• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Meshless Method for Retrieving Nonlinear Large External Forces on Euler-Bernoulli Beams

    2022-11-10 02:28:58ChihWenChang
    Computers Materials&Continua 2022年10期

    Chih-Wen Chang

    Department of Mechanical Engineering,National United University,Miaoli,360302,Taiwan

    Abstract:We retrieve unknown nonlinear large space-time dependent forces burdened with the vibrating nonlinear Euler-Bernoulli beams under varied boundary data,comprising two-end fixed,cantilevered,clamped-hinged,and simply supported conditions in this study.Even though some researchers used several schemes to overcome these forward problems of Euler-Bernoulli beams;however,an effective numerical algorithm to solve these inverse problems is still not available.We cope with the homogeneous boundary conditions,initial data,and final time datum for each type of nonlinear beam by employing a variety of boundary shape functions.The unknown nonlinear large external force can be recuperated via back-substitution of the solution into the nonlinear Euler-Bernoulli beam equation when we acquire the solution by utilizing the boundary shape function scheme and deal with a smallscale linear system to gratify an additional right-side boundary data.For the robustness and accuracy,we reveal that the current schemes are substantiated by comparing the recuperated numerical results of four instances to the exact forces,even though a large level of noise up to 50% is burdened with the overspecified conditions.The current method can be employed in the online real-time computation of unknown force functions in space-time for varied boundary supports of the vibrating nonlinear beam.

    Keywords:Inverse problems;nonlinear Euler-Bernoulli beams;ill-posed problems;nonlinear space-time dependent force;boundary shape functions

    1 Introduction

    As we all know,retrieving external forces of Euler-Bernoulli beams plays very important roles in many engineering and scientific areas.These equations occur in the vibration of a structure,the cutting process in engineering,the sandwiches beams,the cable-stayed beams,the rotating beams,the aircraft engineering,the design of mechanical cutting tools,the nondestructive testing and so forth.

    For linear external forces of linear Euler-Bernoulli equations,Han et al.[1]tested four approximate models for a transversely vibrating beam:the Euler-Bernoulli,Rayleigh,shear,and Timoshenko models.For each model,the orthogonality data were identified,and the forced response was acquired employing the approach of eigenfunction expansion.Nevertheless,they only displayed one example to discuss the second frequency spectrum.Later,expressions for the maximum cutting force,variation of the cutting force in one complete rotation,surface quality and many other characteristics of the cutting force components can be derived from the proposed cutting force model[2].The results can be shown in charts to permit machining operators to easily choose the cutting data.Abu-Hilal[3]employed Green functions to decide the dynamic response of damped Euler-Bernoulli beams and demonstrate the dynamic behavior of single and multi-span beams,single and multi-loaded beams;however,he did not show the robustness of the proposed method.Then,Andrén et al.[4]demonstrated that the clamped boring bar has non-linear dynamic properties.They also showed that non-linearities can be reduced by modifying the clamping of the boring bar.Nevertheless,they did not display the comparisons with the other literature.After that,Yoon et al.[5]used a mechanistic cutting force model to prophesy the cutting process.The experimental coefficient modelling scheme was developed for the formulation of theoretical cutting force by pondering the specific cutting force coefficient.Later,Gradiˇsek et al.[6]presented expressions for semi-empirical mechanistic identification of specific cutting and edge force coefficients for a general helical end mill from milling tests at an arbitrary radial immersion.Apart from that,Nicaise et al.[7]pondered two inverse issues of deciding point sources in vibrating beams by boundary measurements.They displayed that the boundary observation at one extremity of the area decides uniquely the sources for an arbitrarily small time of observation.The output-feedback controller for an undamped shear beam was proposed by Krstic et al.[8,9].Then,Hasanov[10]formulated new classes of inverse source problems for vibrating cantilevered elastic beams,within the range of Euler-Bernoulli beam theory.This result showed the iteration parameter via the Lipschitz constant in gradient-type methods,which were mostly employed in the numerical implementation of inverse issues.Later,Huang et al.[11]dealt with an inverse forced vibration issue,based on the conjugate gradient method (CGM),which was tested in this study to evaluate the unknown spatial and temporal-dependent external forces for the cutting tools by using the simulated beam displacement measurements.The numerical experiments were performed to test the validity of the CGM by utilizing varied types of external forces and measurement errors.After that,Liu[12]recovered an unknown space-time-dependent force in an Euler-Bernoulli beam vibration equation by an effective combination of the Lie-group adaptive approach and the differential quadrature scheme through a few iterations.Then,Kawano[13]analyzed the issue of the identification of the distribution of asynchronous vibration sources and rigidity perturbations in Euler-Bernoulli beams.Hasanov et al.[14]presented that the collocation method combined with the truncated singular value decomposition was used to estimate the degree of ill-posedness of the pondered inverse source issue.The numerical results illustrated bounds of applicability of the proposed algorithm,also its efficiency and accuracy.Later,Hasanov et al.[15]solved these two inverse issues related to asynchronous load identification that have significant engineering applications.Note that when in some inverse issues the use of boundary data was desirable or a necessity,as in the chief example of electric impedance tomography.After that,an adjoint problem approach was used for a class of inverse issues related to the identification of temporal and spatial load distributions in the Euler-Bernoulli beam equation[16];furthermore,they claimed that the constructed iterative algorithm was robust,which allowed the use of random noisy data up to 10% noise level.However,the numerical results with noisy data are not good.Maciag et al.[17]addressed an approximate scheme of solving direct and inverse problems described by Bernoulli-Euler inhomogeneous equation of vibrations of a beam;nevertheless,they did not show the robustness of their algorithm.

