• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of an Energy-Efficient Detour Non-Split Dominating Set in WSN

    2022-11-10 02:29:40SheebaandSelvarajan
    Computers Materials&Continua 2022年10期

    G.Sheebaand T.M.Selvarajan

    1Department of Mathematics,Government Engineering College,Trivandrum,695035,India

    2Department of Mathematics,Noorul Islam Centre for Higher Education,Kumaracoil,Thuckalay,629175,India

    Abstract:Wireless sensor networks (WSNs) are one of the most important improvements due to their remarkable capacities and their continuous growth in various applications.However,the lifetime of WSNs is very confined because of the delimited energy limit of their sensor nodes.This is the reason why energy conservation is considered the main exploration worry for WSNs.For this energy-efficient routing is required to save energy and to subsequently drag out the lifetime of WSNs.In this report we use the Ant Colony Optimization (ACO) method and are evaluated using the Genetic Algorithm (GA),based on the Detour non-split dominant set (GA) In this research,we use the energy efficiency returnee non-split dominating set(DNSDS).A set S ?V is supposed to be a DNSDS of G when the graph G=(V,E)is expressed as both detours as well as a non-split dominating set of G.Let the detour non-split domination number be addressed as γ_dns(G)and is the minimum order of its detour non-split dominating set.Any DNSDS of order γdns(G)is a γdns-set of G.Here,the γ_dns(G)of various standard graphs is resolved and some of its general properties are contemplated.A connected graph usually has an order n with detour non-split domination number as n or n - 1 are characterized.Also connected graphs of order n ≥4 and detour diameter D ≤4 with detour non-split dominating number n or n - 1 or n - 2 are additionally portrayed.While considering any pair of positive integers to be specific a and b,there exists a connected graph G which is normally indicated as dn(G) = a,γ(G) = b and γdns(G)=a+b-2,here γdns(G)indicates the detour domination number and dn(G)indicates the detour number of a graph.The time is taken for the construction and the size of DNSDS are considered for examining the performance of the proposed method.The simulation result confirms that the DNSDS nodes are energy efficient.

    Keywords:Domination number;non-split domination number;detour number;detour non-split domination number

    1 Introduction

    In WSN,for its capability of detection and processing the substantial section of the sensor node is often set in massive sums.These sensor nodes collect information from the viewing zone and the base station.Communication is the primary role of the WSN.Each sensor node is energy-protected here[1].The delay and the duration of transmission are to be reduced each time when the packet is exchanged.To do so,the nodes have to be energy-rich[2].In WSN,communication is carried out with the backbones,only the set of nodes.It may be able to generate backbones through the use of DNSDS[3].Treat the packet from one bundle to the next until DNSDS nodes reach the destination.The backbone usage reduces overhead communication[4],builds capacity for data transmission,and reduces packet latency.

    In this article,we design a population-based search technique specifically for the ACO which is supported by ant behavior in the creation of EE-DNSDS to provide answers to the optimization problem[5].It evaluates its performance against the DNSDS based on the GA.The GA approach is a search solution both for the population and for natural biological development[6].The rest of the paper is as follows:The notion of developing a DNSDS is outlined in Section 2.The background of the work is presented in Section 3.The suggested work is presented in Section 4.Section 5 explains experimental evaluation together with settings of stimulation,performance measures,and evaluation results.Section 6 provides for the conclusion.

    2 Related Work

    We consider graphGas finite,undirected,and connected lacking loops.Let the order ofGbe denoted as p and its size be denoted as q respectively.For knowing more about the basic terminologies in graph theory,consider two edges,that are said to be adjacent when both the vertices (i.e.,) are in edgeG.Incase whenuv∈E(G),then we can easily say that the edgeuis a neighbor ofvand it is represented using the notationN(v)that is nothing but the neighbor set of edgev.The vertex degreev∈Visdeg(v)= |N(v)|.A vertexvis understood as a universal vertex whendeg(v)=p-1.The subgraph stimulated by setSof vertices ofGis symbolized as<Si>with V(<Si>)=S and E(<Si>)={uv∈E(G):u,v∈S}.The path that exists between two vertices of a graph and the one which visits each vertex just one time is said to be the Hamiltonian path orHamilton path.Incase if there is a Hamiltonian path with adjacent endpoints,the resultant graph cycle is described as a Hamiltonian cycle.

    In a connected graphGwith two vertices namely u and v;the distance denoted asd(u,v)among two vertices is the length of a shortestu-vpath inG.Usually,theu-vgeodesic is indicated as theu-vpath which has the lengthd(u,v).Let x be a vertex that is understood to lie on au-vgeodesicP,xis a vertex ofPtogether with the vertices namelyuandv.The closed intervalI[u,v]encloses the verticesuandvalong with every vertex within theu-vgeodesic.Incase whenI[u,v]= {u,v}thenuandvare said to be adjacent.For a setSof vertices,letI[S]= ∪u,v∈SI[u,v].Then certainlyS?I[S].A setS?V(G)is supposed to be a geodetic set ofGwhenI[S]=V.The geodetic number is usually denoted asg(G)and a graph is expressed as the minimum order of its geodetic sets and any geodetic set of orderg(G)is ag-set ofG.Theg(G)of graphs was studied in[7-14].

