二区在线播放| 免费黄网站久久成人精品| 国产精品电影一区二区三区| 国产淫语在线视频| 天堂中文最新版在线下载 | 性色avwww在线观看| 成人综合一区亚洲| 亚洲成人精品中文字幕电影| 国产免费视频播放在线视频 | 国产精品麻豆人妻色哟哟久久 | 国产精品综合久久久久久久免费| 国产精品女同一区二区软件| 中文字幕久久专区| 国产亚洲91精品色在线| 日韩一区二区视频免费看| av又黄又爽大尺度在线免费看 | 国产爱豆传媒在线观看| 亚洲婷婷狠狠爱综合网| 成人亚洲欧美一区二区av| 亚洲婷婷狠狠爱综合网| 在线a可以看的网站| 99九九线精品视频在线观看视频| 亚洲无线观看免费| 免费大片18禁| 黄色配什么色好看| 18禁在线无遮挡免费观看视频| 国产白丝娇喘喷水9色精品| 99久久无色码亚洲精品果冻| 国产黄片美女视频| 亚洲五月天丁香| 波野结衣二区三区在线| 亚洲欧美清纯卡通| 成人毛片60女人毛片免费| 99在线视频只有这里精品首页| 三级国产精品欧美在线观看| 日韩 亚洲 欧美在线| 国产爱豆传媒在线观看| 人妻系列 视频| 日日啪夜夜撸| 久久精品国产99精品国产亚洲性色| 亚洲成人精品中文字幕电影| 特大巨黑吊av在线直播| 精品人妻视频免费看| 欧美3d第一页| 欧美日韩精品成人综合77777| 中文资源天堂在线| 亚洲成人中文字幕在线播放| 欧美成人免费av一区二区三区| 日韩欧美精品v在线| 久久久久性生活片| 汤姆久久久久久久影院中文字幕 | 国产亚洲一区二区精品| 国产精品无大码| 欧美3d第一页| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产亚洲av天美| 热99在线观看视频| 真实男女啪啪啪动态图| 有码 亚洲区| 中文字幕av在线有码专区| 激情 狠狠 欧美| 91精品一卡2卡3卡4卡| 日韩强制内射视频| 亚洲欧美日韩东京热| 超碰av人人做人人爽久久| 亚洲无线观看免费| 在线观看美女被高潮喷水网站| 高清视频免费观看一区二区 | 欧美3d第一页| 婷婷色综合大香蕉| 中文字幕亚洲精品专区| 精品久久久久久电影网 | 狂野欧美激情性xxxx在线观看| 日韩在线高清观看一区二区三区| 久久99热这里只频精品6学生 | 日韩强制内射视频| 免费看光身美女| 一级毛片电影观看 | 国产极品精品免费视频能看的| 国产av码专区亚洲av| 免费看美女性在线毛片视频| 亚洲在线自拍视频| 午夜a级毛片| 免费黄色在线免费观看| h日本视频在线播放| 免费大片18禁| 亚洲在线自拍视频| 97人妻精品一区二区三区麻豆| 久久国内精品自在自线图片| 国产伦理片在线播放av一区| 亚洲美女视频黄频| 能在线免费观看的黄片| 亚洲第一区二区三区不卡| 免费观看的影片在线观看| 欧美精品一区二区大全| 美女高潮的动态| 欧美bdsm另类| 99热这里只有是精品50| 久久久精品94久久精品| 日韩,欧美,国产一区二区三区 | 伊人久久精品亚洲午夜| 欧美激情在线99| 亚洲成人av在线免费| 午夜免费激情av| 在线a可以看的网站| 国产精品熟女久久久久浪| 久久这里只有精品中国| 久久久亚洲精品成人影院| 狠狠狠狠99中文字幕| 麻豆一二三区av精品| 亚洲综合色惰| 欧美高清性xxxxhd video| 麻豆久久精品国产亚洲av| 寂寞人妻少妇视频99o| 久久精品久久久久久噜噜老黄 | 日本午夜av视频| 99热全是精品| 国产乱人视频| 97在线视频观看| 亚洲在线观看片| 国产一区亚洲一区在线观看| 亚洲天堂国产精品一区在线| 亚洲美女视频黄频| 一卡2卡三卡四卡精品乱码亚洲| 3wmmmm亚洲av在线观看| 国产精品久久久久久精品电影小说 | 欧美激情久久久久久爽电影| 久久久久久国产a免费观看| 国产一区有黄有色的免费视频 | 国产熟女欧美一区二区| 一个人观看的视频www高清免费观看| 国产又色又爽无遮挡免| 国产高清视频在线观看网站| 亚洲天堂国产精品一区在线| 亚洲怡红院男人天堂| 国产v大片淫在线免费观看| 欧美日本亚洲视频在线播放| 精品无人区乱码1区二区| 午夜福利高清视频| 老司机影院成人| 