    For the free vibration of composite beams and non-uniform beams,Liu et al.[18]proposed a new upper bound theory to estimate the first few natural frequencies.They addressed the inverse problems of composite beam equations,where they used the orthogonal system of boundary functions as bases to expand the unknown functions and derived linear algebraic equations to decide the expansion coefficients.The robustness of the current inversion approaches was shown by numerical instances.Then,when adjoint eigenfunctions were adopted as the test functions in Green’s second identity for the Euler-Bernoulli beam equation,they can develop a simple noniterative numerical method to retrieve an unknown space-dependent external force exerted on the beam[19].Therefore,they had a noniterative algorithm to retrieve the unknown force supplemented by the noisy final time displacement data.Later,Liu et al.[20]resolved the inverse source issue of a nonlinear wave equation,developing a family ofm-order homogenization functions.This method did not require the iteration to resolve nonlinear equations,which was accurate for simultaneously solving the solution Then,Liu et al.[21]addressed the higher-dimensional inverse heat source issues of nonlinear convectiondiffusion reaction equations in 2-D rectangles and 3-D cuboids,of which the final time data and the Neumann boundary conditions on one-side were over-specified.Numerical exams found that the new approach was very accurate to reveal the solution After that,Bajkowski et al.[22]contemplated a theoretical analysis and experimental examination of a sandwich beam,with a core layer made of controllable material that can change its properties over time.Numerical simulations were performed to study the possibility of shifting beam vibration frequency towards ranges distant from resonance;however,they did not display the robustness of their scheme.Apart from that,Liu et al.[23]developed a simple and effective numerical skill,which aimed to accurately and quickly deal with thin plate bending issues.Note that the proposed algorithm is quite accurate for the thin plate,the clamped plate,and the simply supported plate problems.The nonlinear primary resonance in the vibration control of cable-stayed beam with time delay feedback was studied by[24].The numerical simulation was also given to determine the optimal value for control gain and time delays that can improve the vibrations suppression efficiency;nevertheless,this approach is complex and does not discuss the noisy effect.Later,Li et al.[25]mentioned that very few results were reported on the vibration issues of some novel multilayer sandwich structures with lattice truss cores in the literature.Contributions of this literature lie in the development of the new deformation relations of multilayer sandwich beams,the construction of the dynamic models,and the systematic analysis of vibration characteristics with both the numerical and experimental schemes.Apart from that,the nonlinear free vibration and principal parametric resonance of rotating beams were investigated taking into account the lagging-axial coupling motion because of Coriolis force[26].The nonlinear equations of motion were obtained through a direct Lagrangian formulation.Later,Liu et al.[27]recovered unknown space-time-dependent forces imposed on the vibrating Euler-Bernoulli beams under varied boundary conditions.The accuracy and robustness of the present schemes were confirmed by comparing the retrieved results of several instances to the exact forces,even though considerable noise was shown in the overspecified data.

    For the difficult nonlinear Euler-Bernoulli beams,Barari et al.[28]proposed the variational iteration method and parametrized perturbation method to study the non-linear vibration of beams and nonlinear responses of a clamped-clamped buckled beam.However,they did not show the robustness of their approaches and mechanical affairs.Then,Weeger et al.[29]analyzed the vibrations of nonlinear structures by means of the new method of isogeometric finite elements.Nevertheless,they did not demonstrate real applications and the noisy effect of their schemes.Kitarovic[30]resolved a nonlinear kinematics of the 2-D,non-shear-deformable and extensible Euler-Bernoulli beam imposed with the planar flexure and/or lengthening/shortening.He discussed implications of the derived formulations pertinent to the progressive collapse analysis methods based on the Smith’s approach;however,the 2-D issue was merely considered.After that,Bagheri et al.[31]coped with nonlinear responses of a clamped-clamped buckled beam to certify the vibrational behaviors of beam.They claimed that comparing with numerical results,note that the approximate solutions were in good agreement with the analytical solutions.On the other hand,about the recent nonlinear dynamical mathematical modeling and its applications,Raza and his coworkers have proposed many schemes to tackle those issues,such as the nonlinear stochastic leprosy epidemic model[32],the cervical cancer epidemic model[33],the dynamics of the pneumonia-like infections of epidemic models[34],the cancer virotherapy model[35],the pine wilt epidemic model[36],and dynamical analysis of coronavirus disease with crowding effect,and vaccination[37].