    In any connected graph G,with two verticesuandv,the detour distanceD(u,v)is defined as the length of the longestu-vpath inG.Theu-vdetour is indicated as theu-vpath of lengthD(u,v).).Let x be a vertex that is understood to lie on au-vdetourP,xis a vertex ofPtogether with the vertices namelyuandv.The utmost detour distance fromvto a vertex ofGis the detour eccentricityeD(v)of a vertexvinG.The leasteD(v)amid the vertices of G is the detour radius,radD(G)ofGand the utmosteD(v)is the detour diameter,diamD(G)of G.We denote detour radius by R and detour diameter byD.The closed intervalID[u,v]for two vertices u and v,includes all the vertices that exist within au-vdetour along with u and v.For a setSof vertices,letID[S]= ∪u,v∈DID[u,v].Then certainly,S?ID[S].A setS?Vis termed as detour set ifID[S]=V.The detour numberdn(G)ofGis usually in the least order of its detour sets as well as any detour set of orderdn(G)is called adn-set ofGand is initiated and studied in[15-19].A setS?Vis termed as dominating set ofGif for eachv∈VSis adjacent to some vertex inS.A dominating setSis said to be minimal if no subset ofSis dominating setG.The domination number ofGis symbolized asγ(G)and is the minimum cardinality of a minimal dominating set ofGand was studied in[20].Dominating Sets and Domination Polynomial of Fan Related Graphs were studied in[21].A dominating setDis supposed to be a non-split dominating set ofGif<V-D>is connected.The minimum cardinality of a non-split dominating set ofGis called the non-split domination number ofGand is denoted byγns(G)is calledγns-set ofGand is deliberated in[22].

    3 Background

    Ant Colony Optimization (ACO) is appropriate to track optimum paths depending on the behavior of the ants used to look through the food.When a food source is found,it goes back to the province by leaving‘marks’(predominantly called pheromones)which signals how much food is available.If others approach the marks,they have a certain probability and they will follow the path.In this event,it is not an easy for others to replenish the food with their own markings.The pathway is located by other ants and is further grounded till some ants flood the province from diverse food sources.As they release pheromones when transporting the food,a shorter path is bound to be more grounded,improving the“solution.”Meanwhile,few ants continue to search for food sources closer to home.When the food resource is depleted,the path is no longer established with pheromones and eventually decays.Because the ant-colony moves in a fairly dynamic manner,and the ACO performs better in graphs with changing topologies.Examples of such frameworks include computer networks and worker artificial intelligence simulations.

    3.1 The Detour Non-Split Domination Number of a Graph

    A set S ?V is a Detour Non-Split Dominating Set (DNSDS) of G when the graph G=(V,E)is expressed as both detours as well as a non-split dominating set of G.Let the detour non-split domination number be addressed asγ_dns (G) and is the least order of its DNSDS.Any DNSDS of orderγdns(G)is aγdns-set ofG.

    Example 3.2.2:Assume a graphGin Fig.1,with no two-element subset ofGis a DNSDS ofGand soγdns(G)≥3.LetS={v1,v4,v9}.ThenSis a DNSDS ofGconsequentlyγdns(G)=3.

    Observation:

    (i) All end vertex of a connected graph,G belongs to every DNSDS of G.

    (ii) Let order ofGben≥3 withvas its cut vertex,then every DNSDS ofGcarries a minimum of a single element from each component ofG-v.

    (iii) For the starG=K1,n-1(n≥3),γdns(G)=n.

    Figure 1:Graph G is a DNSDS of G

    ? Theorem 1:For the pathG=Pn(n≥4),γdns(G)=n-2.

    ? Proof:LetPnbev1,v2,...,vn.ThenS=V-{v2,v3} is a DNSDS ofGaccordinglyγdns(G)≤n-2.We prove thatγdns(G)=n-2.In contrast,supposeγdns(G)≤n-3.In that case,S′ofGis available then|S′|≤n-3.Now<V-S′>is a pathPsuch that|P|≥3.Letbe an internal vertex of P.Thenis not dominated by any vertex ofS′.HenceS′is not a DNSDS ofG,there is a negation.As a resultγdns(G)=n-2.

    ? Theorem 2:For the cycleG=Cn(n≥4),γdns(G)=-2.

    ? Proof:This is alike the attestation of Theorem 3.2.4.

    ? Theorem 3:For the complete bipartite graphG=Km,n(2 ≤m≤n),γdns(G)=2.

    ? Proof:AssumeLandWas bipartite sets ofGandxy∈E(G).ThenS={x,y}is a DNSDS ofGthusγdns(G)=2.

    ? Theorem 4:For wheelG=Wn=K1+Cn-1(n≥4),γdns(G)=2.Proof:LetV(K1)=xandy∈V(Cn-1).ThenS= {x,y}is a DNSDS ofGwith the intention thatγdns(G)=2.

    ? Theorem 5:For the complete graphG=Kn(n≥3),γdns(G)=2.

    ? Proof:Letxy∈E(G).ThenS={x,y}is a DNSDS ofGthusγdns(G)=2.

    ? Theorem 6:For double starGof order(n≥4),γdns(G)=2.

    ? Proof:Let the set,Scarriesn-2 end vertices ofG.By Observation 3.2.3(i),Sis a subset of each DNSDS ofGand as a resultγdns(G)≥n-2.Since S is a DNSDS ofG,it goes withγdns(G)=n-2.

    ? Theorem 7:For helm graphG=Hr,γdns(G)=r+1.

    ? Proof:Assumexas central vertex andZas the set ofrend vertices ofG.By Observation 3.2.3(i),Zis a subset of each DNSDS ofG.Sincexis not subjugated by any vertex ofZ,Zis not a DNSDS ofGthusγdns(G)≥r+1.LetZ′=Z∪{x}.ThenID[Z′]=Vand<V-Z′>doesn’t have isolated vertices.As a resultZ′is a DNSDS ofGandγdns(G)=r+1.

    ? Theorem 8:For banana tree graphG=Br.s,γdns(G)=r+1.

    ? Proof:Assumexas central vertex andZas the set ofrend vertices ofG.By Observation 3.2.3(i),Zis a subset of each DNSDS ofG.Sincexis not subjugated by any vertex ofZ,Zis not a DNSDS ofGthusγdns(G)≥r+1.LetZ′=Z∪{x}.ThenID[Z′]=Vand<V-Z′>doesn’t have isolated vertices.As a resultZ′is a DNSDS of G andγdns(G)=r+1.

