• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Arithmetic Optimization with Deep Learning Enabled Anomaly Detection in Smart City

    2022-11-10 02:28:52MahmoudRagabandMahaFaroukSabir
    Computers Materials&Continua 2022年10期

    Mahmoud Ragaband Maha Farouk S.Sabir

    1Information Technology Department,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    2Centre of Artificial Intelligence for Precision Medicines,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    3Mathematics Department,Faculty of Science,Al-Azhar University,Naser City,11884,Cairo,Egypt

    4Information Systems Department,Faculty of Computing and Information Technology King Abdulaziz University,Jeddah,21589,Saudi Arabia

    Abstract:In recent years,Smart City Infrastructures(SCI)have become familiar whereas intelligent models have been designed to improve the quality of living in smart cities.Simultaneously,anomaly detection in SCI has become a hot research topic and is widely explored to enhance the safety of pedestrians.The increasing popularity of video surveillance system and drastic increase in the amount of collected videos make the conventional physical investigation method to identify abnormal actions,a laborious process.In this background,Deep Learning(DL)models can be used in the detection of anomalies found through video surveillance systems.The current research paper develops an Internet of Things Assisted Deep Learning Enabled Anomaly Detection Technique for Smart City Infrastructures,named(IoTAD-SCI)technique.The aim of the proposed IoTAD-SCI technique is to mainly identify the existence of anomalies in smart city environment.Besides,IoTAD-SCI technique involves Deep Consensus Network (DCN) model design to detect the anomalies in input video frames.In addition,Arithmetic Optimization Algorithm (AOA)is executed to tune the hyperparameters of the DCN model.Moreover,ID3 classifier is also utilized to classify the identified objects in different classes.The experimental analysis was conducted for the proposed IoTADSCI technique upon benchmark UCSD anomaly detection dataset and the results were inspected under different measures.The simulation results infer the superiority of the proposed IoTAD-SCI technique under different metrics.

    Keywords:Object detection;anomaly detection;smart city infrastructure;deep learning;parameter tuning

    1 Introduction

    Video surveillance systems have been widely installed in the recent years for monitoring the crowd at public places.The video information generated by such systems is complex,huge and in different formats while Traditional manual analysis to label abnormal events in such data is challenging and time-consuming in nature.Thus,a smart surveillance scheme and a hotspot of Computer Vision(CV) applications and researches are immediately required to detect and recognize anomalies[1].But localization and anomaly detection remain a challenge in smart video surveillance.However,considerable development has occurred in the recent years in terms of behavior modeling,anomaly measuring,and feature extraction.One of the primary challenges in anomaly detection is that the description of the anomaly is indeterminate in almost all real-time surveillance videos.Generally,an event that is considerably distinct from general event is classified as anomaly.In other terms,anomalies are determined as common events rather than details of themselves or classifications[2].An event which is anomalous in one scene (people running) may not be necessarily anomalous in another scene.This is because the common event in another scene might include the person running,while the initial scene does not.Thus,anomaly is composed of inadequate similarities and sizes to be efficiently modelled.Essentially,anomaly detection for crowd scenes has an innovation detection that is called a one-class,semi-supervised learning problem[3].This is because the training data of the current dataset comprises of common events,where the information to be confirmed has abnormal as well as normal events.Fig.1 illustrates the structure of smart city.

    Figure 1:Smart city infrastructure

    Several CV methods that depends upon work,have been presented earlier.These methods focus on the operation including scene learning,data acquisition,behavioural learning,feature extraction,activity learning,etc[4].The main objective is to calculate the operation that includes video processing model,anomaly predictive approach,scene detection,human behavior learning,vehicle prediction,multiple camera-based challenges and schemes,vehicle observation,traffic observation,activity examination,etc.Now,anomalous prediction is considered as a sub-region of behavioral learning in the captured visual scene[5].The availability of video captured in public places has led to anomalous prediction and the simulation of video analysis.Furthermore,anomaly prediction methods understand to differentiate the normal behavior through training.Any important changes that deviate from common behavior are considered as anomalous.Sudden dispersion of people from a crowd,presence of vehicles on pathways,jaywalking,person fainting when walking,U-turn of vehicles at red signals and signal bypasses at a traffic junction are some of the instances of anomalies[6].Recently,Deep Learning (DL) method has attained an outstanding achievement in a number of CV methods that include object detection and classification since the application depends upon supervised learning.

    The current research work develops an Internet of Things Assisted Deep Learning Enabled Anomaly Detection Technique for Smart City Infrastructures,abbreviated as(IoTAD-SCI)technique.The proposed IoTAD-SCI technique involves the design of Deep Consensus Network(DCN)model to detect the anomalies in input video frames.In addition,Arithmetic Optimization Algorithm(AOA)is implemented to fine tune the hyperparameters of DCN technique.Moreover,ID3 classifier is also utilized to classify the identified objects under different classes.The experimental analysis was conducted for IoTAD-SCI technique upon benchmark UCSD anomaly detection dataset and the results were inspected under different measures.

    2 Related works

    Li et al.[7]proposed an anomaly detection model and video anomaly event feature.At first,dense optical flow of video was attained and the data of optical flow was converted into histogram features of the optical flow.Next,the space-time cube of video was created using space-time relation of the video.At last,sparse depiction technique was utilized to model the entire procedure.Font et al.[8]used real-time information from smart cities of Barcelona to identify typical attacks and simulate WSN as and when required.Next,the researchers compared the commonly-utilized anomaly detection methods that disclose such attacks.The algorithm was evaluated under distinct necessities on access network data.