    This article is arranged as follows.Section 2 displays the nonlinear problem statement and constructs the new boundary shape function,and homogeneous boundary data of the beam.In Section 3,we acquire shape functions and introduce a free parameter into the boundary shape function,which leads to a variety of boundary shape functions.Four numerical examples of the nonlinear large external forces on vibrating nonlinear Euler-Bernoulli beams are shown in Section 4.At last,we display the conclusions in Section 5.

    2 Problem Statement and Establishment of Boundary Shape Function

    We deliberate an inverse source issue to reveal an unknown nonlinear force functionH(x,t)being burdened with a vibrating nonlinear Euler-Bernoulli beam with varied boundary supports.It is a severely ill-posed problem in the engineering field.The nonlinear beam with simply supported boundary data is utilized as the first significant instance,for which the pair of unknown functions<v(x,t),H(x,t)>concurrently gratifies

    whereΓ:= {(x,t)|0<x <,0<t≤tf},β:=EI/(κA)is a constant with Young’s modulusE,Ithe moment of inertia,κis the material density,andAis the cross-sectional area.

    It cannot be resolved forthrightly to revealv(x,t)since the problem (1)-(3) has an unknown nonlinear force functionH(x,t).To retrieveH(x,t)and deal withv(x,t)in the entire area,we clarify the additional conditions of

    First of all,we deliberate a partial boundary shape function in the time orientation:

    which gratifies the conditions(2)and(4):

    3 Combination of Boundary Shape Functions

    4 Numerical Scheme and Experiments

    4.1 Example 1 of A Simply Supported Beam

    4.2 Example 2 of A Clamped-hinged Beam

    Figure 2:Example 1 resolved utilizing the BSFM and illustrating the maximum errors of v and the retrieved of H

    The noise isr= 0.2,and we takeβ= 1.5.We employ the BSFM withs= 3 andw= 200.Comparing the numerically retrieved solution ofH(x,t)with the exact forceH(x,t),as displayed in Figs.3a and 3c.We also illustrate the MEs ofv(x,t)and the recovery ofH(x,t)under the noisy effect in Fig.4.Excellent results are acquired with the MEs over the plane[0,1]×(0,1]being 4.95 forv(x,t)and 15039.55 forH(x,t).We also reveal the maximum absolute value ofv(x,t)andH(x,t)over the plane[0,1]×(0,1]is 1063.10 and 1.83×106,respectively,ande(H)=7.11×10-3is small.

    Deliberating a large relative noise of ξ=0.2 in Eq.(40),we use the BSFM withs=3 andw=200 to retrieveH(x,t),as shown in Fig.3b.The accuracy compared with the aforementioned results is close,where the ME forv(x,t)is 3.35,the ME forH(x,t)is 15225.75,ande(H)= 8.51×10-3.For this instance,the CPU time is also less than 1.0 s.

    4.3 Example 3 of A Cantilevered Beam

    Figure 3:For example 2 of the unknown nonlinear force function,(a)displaying exact H,(b)numerical H with small noise r=0.2,and(c)numerical recovery of H with large noise ξ=0.2

    Figure 4:Example 2 resolved utilizing the BSFM and illustrating the maximum errors of v and the retrieved of H

    The noise isr=0.9,and we takeβ=5.We utilize the BSFM withs=2 andw=500.Comparing the numerically retrieved solution ofH(x,t)with the exact forceH(x,t),as exhibited in Figs.5a and 5c.We also display the MEs ofv(x,t)and the recovery ofH(x,t)under the noisy effect in Fig.6.Good results are acquired with the MEs over the plane[0,1]×(0,1]being 0.18 forv(x,t)and 103.27 forH(x,t).We also indicate the maximum absolute value ofv(x,t)andH(x,t)over the plane[0,1]×(0,1]is 25.94 and 15477.89,respectively,ande(H)=8.08×10-3is small.

    Pondering a large relative noise of ξ=0.5 in Eq.(40),we use the BSFM withs=3 andw=200 to retrieveH(x,t),as shown in Fig.5b.The accuracy compared with the aforementioned results is close,where the ME forv(x,t)is 0.32,the ME forH(x,t)is 125.60,ande(H)=4.68×10-3.For this example,the CPU time is less than 1.0 s.