    ? Theorem 9:AssumeRegardGas a connected graph with ordern≥3 withD≥2.Thenγdns(G)≤n-1.

    ? Proof:AssumeP:v0,v1,v2,...,vDas a detour diametral path inG.AsD≥2,Pcontains at least one internal vertex.LetS=V-{v1}.The S is a DNSDS ofGwithγdns(G)≤n-1.

    ? Remark 10:The bound in Theorem 3.2.12 is spiky.For pathG=P3,γdns(G)=2=n-1.

    ? Theorem 11:AssumeRegardGas a connected graph with ordern≥2.Alsoγdns(G)=nas long asGisK2.

    ? Proof:Letγdns(G)=n.In contrast whenGK2.By Theorem 3.2.12,γdns(G)≤n-1,which is a contradiction.As a result,D=1.HenceG=K2.The reverse is apparent.

    ? Theorem 12:RegardGas a connected graph with ordern≥4 which is not a star.Thenγdns(G)≤n-2.

    ? Proof:AssumeGas a tree.SinceGK1,n-1,G holds two adjacent vertices,sayxandy.ThenS=V(G)-{x,y}is a DNSDS ofGso thatγdns(G)≤n-2.After that imagine thatGis not a tree.ThenGincludes a cycle saysC.LetC:v1,v2,...,vr(r≥3)be the longest cycle inG.Suppose that all the vertices ofCare cut-vertices ofG.ThenS=V(G)-V(C)is a DNSDS ofGand soγdns(G)≤n-|V(G)| ≤n-3,therefore is a negation.Suppose thatGholds as a minimum one cut-vertex,sayv1.ThenS=V(G)-{v1,v2}is a DNSDS ofGas a resultγdns(G)≤n-2,which is a contradiction.If no vertex ofGis a cut vertex ofG,by the similar argument,it can show thatγdns(G)≤n-2,which is a contradiction.

    ? Remark 13:The bound in Theorem 2.15 is spiky.For cycleG=C4,γdns(G)=2=n-2.

    ? Theorem 14:AssumeRegardGas a connected graph with ordern≥3.Alsoγdns(G)=n-1 as long asG=K1,n-1orK3.

    ? Proof:Letγdns(G)=n-1.Ifn= 3,thenG=K1.2orK3,which satisfies the requirements of this theorem.So we have done.Letn≥4.But whenGK1,n-1,then according to the Theorem 3.2.15,γdns(G)≤n-2,therefore is a negation.For that reasonG=K1,n-1.The converse is clear.Now we distinguish connected graph with ordern≥4 and detour diameterD≤4 withγdns(G)=n-2.For this purpose,we introduce family I of graph? Theorem 15:AssumeGas a connected graph withn≥4 andD≤4.Thenγdns(G)=n-2 as long asGis eitherC4orK4orK4-{e}or a double star of the graphGspecified in Fig.2 of the family I.

    Figure 2:Graph G specified in the family I

    ? Proof:Letγdns(G)=n-2.So we enclose the two subsequent cases.

    ? Case (i):IfGis a tree.According to Theorem 3.2.17,GK1,n-1.SupposeGis a double star,thenGsatisfies the requirements of this theorem.So,we have done.Let us assume thatGis neither a star nor a double star.ThenGcontains a pathP:x,y,z.LetS=V-{x,y,z}.ThenSis a DNSDS of a graph as a consequenceγdns(G)≤n-3,therefore is a negation.

    ? Case (ii):IfGis not a tree.Then it holds as a minimum of one cycleC.LetCbe a girth inGandC(G)be its length.SinceD≤4.We have thatC(G)≤4.LetCbev1,v2,v3,v4,v1.IfG=K4-{e},then we are done.IfG=K4,then we are done.Suppose thatGis neitherC4norK4-{e}norK4.Then there exists one vertexxto such a degree which is adjacent tov1,say.ThenS=V-{v1,v2,v3}is a detour non-split domination number of a graph as a result,γdns(G)≤n-3,therefore is a negation.LetC(G)= 3.LetCbev1,v2,v3,v1.SinceD≤4,there exists a minimum of one vertex(x)therebyxv1∈E(G).Ifd(v2)=d(v3)=2 and the edges incident withv1are end edges,then the graphGis given in family I of Fig.2a.This satisfies the requirements of this theorem.If at least one edge incident withxis not an end edge,subsequentlyγdns(G)≤n-3,which is a contradiction.Ifdeg(v1)= 2,deg(v2)≥3 anddeg(v3)≥3,then sinceD≤4,the edges incident atv2andv3are end edges.Then graphGis given in the family I of Fig.2b.SinceD≤4,deg(vi)≥3 for all i(1 ≤i ≤3)is not possible.The reverse is apparent.

    ? Theorem 16:While considering whichever pair of positive integers to be specific a and b,there exists a connected graphGtherebydn(G)=a,γ(G)=bandγdns(G)=a+b-2.Proof:LetP2(b-2)+1:x,v1,v2,...,v2(b-2)+2,ybe a path on 2(b - 2) + 2 vertices.Has a graph attained fromP2(b-2)+2by accumulating the new verticesx1,x2,...,xa-1and introduced as edgexxi(1 ≤i≤a-1).Assume graphGgained fromHby summing up new verticesu1,u2,...,ub-2with initiating the edgesuivi(1 ≤i≤2(b-2)-1)anduivi+1(2 ≤i≤2(b-2)is revealed in Fig.3.SinceID[X]=V,Xis a detour set ofGtherefore,dn(G)=a.Subsequently,we illustrate thatγ(G)=b.We view that allγ-set ofGcontainsui(1 ≤i≤b-2)and the verticesxandyandγ(G)=b-2+2 =b.LetS= {x,y,u1,u2,...,ub-2}.ThenSis a dominating set ofGso thatγ(G)=b.After that,we show thatγdns(G)=a+b-2.The end vertices ofGbeX= {x,x1,x2,...,xa-1,y}.By Observing 3.2.3(i),X is a subset of every DNSDS ofGand soγdns(G)≥a.It is handily seen that each DNSDS ofGholds eachui(1 ≤i≤b-2)and soγdns(G)≥a+b-2.LetS′=X ∪{u1,u2,...,ub-2}.ThenS′is DNSDS ofGso thatγdns(G)=a+b-2.