日本-黄色视频高清免费观看| 能在线免费看毛片的网站| 国产白丝娇喘喷水9色精品| 两个人视频免费观看高清| 熟妇人妻久久中文字幕3abv| 99九九线精品视频在线观看视频| 看黄色毛片网站| 亚洲精品国产成人久久av| 波多野结衣巨乳人妻| 国产一区二区在线av高清观看| 一级爰片在线观看| 国产精品国产三级国产av玫瑰| 亚洲国产精品国产精品| 99久久精品热视频| 中文字幕亚洲精品专区| 精品久久久久久久久亚洲| 干丝袜人妻中文字幕| 国产乱人视频| 午夜激情欧美在线| 蜜臀久久99精品久久宅男| 三级毛片av免费| 91午夜精品亚洲一区二区三区| 日韩一区二区三区影片| 国产伦精品一区二区三区视频9| 国产亚洲av片在线观看秒播厂 | 中文精品一卡2卡3卡4更新| 麻豆一二三区av精品| 欧美激情在线99| 亚洲av日韩在线播放| 欧美丝袜亚洲另类| 国内揄拍国产精品人妻在线| 一级毛片aaaaaa免费看小| 搡老妇女老女人老熟妇| 日本-黄色视频高清免费观看| 青春草国产在线视频| 久久亚洲精品不卡| 一级爰片在线观看| 免费看美女性在线毛片视频| 日本免费在线观看一区| 欧美丝袜亚洲另类| 搡女人真爽免费视频火全软件| 国产91av在线免费观看| 亚洲av成人精品一二三区| 国产成人精品一,二区| 少妇裸体淫交视频免费看高清| 欧美日韩综合久久久久久| 水蜜桃什么品种好| 久久这里只有精品中国| 亚洲人成网站在线观看播放| 好男人视频免费观看在线| 亚洲精品自拍成人| 国产91av在线免费观看| 成年女人永久免费观看视频| 色综合色国产| 国产麻豆成人av免费视频| 26uuu在线亚洲综合色| 一级毛片aaaaaa免费看小| 欧美激情在线99| 三级男女做爰猛烈吃奶摸视频| 成人性生交大片免费视频hd| 午夜a级毛片| 久久精品熟女亚洲av麻豆精品 | 天美传媒精品一区二区| 国产av码专区亚洲av| 建设人人有责人人尽责人人享有的 | 天美传媒精品一区二区| av.在线天堂| 免费看av在线观看网站| 国产精品人妻久久久影院| 国产亚洲精品av在线| 一区二区三区乱码不卡18| 免费看a级黄色片| 日韩欧美国产在线观看| av在线天堂中文字幕| 亚洲中文字幕日韩| 国产精品一二三区在线看| 国产精品国产三级国产av玫瑰| 麻豆成人av视频| 国语对白做爰xxxⅹ性视频网站| 久久99精品国语久久久| 天堂影院成人在线观看| 丰满乱子伦码专区| 精品不卡国产一区二区三区| 建设人人有责人人尽责人人享有的 | 一个人免费在线观看电影| 国产老妇女一区| 欧美xxxx性猛交bbbb| 色综合亚洲欧美另类图片| 欧美日本视频| 丰满少妇做爰视频| 人人妻人人澡欧美一区二区| 最近最新中文字幕大全电影3| 综合色丁香网| 日本-黄色视频高清免费观看| 亚洲精品456在线播放app| 国产av不卡久久| 国产探花极品一区二区| 亚洲av免费高清在线观看| 欧美日韩精品成人综合77777| 亚洲三级黄色毛片| 女人十人毛片免费观看3o分钟| 日本免费一区二区三区高清不卡| 久99久视频精品免费| 3wmmmm亚洲av在线观看| 青春草视频在线免费观看| 18禁在线播放成人免费| 亚洲经典国产精华液单| 久久久久性生活片| 美女黄网站色视频| 亚洲最大成人中文| 成人av在线播放网站| 美女大奶头视频| 国产精品电影一区二区三区| 亚洲高清免费不卡视频| 日日啪夜夜撸| 国产成人a区在线观看| 成人午夜高清在线视频| 亚洲精品亚洲一区二区| 天堂影院成人在线观看| 国产黄色小视频在线观看| 久久久久久九九精品二区国产| 国产乱人偷精品视频| 嫩草影院精品99| 亚洲中文字幕一区二区三区有码在线看| 中文字幕亚洲精品专区| 国产精品爽爽va在线观看网站| 人体艺术视频欧美日本| 免费看av在线观看网站| 亚洲av免费在线观看| 国产伦一二天堂av在线观看| 亚洲av免费高清在线观看| 国产一区二区在线观看日韩| 人人妻人人看人人澡| 国产成人a∨麻豆精品| 久久久午夜欧美精品| 国产在视频线在精品| 日本爱情动作片www.在线观看| 国产高潮美女av| av黄色大香蕉| 一边亲一边摸免费视频|