    Figure 5:For example 3 of the unknown nonlinear force function,(a)displaying exact H,(b)numerical H with small noise r=0.9,and(c)numerical recovery of H with large noise ξ=0.5

    Figure 6:Example 3 resolved utilizing the BSFM and illustrating the maximum errors of v and the retrieved of H

    4.4 Example 4 of A T wo-end Fixed Beam

    be an exact solution of the beam Eq.(1)under the boundary conditions in Eq.(50).The true functionH(x,t)can be obtained by introducing the above-mentionedv(x,t)into Eq.(1).

    The noise isr=0.9,and we takeβ=0.2.We use the BSFM withs=4 andw=100.Comparing the numerically retrieved solution ofH(x,t)with the exact forceH(x,t),as shown in Figs.7a and 7c.We also demonstrate the MEs ofv(x,t)and the recovery ofH(x,t)under the noisy effect in Fig.8.Good results are acquired with the MEs over the plane[0,1]×(0,1]being 8.18×10-2forv(x,t)and 60.68 forH(x,t).We also exhibit the maximum absolute value ofv(x,t)andH(x,t)over the plane[0,1]×(0,1]is 7.78 and 23989.37,respectively,ande(H)=2.47×10-3is small.

    Considering a large relative noise of ξ=0.01 in Eq.(40),we use the BSFM withs=8 andw=100 to retrieveH(x,t),as presented in Fig.7b.The accuracy compared with the above-mentioned results is close,in which the ME forv(x,t)is 8.53×10-2,the ME forH(x,t)is 79.82,ande(H)=2.72×10-3.For this instance,the CPU time is also less than 1.0 s.

    Figure 7:(Continued)

    Figure 7:For example 4 of the unknown nonlinear force function,(a)displaying exact H,(b)numerical H with small noise r=0.9,and(c)numerical recovery of H with large noise ξ=0.01

    Figure 8:Example 4 resolved utilizing the BSFM and illustrating the maximum errors of v and the retrieved of H

    5 Conclusions

    We addressed the recovery issues of revealing unknown forces burdened with the nonlinear Euler-Bernoulli beams with four boundary-supported data,e.g.,cantilevered,simply supported,two-end fixed,and clamped-hinged beams,by utilizing the boundary shape functions method.The innovation of this scheme is the establishment of a variety of boundary shape functions with varied orders for each beam sort,such that we have influential foundations from which to extend the solution in the whole space-time realm.The proposed scheme can be utilized in the online real-time estimation of unknown force functions in space-time for varied boundary supports of the vibrating beam.On the basis of those numerical examples,we display that the proposed algorithm is applicable to the nonlinear external forces of nonlinear Euler-Bernoulli equations and pretty excellent computational efficiency,and even for adding the large random noise up to 50%.Furthermore,to the author’s best knowledge,there has no report in the literature that the numerical schemes for those four issues can offer more accurate results than the present results.The present approach can be extended to cope with the multidimensional inverse nonlinear transient PDEs and will be worked out in the future.

    Funding Statement:This work was financially supported by the National United University[grant numbers 111-NUUPRJ-04].

    Conflicts of Interest:The author declares that he has no conflicts of interest to report regarding the present study.