    Figure 3:Graph G gained from H by summing up new vertices

    3.2 The Detour Non-Split Domination Number of Join of Graph

    AssumeHand as weKas two graphs.The combination of two graphs namelyGandHis symbolized asG+Hand defined as the graph withV(G+H)=V(G)∪V(H)andE(G+H)=E(G)∪E(H)∪{uv:u∈V(G),v∈V(H)}.

    ? Theorem 1:IfKandHare two connected graphs that contain either a Hamiltonian path or a Hamiltonian cycle.Thenγdns(K+H)=2.

    ? Proof:LetP1:u0,u1,u2,...,ulbe a Hamiltonian path in K,similarlyP2:v0,v1,v2,...,vkbe a Hamiltonian path inG,wherel+k=n.ThenP1∪P2is a Hamiltonian path inK+H.LetS={u0,v0}.ThenSis a DNSDS ofK+Hconsequentlyγdns(K+H)=2.

    ? Corollary 2:

    (i) LetK=Pn(n≥4)andH=Pm(m≥4).Thenγdns(K+H)=2.

    (ii) LetK=Pn(n≥4)andH=Cm(m≥4).Thenγdns(K+H)=2.

    (iii) LetK=Cn(n≥4)andH=Cm(m≥4).Thenγdns(K+H)=2.

    (iv) LetK=Kn(n≥3)andH=Km(m≥4).Thenγdns(K+H)=2.

    (v) LetK=Kn(n≥4)andH=Pm(m≥4).Thenγdns(K+H)=2.

    (vi) LetK=Kn(n≥4)andH=Cm(m≥4).Thenγdns(K+H)=2.

    3.3 The Detour Non-Split Domination Number of Corona Product of Graph

    The corona productK°His described as the graph gained fromKandHby attaining one copy ofKand|V(K)|copies ofHand then by joining an edge of,all the vertices from the ith-copy ofHto the ith-vertex ofK,wherei=1,2,...,|V(H)|.

    ? Theorem 1:Assume two connected graphs notably,Kas well asHwith ordersn1andn2respectively.If H contains either a Hamiltonian path or a Hamiltonian cycle,thenγdns(K°H)=n1.

    ? Proof:Ifn2=1,then the result is obvious.LetH1=(V1,E1),H2=(V2,E2),...,Hn1=(Vn1,En1)be then1copies ofHinK°H.LetQi:vi1,vi2,...,vin2,(1 ≤i≤n1)be a Hamiltonian path inHi(1 ≤i≤n1).AssumeVas the vertex ofKandV={v1,v2,...,vn1}.Then set of cut vertices inK°HisV.By Observing 3.2.3(ii),every DNSDS ofK°Hholds minimum vertex from everyQi(1 ≤i≤n1)consequentlyγdns(G)≥n1.Let S = {v11,v21,...,vn11}.ThenSis a DNSDS ofK°Hso thatγdns(G)=n1.

    ? Corollary 2:

    (i) LetK=Pn(n≥4)andH=Pm(m≥4).Thenγdns(K°H)=n.

    (ii) LetK=Pn(n≥4)andH=Cm(m≥4).Thenγdns(K°H)=n.

    (iii) LetK=Cn(n≥4)andH=Cm(m≥4).Thenγdns(K°H)=n.

    (iv) LetK=Kn(n≥3)andH=Km(m≥4).Thenγdns(K°H)=n.

    (v) LetK=Kn(n≥4)andH=Pm(m≥4).Thenγdns(K°H)=n.

    (vi) LetK=Kn(n≥4)andH=Cm(m≥4).Thenγdns(K°H)=n.

    4 Proposed System Model

    The scavenging behavior of ants excites ACO.When ants walk,they leave a pheromone trail in each node they pass through.The pheromone likelihood,which is provided on every node,aids in determining the shortest path of food from source to destination.A DNSDS,which is rich in energy,is produced in our suggested study.We use two rules in the ACO algorithm to do this:(i)the pheromone updating rule(which signals the updated for each node and is handled in Eq.(4))and(ii)the state transition rule(which assists with choosing the next node based on the probability value and is addressed in Eq.(1)[22].

    In our algorithm,we start withτ0 in each node of the graph.Ants wander throughout the graph randomly by dropping pheromones on all nodes.In this fashion,the ant iterates N times.During this each chosen node with a high P and E based on the probabilistic state transition criteria is added to the DNSDS.

    Theτof the nodes which are in the DNSDS is refreshed by the pheromone updating rule.

    In Eq.(4),the value ofρis always 0 ≤ρ≤1.Theτof the nodes that are unavailable in the DNSDS is evaporated by Eq.(5).

    Notations utilized in the work are specified in Tab.1.

    Table 1:Notations and their description

    5 Experimental Evaluation

    In this section,we have illustrated and investigated fewer limitations,namely the experimental parameters and performance indicators,before presenting the assessment results.

    5.1 Simulation Setup

    The simulation is completed by assuming the sensor field to be 1000×1000.During its execution,the following suspicions are taken into account:

    ? Sensor nodes are homogeneous and fixed.

    ? The region is both constrained and consistent.