    日本午夜av视频| 看非洲黑人一级黄片| 亚洲精品乱码久久久v下载方式| 婷婷色综合www| 美女福利国产在线| 色哟哟·www| 欧美日韩精品成人综合77777| 男人操女人黄网站| 少妇高潮的动态图| 久久鲁丝午夜福利片| 亚洲欧美一区二区三区国产| 高清不卡的av网站| 国产亚洲午夜精品一区二区久久| 一本色道久久久久久精品综合| 日本wwww免费看| 久久久午夜欧美精品| 五月开心婷婷网| 国产又色又爽无遮挡免| 一级爰片在线观看| 丝袜喷水一区| 国产欧美日韩一区二区三区在线 | 国产无遮挡羞羞视频在线观看| 美女cb高潮喷水在线观看| 美女xxoo啪啪120秒动态图| 九色成人免费人妻av| 亚州av有码| 美女国产视频在线观看| 亚洲欧洲国产日韩| 搡女人真爽免费视频火全软件| 亚洲国产av影院在线观看| 只有这里有精品99| 亚洲一区二区三区欧美精品| 天天躁夜夜躁狠狠久久av| av在线观看视频网站免费| 高清午夜精品一区二区三区| 成年人免费黄色播放视频| 日韩,欧美,国产一区二区三区| 麻豆成人av视频| 国产在线免费精品| 中文字幕久久专区| 国内精品宾馆在线| 久久久久精品性色| 成人18禁高潮啪啪吃奶动态图 | 精品人妻熟女毛片av久久网站| 亚洲精品中文字幕在线视频| 中文字幕亚洲精品专区| 丝袜在线中文字幕| 午夜精品国产一区二区电影| 建设人人有责人人尽责人人享有的| 亚洲欧美一区二区三区国产| 99热全是精品| 热99国产精品久久久久久7| 日本欧美国产在线视频| a级毛片黄视频| 国产精品国产三级国产专区5o| 如何舔出高潮| videossex国产| 午夜福利视频精品| 免费观看无遮挡的男女| 久久精品久久精品一区二区三区| 黄片播放在线免费| 久久综合国产亚洲精品| 视频中文字幕在线观看| 国产黄片视频在线免费观看| 成人影院久久| 91在线精品国自产拍蜜月| 国产精品女同一区二区软件| 国产精品一区二区在线不卡| 免费av中文字幕在线| 国产视频首页在线观看| √禁漫天堂资源中文www| 午夜激情久久久久久久| av天堂久久9| av国产精品久久久久影院| 亚洲,一卡二卡三卡| 国产黄片视频在线免费观看| 在线观看国产h片| 国国产精品蜜臀av免费| 成人18禁高潮啪啪吃奶动态图 | 日本爱情动作片www.在线观看| 在线观看美女被高潮喷水网站| 黑人猛操日本美女一级片| 色尼玛亚洲综合影院| av一本久久久久| 啦啦啦视频在线资源免费观看| 国产1区2区3区精品| 青青草视频在线视频观看| 国产99久久九九免费精品| 精品少妇内射三级| 中文字幕高清在线视频| 国产亚洲精品一区二区www | 久久性视频一级片| 男女之事视频高清在线观看| 99精国产麻豆久久婷婷| 色94色欧美一区二区| 欧美日韩亚洲综合一区二区三区_| 黑丝袜美女国产一区| 国产一区二区三区综合在线观看| 国产欧美亚洲国产| 国产精品.久久久| 国产精品自产拍在线观看55亚洲 | 自线自在国产av| 国产亚洲一区二区精品| 午夜视频精品福利| 免费在线观看日本一区| 多毛熟女@视频| 制服人妻中文乱码| 成人18禁高潮啪啪吃奶动态图| 伦理电影免费视频| 91老司机精品| 真人做人爱边吃奶动态| 久久人妻av系列| 50天的宝宝边吃奶边哭怎么回事| 久久青草综合色| 亚洲成人手机| www日本在线高清视频| 少妇 在线观看| 黄色成人免费大全| 午夜两性在线视频| 另类精品久久| 久久久精品区二区三区| 在线亚洲精品国产二区图片欧美| www.自偷自拍.com| 日本欧美视频一区| 亚洲,欧美精品.| www.999成人在线观看| 国产在线免费精品| 大陆偷拍与自拍| 91成年电影在线观看| 极品教师在线免费播放| 国产免费福利视频在线观看| 99国产综合亚洲精品| 狠狠狠狠99中文字幕| 啪啪无遮挡十八禁网站| 制服诱惑二区| 亚洲人成电影观看| 日韩一卡2卡3卡4卡2021年| 视频区图区小说| 大片免费播放器 马上看| 免费在线观看影片大全网站| 久久久水蜜桃国产精品网| 成人手机av| 这个男人来自地球电影免费观看| 露出奶头的视频| 十八禁人妻一区二区| 国产激情久久老熟女| 中文字幕最新亚洲高清| 亚洲专区字幕在线| 成人国产一区最新在线观看| 精品一品国产午夜福利视频| 极品教师在线免费播放| 亚洲人成电影免费在线| 久久国产精品人妻蜜桃| 精品少妇一区二区三区视频日本电影| 精品人妻1区二区| 女人久久www免费人成看片| 中国美女看黄片| 国产精品久久电影中文字幕 | 黄片大片在线免费观看| 