    The energy and degree of the node are taken into account during the DNSDS creation process.Using ACO and the GA,we led large-scale replications to create the DNSDS.We have evaluated the effectiveness of both strategies.Tab.2 specifies the simulated limitations used to raise the EE-DNSDS using the ACO approach.

    Table 2:Simulation constraints

    5.2 Performance Evaluation

    The evaluation of the performance is completed by considering two measurements.To be specific the construction time and the size of the DNSDS between the ACO technique and the GA are as follows:

    DNSDS Construction Time:Fig.4 addresses the DNSDS construction time exploited by GA and the ACO technique.While contrasting the ACO and GA,the ACO utilized not as much DNSDS construction time as GA.When the node gets tally to build,the ACO technique performs better when compared to GA.

    Figure 4:Comparison of DNSDS construction time

    DNSDS Size:Fig.5 addresses the simulation yield of DNSDS size for different quantities of nodes.We have considered the DNSDS is off to be in average size.In the projected system,the DNSDS size is low in ACO than the GA for the more modest number of nodes.As the node count gets expanded,the average DNSDS size of ACO is lower than the GA.

    Figure 5:Comparison of DNSDS size

    6 Conclusion

    By modifying the ACO approach,we created an Energy Efficient Detour Non-Split Dominating Set (EE-DNSDS) in this paper.The scavenging behavior of ants inspires the ACO process.The DNSDS created an abundance of energy.The correlation between two algorithms,specifically the ACO and the GA,is performed here.When comparing the ACO and GA,the ACO used less DNSDS build time than the GA.As the number of nodes increases,the average DNSDS size of ACO is roughly equal to that of GA.This is accomplished by employing the network’s energy-efficient DNSDS nodes.Furthermore,the number of standard graphs is resolved and a fraction of its overall qualities are considered in the detour non-split domination.Other optimization approaches can be used in the future,and performance measures can be checked and compared.