国产激情久久老熟女| 国精品久久久久久国模美| 水蜜桃什么品种好| 欧美精品高潮呻吟av久久| 女人被躁到高潮嗷嗷叫费观| 男男h啪啪无遮挡| 精品国产亚洲在线| 精品一区二区三卡| 国产一区二区三区在线臀色熟女 | 香蕉久久夜色| 成人av一区二区三区在线看| 1024香蕉在线观看| 丝袜人妻中文字幕| svipshipincom国产片| 国产亚洲av高清不卡| 国产精品国产av在线观看| 天天操日日干夜夜撸| 首页视频小说图片口味搜索| 国产成人av激情在线播放| av不卡在线播放| 亚洲国产成人一精品久久久| 久久精品熟女亚洲av麻豆精品| 视频区欧美日本亚洲| 大香蕉久久成人网| av片东京热男人的天堂| 国产亚洲午夜精品一区二区久久| 久久人妻av系列| 国产av国产精品国产| 日日爽夜夜爽网站| 少妇猛男粗大的猛烈进出视频| 国产亚洲精品一区二区www | 欧美激情久久久久久爽电影 | 国产精品免费视频内射| 三上悠亚av全集在线观看| 欧美黑人精品巨大| a级片在线免费高清观看视频| 亚洲av日韩精品久久久久久密| 国产伦人伦偷精品视频| a在线观看视频网站| 中文欧美无线码| svipshipincom国产片| 日韩免费高清中文字幕av| 飞空精品影院首页| 国产成人系列免费观看| 亚洲人成77777在线视频| 国产在线视频一区二区| 欧美激情高清一区二区三区| 欧美精品一区二区免费开放| 99热网站在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产成+人综合+亚洲专区| 精品一区二区三区视频在线观看免费 | 日韩有码中文字幕| 一本—道久久a久久精品蜜桃钙片| 国产男女内射视频| 中文字幕av电影在线播放| 天天躁日日躁夜夜躁夜夜| 一区二区三区激情视频| 99久久人妻综合| 久久亚洲精品不卡| 黄频高清免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲伊人久久精品综合| www.熟女人妻精品国产| 不卡av一区二区三区| 在线观看www视频免费| 亚洲全国av大片| 亚洲国产看品久久| 日本精品一区二区三区蜜桃| 91成年电影在线观看| 男女免费视频国产| 欧美亚洲 丝袜 人妻 在线| 久久香蕉激情| 18禁裸乳无遮挡动漫免费视频| 一级毛片女人18水好多| 黄色 视频免费看| 亚洲男人天堂网一区| 国产一区二区三区综合在线观看| 99精国产麻豆久久婷婷| 一区二区av电影网| 日日夜夜操网爽| 国产无遮挡羞羞视频在线观看| 日韩欧美三级三区| 1024视频免费在线观看| 高潮久久久久久久久久久不卡| 国产无遮挡羞羞视频在线观看| 91精品三级在线观看| 18禁美女被吸乳视频| 操出白浆在线播放| 黑人猛操日本美女一级片| 热99国产精品久久久久久7| 国产高清视频在线播放一区| 精品一品国产午夜福利视频| 国产一区二区三区综合在线观看| 母亲3免费完整高清在线观看| 国产黄频视频在线观看| 亚洲成a人片在线一区二区| 人人妻人人添人人爽欧美一区卜| 国产亚洲精品一区二区www | 丰满人妻熟妇乱又伦精品不卡| 亚洲精品av麻豆狂野| 我要看黄色一级片免费的| 麻豆乱淫一区二区| 99re在线观看精品视频| 午夜福利免费观看在线| 成人手机av| 国产亚洲午夜精品一区二区久久| 国产亚洲精品一区二区www | 在线 av 中文字幕| 999久久久精品免费观看国产| 欧美+亚洲+日韩+国产| 黄片小视频在线播放| 精品国产一区二区三区久久久樱花| 免费看十八禁软件| 精品午夜福利视频在线观看一区 | 午夜福利影视在线免费观看| 大型黄色视频在线免费观看| 亚洲av美国av| 久久性视频一级片| www.熟女人妻精品国产| 日日摸夜夜添夜夜添小说| 亚洲一区中文字幕在线| 国产深夜福利视频在线观看| 亚洲久久久国产精品| 男女边摸边吃奶| 欧美成人免费av一区二区三区 | 最近最新中文字幕大全免费视频| 两性夫妻黄色片| 一级毛片电影观看| www日本在线高清视频| 麻豆成人av在线观看| 天天躁夜夜躁狠狠躁躁| 人人妻人人爽人人添夜夜欢视频| 国产单亲对白刺激| 美女福利国产在线| 黄色 视频免费看| 欧美黑人欧美精品刺激| 免费人妻精品一区二区三区视频| 制服人妻中文乱码| 建设人人有责人人尽责人人享有的| 中文字幕人妻丝袜一区二区| 亚洲人成电影观看| 国产日韩一区二区三区精品不卡| 在线观看免费视频日本深夜| 亚洲久久久国产精品| 国产福利在线免费观看视频| 午夜老司机福利片| 