    Acknowledgement:The authors would like to thank Noorul Islam Centre for Higher Education,also we like to thank anonymous reviewers for their so-called insights.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产成人精品久久二区二区免费| 悠悠久久av| 欧美精品亚洲一区二区| 亚洲一区中文字幕在线| 久久精品亚洲精品国产色婷小说| 国产精品永久免费网站| 欧洲精品卡2卡3卡4卡5卡区| 女生性感内裤真人,穿戴方法视频| 男女床上黄色一级片免费看| 久久精品aⅴ一区二区三区四区| 国产av在哪里看| 欧美成人午夜精品| 免费在线观看视频国产中文字幕亚洲| 亚洲 欧美一区二区三区| 久久国产亚洲av麻豆专区| 亚洲午夜理论影院| 欧美精品啪啪一区二区三区| 国产主播在线观看一区二区| 黄色片一级片一级黄色片| 99riav亚洲国产免费| 免费人成视频x8x8入口观看| а√天堂www在线а√下载| 亚洲中文av在线| 男女床上黄色一级片免费看| 国产精品,欧美在线| 一进一出好大好爽视频| 男女做爰动态图高潮gif福利片| 男人舔女人下体高潮全视频| 一区福利在线观看| 亚洲成人精品中文字幕电影| 老熟妇仑乱视频hdxx| 午夜福利高清视频| www.自偷自拍.com| 亚洲真实伦在线观看| www.自偷自拍.com| 精品人妻1区二区| 人人妻人人澡欧美一区二区| 精品人妻1区二区| 日韩免费av在线播放| ponron亚洲| 一区二区三区高清视频在线| 大型黄色视频在线免费观看| 午夜视频精品福利| 老司机靠b影院| 国产高清视频在线播放一区| 99久久久亚洲精品蜜臀av| 免费在线观看影片大全网站| 亚洲精品一卡2卡三卡4卡5卡| 天天一区二区日本电影三级| 亚洲自偷自拍图片 自拍| 欧美日韩瑟瑟在线播放| 国产精品一区二区精品视频观看| 国产黄片美女视频| 日本黄色视频三级网站网址| 免费在线观看影片大全网站| 亚洲国产欧美日韩在线播放| 好男人电影高清在线观看| 国产爱豆传媒在线观看 | 成人三级做爰电影| 色av中文字幕| 精品国产乱子伦一区二区三区| 国产激情欧美一区二区| 国产成人av激情在线播放| 啦啦啦观看免费观看视频高清| 男女那种视频在线观看| xxx96com| 久久久久久久久中文| 欧美乱码精品一区二区三区| 变态另类成人亚洲欧美熟女| 波多野结衣高清无吗| 18禁国产床啪视频网站| a级毛片a级免费在线| 成人午夜高清在线视频 | 国产伦一二天堂av在线观看| 欧美国产精品va在线观看不卡| 亚洲五月色婷婷综合| 亚洲三区欧美一区| 伊人久久大香线蕉亚洲五| 国产男靠女视频免费网站| av超薄肉色丝袜交足视频| 成人亚洲精品一区在线观看| 草草在线视频免费看| 香蕉av资源在线| 中文字幕人妻丝袜一区二区| 色综合站精品国产| 老鸭窝网址在线观看| 黄色片一级片一级黄色片| 久久草成人影院| 午夜免费鲁丝| 中文资源天堂在线| 国产精品98久久久久久宅男小说| ponron亚洲| 韩国精品一区二区三区| 少妇被粗大的猛进出69影院| 淫秽高清视频在线观看| 99国产精品一区二区蜜桃av| 国产精华一区二区三区| 午夜福利视频1000在线观看| 日本一区二区免费在线视频| 国产区一区二久久| 国产精品永久免费网站| 亚洲精品国产区一区二| 伊人久久大香线蕉亚洲五| 国产野战对白在线观看| 丰满的人妻完整版| 国产精品二区激情视频| 嫩草影院精品99| 母亲3免费完整高清在线观看| 亚洲色图 男人天堂 中文字幕| 国产单亲对白刺激| 精品久久久久久久久久免费视频| 波多野结衣巨乳人妻| 婷婷亚洲欧美| 动漫黄色视频在线观看| 亚洲精品在线观看二区| 搡老岳熟女国产| 国产一卡二卡三卡精品| 90打野战视频偷拍视频| 国产精品 国内视频| 精品欧美国产一区二区三| 最新在线观看一区二区三区| 黑人欧美特级aaaaaa片| 一级毛片精品| 美女国产高潮福利片在线看| 欧美三级亚洲精品| 欧美日本亚洲视频在线播放| 免费电影在线观看免费观看| 成在线人永久免费视频| 丝袜人妻中文字幕| 97超级碰碰碰精品色视频在线观看| 国产激情久久老熟女| 日日摸夜夜添夜夜添小说| 亚洲最大成人中文| 久久精品91蜜桃| 日韩欧美国产一区二区入口| 国产av一区二区精品久久| 淫秽高清视频在线观看| 国产色视频综合| 91麻豆av在线| 一本精品99久久精品77| 欧美乱色亚洲激情| 少妇 在线观看| 亚洲精品在线观看二区| 中文字幕人成人乱码亚洲影| 变态另类丝袜制服| 丝袜美腿诱惑在线| 又大又爽又粗| 久久久精品国产亚洲av高清涩受| 欧洲精品卡2卡3卡4卡5卡区| 色播在线永久视频| 一级a爱视频在线免费观看| 变态另类成人亚洲欧美熟女| 女人高潮潮喷娇喘18禁视频| 亚洲熟妇中文字幕五十中出| 视频区欧美日本亚洲| 99久久无色码亚洲精品果冻| 99在线视频只有这里精品首页| 亚洲成国产人片在线观看| 成人欧美大片| 手机成人av网站| 男女午夜视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 岛国视频午夜一区免费看| 亚洲av第一区精品v没综合| 一进一出抽搐动态| 伦理电影免费视频| 亚洲av中文字字幕乱码综合 | 琪琪午夜伦伦电影理论片6080| 香蕉丝袜av| 国产av又大| 欧美日韩亚洲国产一区二区在线观看| 可以在线观看毛片的网站| 曰老女人黄片| 亚洲精品国产区一区二| 日韩 欧美 亚洲 中文字幕| 一二三四社区在线视频社区8| 一级片免费观看大全| 国内精品久久久久久久电影| 黄色丝袜av网址大全| 久久精品国产综合久久久| 精品国产亚洲在线| 美女免费视频网站| 在线天堂中文资源库| 啪啪无遮挡十八禁网站| 亚洲人成伊人成综合网2020| 两个人看的免费小视频| 亚洲一区中文字幕在线| 妹子高潮喷水视频| 男人舔女人下体高潮全视频| 99国产综合亚洲精品| 久久久国产成人免费| 亚洲第一电影网av| 