久久人人爽av亚洲精品天堂| 757午夜福利合集在线观看| 天天躁夜夜躁狠狠躁躁| 国产欧美亚洲国产| 亚洲av国产av综合av卡| 免费不卡黄色视频| 久久中文看片网| 黑丝袜美女国产一区| 国产黄频视频在线观看| 大码成人一级视频| 中文字幕高清在线视频| 另类精品久久| 国产不卡av网站在线观看| 母亲3免费完整高清在线观看| 久久精品国产99精品国产亚洲性色 | 新久久久久国产一级毛片| 国产亚洲欧美在线一区二区| 久久久久久人人人人人| 亚洲精品在线观看二区| 亚洲熟妇熟女久久| 国产熟女午夜一区二区三区| 亚洲情色 制服丝袜| 美女国产高潮福利片在线看| 国产一区有黄有色的免费视频| 精品国产一区二区三区久久久樱花| 国产麻豆69| 我的亚洲天堂| 91字幕亚洲| 99国产综合亚洲精品| 国产国语露脸激情在线看| 一级毛片女人18水好多| 亚洲中文字幕日韩| 国产不卡一卡二| 日本a在线网址| 视频区图区小说| 脱女人内裤的视频| 午夜老司机福利片| 亚洲中文字幕日韩| 老汉色av国产亚洲站长工具| 日本一区二区免费在线视频| 午夜福利影视在线免费观看| 精品人妻在线不人妻| 国产色视频综合| 丝袜美足系列| 国产一区有黄有色的免费视频| 亚洲av日韩在线播放| 男女高潮啪啪啪动态图| 亚洲精品国产区一区二| 午夜福利,免费看| 久久香蕉激情| 咕卡用的链子| 国产不卡一卡二| 国产极品粉嫩免费观看在线| 热99国产精品久久久久久7| 国产不卡av网站在线观看| 国产伦人伦偷精品视频| 欧美成狂野欧美在线观看| 大片电影免费在线观看免费| 欧美日韩精品网址| 日韩精品免费视频一区二区三区| 男女下面插进去视频免费观看| 久久久精品94久久精品| 少妇 在线观看| 免费在线观看完整版高清| 久久久精品国产亚洲av高清涩受| 黄色视频在线播放观看不卡| 久久久国产精品麻豆| 午夜久久久在线观看| 国产一区二区三区视频了| 国产在线视频一区二区| 欧美日韩一级在线毛片| 国产亚洲午夜精品一区二区久久| 老司机在亚洲福利影院| 久久久精品免费免费高清| 久久天躁狠狠躁夜夜2o2o| 中文字幕最新亚洲高清| 精品国产亚洲在线| 两个人免费观看高清视频| 免费黄频网站在线观看国产| 肉色欧美久久久久久久蜜桃| 性色av乱码一区二区三区2| svipshipincom国产片| 丝袜在线中文字幕| 免费女性裸体啪啪无遮挡网站| 国产精品 欧美亚洲| 男人舔女人的私密视频| 国产成人精品久久二区二区91| 国产高清videossex| 黄色 视频免费看| 国产伦理片在线播放av一区| 中文欧美无线码| 久久人人爽av亚洲精品天堂| 在线亚洲精品国产二区图片欧美| 老司机影院毛片| 性少妇av在线| 欧美精品啪啪一区二区三区| 精品国产一区二区三区四区第35| 人成视频在线观看免费观看| 亚洲欧洲精品一区二区精品久久久| 国产无遮挡羞羞视频在线观看| 亚洲中文av在线| 日本撒尿小便嘘嘘汇集6| 欧美性长视频在线观看| 在线观看免费视频网站a站| 免费看十八禁软件| 久久久久久久久免费视频了| 999精品在线视频| av有码第一页| 久久久精品国产亚洲av高清涩受| 不卡av一区二区三区| 80岁老熟妇乱子伦牲交| 18禁国产床啪视频网站| 满18在线观看网站| 法律面前人人平等表现在哪些方面| 亚洲精品成人av观看孕妇| 亚洲精品美女久久久久99蜜臀| aaaaa片日本免费| 一本大道久久a久久精品| 少妇被粗大的猛进出69影院| 两性夫妻黄色片| netflix在线观看网站| 国产精品久久久av美女十八| 69av精品久久久久久 | 国产精品国产高清国产av | 日本欧美视频一区| 色精品久久人妻99蜜桃| 久久人妻av系列| 在线亚洲精品国产二区图片欧美| 亚洲九九香蕉| 久久ye,这里只有精品| 中文字幕制服av| a级毛片在线看网站| 国产免费视频播放在线视频| 久热这里只有精品99| 欧美av亚洲av综合av国产av| 999久久久精品免费观看国产| videosex国产| 成人三级做爰电影| 亚洲熟女毛片儿| 成人亚洲精品一区在线观看| 精品欧美一区二区三区在线| 在线观看免费视频日本深夜| 国产亚洲欧美在线一区二区| 精品欧美一区二区三区在线| 欧美成人午夜精品| 久久精品人人爽人人爽视色| 国产亚洲欧美精品永久| 亚洲精品在线美女| 99国产综合亚洲精品| 色尼玛亚洲综合影院| 日韩免费av在线播放| 最近最新中文字幕大全免费视频| 黑人欧美特级aaaaaa片| 日韩欧美国产一区二区入口| 国产成人精品无人区| 天堂8中文在线网| 