国产亚洲精品av在线| 国产一区二区三区视频了| 国产私拍福利视频在线观看| 满18在线观看网站| 热99re8久久精品国产| 久久午夜综合久久蜜桃| 精品第一国产精品| 亚洲国产精品合色在线| 久久精品人妻少妇| 丰满的人妻完整版| 满18在线观看网站| 99久久精品国产亚洲精品| 两个人看的免费小视频| 国产精品国产高清国产av| 久久久久亚洲av毛片大全| 欧美激情 高清一区二区三区| 露出奶头的视频| 给我免费播放毛片高清在线观看| 成人国语在线视频| 一级毛片高清免费大全| 亚洲精品在线美女| 久久精品夜夜夜夜夜久久蜜豆 | 午夜福利18| 天天添夜夜摸| 国产熟女午夜一区二区三区| 亚洲国产精品久久男人天堂| 不卡av一区二区三区| 精品久久久久久,| 露出奶头的视频| 操出白浆在线播放| 黄片播放在线免费| 亚洲精品一卡2卡三卡4卡5卡| 国产在线观看jvid| 国产精品自产拍在线观看55亚洲| 久久香蕉激情| 久久国产亚洲av麻豆专区| 美女国产高潮福利片在线看| 国产成人系列免费观看| 淫秽高清视频在线观看| 国产麻豆成人av免费视频| 国产99久久九九免费精品| 国产99白浆流出| 宅男免费午夜| 色精品久久人妻99蜜桃| 校园春色视频在线观看| av电影中文网址| 97碰自拍视频| 女性生殖器流出的白浆| 一级作爱视频免费观看| 午夜免费鲁丝| 精品国产亚洲在线| 黄片小视频在线播放| 亚洲五月婷婷丁香| 91大片在线观看| 精品少妇一区二区三区视频日本电影| 97人妻精品一区二区三区麻豆 | 高清毛片免费观看视频网站| 日本三级黄在线观看| 久久国产精品影院| 一区二区日韩欧美中文字幕| 精品久久久久久久末码| 国产精品久久电影中文字幕| 美国免费a级毛片| 午夜福利在线在线| 色综合站精品国产| 人人妻人人澡人人看| 中文字幕高清在线视频| 日韩免费av在线播放| 国产亚洲欧美在线一区二区| 免费看十八禁软件| 一卡2卡三卡四卡精品乱码亚洲| 日韩国内少妇激情av| 免费女性裸体啪啪无遮挡网站| 亚洲精品久久国产高清桃花| 99热这里只有精品一区 | 久久精品夜夜夜夜夜久久蜜豆 | 国产精品久久久久久精品电影 | 老熟妇乱子伦视频在线观看| 国产野战对白在线观看| 俄罗斯特黄特色一大片| 很黄的视频免费| 久热这里只有精品99| 天堂√8在线中文| 麻豆国产av国片精品| 亚洲人成网站高清观看| 亚洲一区二区三区色噜噜| 一二三四社区在线视频社区8| 十八禁人妻一区二区| 级片在线观看| 亚洲五月色婷婷综合| 精品乱码久久久久久99久播| 1024视频免费在线观看| 色尼玛亚洲综合影院| 欧美日韩精品网址| 国产高清激情床上av| 男女视频在线观看网站免费 | 美女扒开内裤让男人捅视频| 亚洲最大成人中文| 99re在线观看精品视频| 日韩av在线大香蕉| 色综合欧美亚洲国产小说| 香蕉久久夜色| 久久国产精品男人的天堂亚洲| 亚洲精品中文字幕一二三四区| 欧美成人一区二区免费高清观看 | 国产精品1区2区在线观看.| 午夜福利一区二区在线看| 国产精品久久视频播放| www.精华液| 黄网站色视频无遮挡免费观看| 日本精品一区二区三区蜜桃| 亚洲色图 男人天堂 中文字幕| 午夜免费鲁丝| 亚洲 国产 在线| 国内毛片毛片毛片毛片毛片| www国产在线视频色| 女性被躁到高潮视频| av欧美777| 十八禁人妻一区二区| 免费在线观看日本一区| 亚洲精品中文字幕在线视频| 亚洲精品粉嫩美女一区| 国产麻豆成人av免费视频| 中文资源天堂在线| 美女午夜性视频免费| 中国美女看黄片| 看免费av毛片| 神马国产精品三级电影在线观看 | 欧美在线一区亚洲| 国产又爽黄色视频| 黄频高清免费视频| 国产久久久一区二区三区| 日韩中文字幕欧美一区二区| 波多野结衣高清作品| 可以在线观看的亚洲视频| 国产精品亚洲美女久久久| 一级a爱片免费观看的视频| 69av精品久久久久久| 久久国产精品人妻蜜桃| 亚洲精品在线美女| 免费高清在线观看日韩| 亚洲第一欧美日韩一区二区三区| 国产黄片美女视频| 十八禁网站免费在线| 欧美日韩一级在线毛片| 国产熟女xx| 在线观看一区二区三区| 久久精品成人免费网站| 国产精品一区二区免费欧美| 老熟妇仑乱视频hdxx| 免费高清在线观看日韩| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 久久中文字幕一级| 首页视频小说图片口味搜索| www日本在线高清视频| 久热这里只有精品99| tocl精华| 美国免费a级毛片| 1024香蕉在线观看| 午夜激情福利司机影院| 国产免费男女视频| 欧美激情 高清一区二区三区| 欧美日韩一级在线毛片| 看黄色毛片网站| 欧美在线黄色| 欧美成狂野欧美在线观看| 国产激情偷乱视频一区二区| 波多野结衣av一区二区av| 日日干狠狠操夜夜爽| 91大片在线观看| 久久久久亚洲av毛片大全| 欧美zozozo另类| 两个人看的免费小视频| 午夜福利在线在线| a级毛片在线看网站| 高潮久久久久久久久久久不卡| 啦啦啦免费观看视频1| 制服诱惑二区| 欧美日韩瑟瑟在线播放| 欧美性猛交黑人性爽| 99热这里只有精品一区 | 久久久久久大精品| 欧美中文综合在线视频| 亚洲中文字幕一区二区三区有码在线看 | 国产精品精品国产色婷婷| 老司机午夜福利在线观看视频| 国产精品99久久99久久久不卡| 一二三四社区在线视频社区8| 日韩一卡2卡3卡4卡2021年| 欧美 亚洲 国产 日韩一| 99热只有精品国产| 99久久国产精品久久久| 美女国产高潮福利片在线看| 变态另类丝袜制服| 99久久综合精品五月天人人| 国产午夜福利久久久久久| 午夜福利免费观看在线| 亚洲男人的天堂狠狠| 国产爱豆传媒在线观看 | 成人午夜高清在线视频 | 亚洲第一青青草原| 在线看三级毛片| 在线观看免费视频日本深夜| 90打野战视频偷拍视频| 国产久久久一区二区三区| 亚洲专区中文字幕在线| 亚洲精华国产精华精| 中文字幕高清在线视频| 丰满的人妻完整版| 97超级碰碰碰精品色视频在线观看| 久热爱精品视频在线9| 免费高清视频大片| 亚洲成a人片在线一区二区| 婷婷亚洲欧美| 色综合站精品国产| 欧洲精品卡2卡3卡4卡5卡区| 大型黄色视频在线免费观看| 亚洲国产欧美一区二区综合| 国产1区2区3区精品| 午夜a级毛片| 1024手机看黄色片| 两性午夜刺激爽爽歪歪视频在线观看 | 美国免费a级毛片| 欧美午夜高清在线| 十分钟在线观看高清视频www| 精品国产亚洲在线| 一夜夜www| 欧美最黄视频在线播放免费| 97人妻精品一区二区三区麻豆 | √禁漫天堂资源中文www| 久久欧美精品欧美久久欧美| av超薄肉色丝袜交足视频| 99国产精品99久久久久| 国产av一区二区精品久久| 国产成人一区二区三区免费视频网站| 国产精品国产高清国产av| 久久久久久久午夜电影| 精品久久久久久久久久久久久 | 淫秽高清视频在线观看| 精品久久久久久久久久久久久 | 成人亚洲精品一区在线观看| 亚洲男人的天堂狠狠| 韩国精品一区二区三区| 久久久久国内视频| 超碰成人久久| 国产黄a三级三级三级人| 丰满人妻熟妇乱又伦精品不卡| 亚洲av成人不卡在线观看播放网| 老鸭窝网址在线观看| 黑人操中国人逼视频| 88av欧美| 亚洲avbb在线观看| 999久久久国产精品视频| 久久精品91无色码中文字幕| 欧美日本视频| 在线免费观看的www视频| 特大巨黑吊av在线直播 | 男人的好看免费观看在线视频 | 亚洲av五月六月丁香网| 日韩视频一区二区在线观看| 韩国av一区二区三区四区| 国产野战对白在线观看| 一区福利在线观看| 亚洲精品美女久久av网站| 丝袜美腿诱惑在线| 精品久久久久久久末码| 黄色丝袜av网址大全| 91字幕亚洲| 啪啪无遮挡十八禁网站| 午夜成年电影在线免费观看| 12—13女人毛片做爰片一| 亚洲黑人精品在线| 色播在线永久视频| 国产三级黄色录像| 午夜久久久久精精品| 国产亚洲精品第一综合不卡| a在线观看视频网站| 亚洲自偷自拍图片 自拍| 国产av不卡久久| 国产精品久久电影中文字幕| 无遮挡黄片免费观看| 精品熟女少妇八av免费久了| 午夜激情av网站| 久久久久久国产a免费观看| 级片在线观看| avwww免费| 国产单亲对白刺激| 成人av一区二区三区在线看| www.www免费av| 日本熟妇午夜| 免费高清在线观看日韩| 成人欧美大片| 波多野结衣高清作品| 国产精品永久免费网站| 啦啦啦免费观看视频1| 日韩一卡2卡3卡4卡2021年| 夜夜看夜夜爽夜夜摸| 久久精品成人免费网站| 色婷婷久久久亚洲欧美| 天天添夜夜摸| 精品国内亚洲2022精品成人| 日韩欧美一区二区三区在线观看| 亚洲免费av在线视频| 亚洲全国av大片| 久久九九热精品免费| 老司机在亚洲福利影院| а√天堂www在线а√下载| 色综合婷婷激情| 亚洲精品粉嫩美女一区| 欧美最黄视频在线播放免费| 欧美激情 高清一区二区三区| 桃色一区二区三区在线观看| 日本黄色视频三级网站网址| 久久天躁狠狠躁夜夜2o2o| 一本大道久久a久久精品| 欧美性猛交╳xxx乱大交人| 日日夜夜操网爽| 久久久久久久久久黄片| 熟女少妇亚洲综合色aaa.| 国产不卡一卡二| 首页视频小说图片口味搜索| 日本五十路高清| 黄色片一级片一级黄色片| 国产爱豆传媒在线观看 | 禁无遮挡网站| 手机成人av网站| 狠狠狠狠99中文字幕| 国产精品乱码一区二三区的特点| av在线天堂中文字幕| 中文字幕高清在线视频| 女性生殖器流出的白浆| 国产成人av激情在线播放| 宅男免费午夜| 黑人欧美特级aaaaaa片| 18禁国产床啪视频网站| 一本精品99久久精品77| 久久99热这里只有精品18| 国产成人啪精品午夜网站| 国产又爽黄色视频| 亚洲欧美激情综合另类| 波多野结衣高清无吗| 精品无人区乱码1区二区| 嫩草影视91久久| 操出白浆在线播放| 欧美亚洲日本最大视频资源| 男人的好看免费观看在线视频 | 国产一级毛片七仙女欲春2 | 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品久久二区二区91| 成人欧美大片| 亚洲av成人av| 九色国产91popny在线| 在线永久观看黄色视频| www.熟女人妻精品国产| 免费av毛片视频| 国产aⅴ精品一区二区三区波| 欧美午夜高清在线| 伦理电影免费视频| 精品乱码久久久久久99久播| 精品一区二区三区av网在线观看| 免费在线观看完整版高清| 日韩欧美在线二视频| av欧美777| svipshipincom国产片| 国产精品久久久人人做人人爽| 国产精品 欧美亚洲| 国产91精品成人一区二区三区| 观看免费一级毛片| 亚洲av美国av| 一级毛片女人18水好多| 国产亚洲欧美在线一区二区| 一区二区三区国产精品乱码| 村上凉子中文字幕在线| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久久久久毛片微露脸| 国产色视频综合| 精品卡一卡二卡四卡免费| 女人高潮潮喷娇喘18禁视频| 女性生殖器流出的白浆| 亚洲成人久久爱视频| 色婷婷久久久亚洲欧美| 99精品欧美一区二区三区四区| 日韩一卡2卡3卡4卡2021年| 亚洲 欧美 日韩 在线 免费| 国产伦人伦偷精品视频| 久久国产精品人妻蜜桃| 亚洲九九香蕉| 日韩中文字幕欧美一区二区| x7x7x7水蜜桃| 亚洲,欧美精品.| 色综合婷婷激情| 午夜福利在线观看吧| 97碰自拍视频| 日韩欧美国产在线观看| 搡老妇女老女人老熟妇| 亚洲国产欧美日韩在线播放| 久久久久久亚洲精品国产蜜桃av| 欧美黄色片欧美黄色片| 欧美国产精品va在线观看不卡| 久久久国产成人免费| www日本黄色视频网| 国产激情偷乱视频一区二区| 免费搜索国产男女视频| 神马国产精品三级电影在线观看 | 一区二区三区国产精品乱码| 这个男人来自地球电影免费观看| 国产三级在线视频| 久久午夜综合久久蜜桃| 琪琪午夜伦伦电影理论片6080| 国产黄片美女视频| 欧美色欧美亚洲另类二区| 美女高潮喷水抽搐中文字幕| 亚洲 欧美一区二区三区| 视频区欧美日本亚洲| 又紧又爽又黄一区二区| 久久这里只有精品19| 宅男免费午夜| 在线十欧美十亚洲十日本专区| 在线观看免费午夜福利视频| 两个人免费观看高清视频| 91在线观看av| 欧美色视频一区免费|