天天躁狠狠躁夜夜躁狠狠躁| 制服诱惑二区| 国产精品久久久久成人av| 午夜福利,免费看| 美女扒开内裤让男人捅视频| 亚洲国产成人一精品久久久| 满18在线观看网站| 黄色怎么调成土黄色| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲五月婷婷丁香| 热re99久久国产66热| 啦啦啦免费观看视频1| 在线观看免费日韩欧美大片| 看免费av毛片| 少妇被粗大的猛进出69影院| av又黄又爽大尺度在线免费看| 新久久久久国产一级毛片| 午夜精品久久久久久毛片777| 欧美精品啪啪一区二区三区| 99在线人妻在线中文字幕 | e午夜精品久久久久久久| 另类精品久久| 中亚洲国语对白在线视频| 成人永久免费在线观看视频 | 午夜免费鲁丝| 日本欧美视频一区| 亚洲国产av影院在线观看| 麻豆成人av在线观看| 久久国产精品大桥未久av| 色视频在线一区二区三区| 欧美精品高潮呻吟av久久| 男女之事视频高清在线观看| 99精品在免费线老司机午夜| 精品一品国产午夜福利视频| 视频区图区小说| 亚洲三区欧美一区| 男女下面插进去视频免费观看| 日日摸夜夜添夜夜添小说| 精品人妻在线不人妻| 免费不卡黄色视频| 欧美日韩黄片免| 日韩视频一区二区在线观看| 69精品国产乱码久久久| 国产精品98久久久久久宅男小说| 亚洲av电影在线进入| 国产一区二区 视频在线| 天天影视国产精品| 国产国语露脸激情在线看| 麻豆乱淫一区二区| 亚洲七黄色美女视频| 亚洲av片天天在线观看| 免费在线观看完整版高清| 一级片'在线观看视频| 久久精品国产a三级三级三级| 免费观看a级毛片全部| 女同久久另类99精品国产91| 亚洲av日韩在线播放| 一区二区三区国产精品乱码| 午夜福利,免费看| 欧美国产精品一级二级三级| tube8黄色片| 国产麻豆69| 黄色 视频免费看| 久久天躁狠狠躁夜夜2o2o| 国产老妇伦熟女老妇高清| 天天添夜夜摸| 99久久99久久久精品蜜桃| 老汉色av国产亚洲站长工具| 欧美大码av| 欧美老熟妇乱子伦牲交| 欧美中文综合在线视频| av在线播放免费不卡| 亚洲免费av在线视频| 大型黄色视频在线免费观看| 久9热在线精品视频| 亚洲精品在线美女| 超色免费av| 九色亚洲精品在线播放| 男女免费视频国产| 成人永久免费在线观看视频 | 久久午夜综合久久蜜桃| 一区福利在线观看| 日韩中文字幕视频在线看片| 新久久久久国产一级毛片| 成人国语在线视频| 在线观看免费午夜福利视频| 黄网站色视频无遮挡免费观看| 又大又爽又粗| 一边摸一边做爽爽视频免费| 交换朋友夫妻互换小说| 9热在线视频观看99| 性色av乱码一区二区三区2| 美国免费a级毛片| 国产伦人伦偷精品视频| 女性被躁到高潮视频| 18禁美女被吸乳视频| 不卡av一区二区三区| 男女之事视频高清在线观看| 国产亚洲精品一区二区www | 男女床上黄色一级片免费看| 97人妻天天添夜夜摸| 90打野战视频偷拍视频| 亚洲中文日韩欧美视频| 99在线人妻在线中文字幕 | 中文字幕最新亚洲高清| 久久精品国产亚洲av香蕉五月 | 精品欧美一区二区三区在线| 亚洲国产毛片av蜜桃av| 精品久久蜜臀av无| 在线观看一区二区三区激情| 国产97色在线日韩免费| 欧美精品高潮呻吟av久久| 亚洲精品乱久久久久久| 精品亚洲成国产av| 国产97色在线日韩免费| 十八禁高潮呻吟视频| 老司机午夜十八禁免费视频| 亚洲精品在线观看二区| 桃花免费在线播放| 日韩成人在线观看一区二区三区| 日韩中文字幕视频在线看片| 欧美精品高潮呻吟av久久| 91麻豆av在线| 成年动漫av网址| 男女高潮啪啪啪动态图| 宅男免费午夜| 人人妻人人添人人爽欧美一区卜| 国产精品二区激情视频| 天堂8中文在线网| 十八禁网站网址无遮挡| 国产1区2区3区精品| 精品国产一区二区三区久久久樱花| 国精品久久久久久国模美| 大型av网站在线播放| 男女之事视频高清在线观看| 在线十欧美十亚洲十日本专区| 纵有疾风起免费观看全集完整版| 国产精品98久久久久久宅男小说| 视频在线观看一区二区三区| 在线观看66精品国产| 最新的欧美精品一区二区| 天堂俺去俺来也www色官网| 青草久久国产| 美女视频免费永久观看网站| 别揉我奶头~嗯~啊~动态视频| 成人国产一区最新在线观看| 国产区一区二久久| 国产在线观看jvid| 黑人猛操日本美女一级片| 91麻豆精品激情在线观看国产 | 免费少妇av软件| 午夜久久久在线观看| kizo精华|