    Alrashdi et al.[9]presented an Anomalous Detection-IoT(AD-IoT)method i.e.,a smart anomalous detection-based RF-ML method.The presented method was able to identify the compromised IoT devices in distribution fog nodes efficiently.To estimate the presented method,the study employed current datasets to demonstrate the accuracy of the algorithm.Chackravarthy et al.[10]introduced a NN approach as well as a Hybrid Deep Learning method to analyze the video stream data.The presented method was capable of identifying and assessing the criminal activities quickly.This sequentially reduced the manual workload on supervisors.While the method was executed through smart city framework,it also allowed one to an adaptable and efficient crime detection method.

    Kang et al.[11]introduced an NN-based model which integrates the idea of AUC using Multi-Instance Learning(MIL)model.The authors created MI-AUC method which forecasts high anomaly scores for anomalous segments.Moreover,sparsity and temporal smoothness limitations were also employed in this study from loss function for effective anomalous detection.Chen et al.[12]designed an architecture-based bi-directional prediction that forecasts a similar target frame by both forward and backward predictive subsystems,correspondingly.Next,the loss function is formulated on the basis of bi-directional predictive frame and real-time target frame.Additionally,an anomaly score assessment model-based sliding window system was presented in this study that focuses on the foreground of predictive error map.

    Ullah et al.[13]developed an effective deep feature-based intelligent anomaly detection method.In the presented method,the spatiotemporal features were initially extracted from a sequence of frames by passing everyone to a pre-trained CNN method.The feature extracted from the series of frames is beneficial in terms of capturing anomalous actions.Next,the extracted deep feature is passed onto multilayer Bi-LSTM method that could precisely categorize the ongoing normal or anomalous events in complicated surveillance scenes.

    3 The Proposed Model

    In current study,an effective IoTAD-SCI technique is developed to identify the presence of anomalies in smart city environment.The proposed IoTAD-SCI technique involves the design of DCN technique to detect anomalies in input video frames.Followed by,AOA is applied to fine tune the hyperparameters of DCN technique whereas ID3 classifier is utilized to classify the identified objects under different classes.

    3.1 Object Detection Using DCN Model

    In initial stage,DCN model is applied for the identification of objects that exist in input video frame.DCN has an analogous structure alike RetinaNet[14].It makes use of Feature Pyramid Network (FPN) for feature extraction at different scales from ResNet-50 mainstream by following squeeze-and-excite method for the residual.In order to detect smaller objects,higher-resolution variants of FPN is employed in this study.It is utilized for Leaky ReLU activation function and group normalization.The feature extraction maps,at all the scales,are transmitted to Centroid Proposal Network (CPN).In comparison with Region Proposal Network (RPN) that predicts the bounding boxes,CPN forecasts a subset of centroidsv′with respective confidence score(v′).When compared with RetinaNet,CPN does not share the weight at all the scales to capture distinct representations.This is because each image within the microscopy data sets has a similar magnification.Like RPN in RetinaNet,anchor is utilized in this study as prior,but with a distinct configuration.

    3.2 Hyperparameter Tuning Using AOA

    In order to proficiently adjust the hyperparameters of DCN model,AOA is utilized.AOA is stimulated on the basis of basic arithmetic operators used in mathematics.In line with other optimization algorithms,AOA mainly operates on two searching processes namely,exploration and exploration[16],depending upon the arithmetic operators like-,+,*,and/.Initially,AOA produces a collection ofNsolutions(agent).And every individual solution indicates a solution for the applied problem.Therefore,the solution or agent indicatesXpopulation which is given below:

    wherer3indicates an arbitrary number in the range of zero and one.Then,the agent update procedure is carried out using AOA operators.The process involved in AOA is shown in Algorithm 1.

    Algorithm 1:Pseudocode of AOA Input:Initialize parameters α,control function N and maximal iterations Mt.Determine the agent’s initial value Xii=1,...N·while(t <Mt)do Determine the fitness of all agents Compute optimal agent Xb.Upgrade the MOA and MOP for i=1 to N do for j =1 to Dim do Upgrade:r1,r2,and r3 values if r1 >MOA then Exploration procedure Upgrade Xi.else Exploitation procedure Upgrade Xi.end if end for end for t=t+1 end while Display the optimal agent(Xb).

    3.3 ID3 Based Classification Model

    Once the objects are detected in input frame,ID3 classifier is applied to classify the objects as either anomalies or non-anomalies.Id3 method selects the testing features by comparing and calculating their data gains.Here,Srepresents the subset of data instances.Assume the class attributeChasmdistinct values that denotemdistinct class label,Ci(i=1,2,...,m).Here,Sirepresents the number of samples from classCi(i=1,2,...,m).The predicted number of data required to classifySis shown below.

    The less data amount needed;the more purity of sub-data set is.

    Whilepijdenotes the probability of samples inSjthat belongs to the classCi.I(s1j,s2j,...,smj)implies the average number of data required to identify the class labels for each instance inSj.The data gain ofAis determined as follows.

    viz.,the number of new data needed minus the number of original data needed.Choose the attributes with maximalInfoGain(A)as testing attributes that are allocated as internal node in a decision tree.In this method,the required amount of data to classify the samples is minimal.

    4 Experimental Results and Discussion

    The experimental analysis was conducted upon the proposed IoTAD-SCI technique using UCSD dataset[19].In this study,two testbeds namely,Test007 and Test005 were used for simulation and these datasets comprise a total of 360 frames with 12 s duration.Fig.2 demonstrates the sample test images with ground truth of the anomalies that exist in the image.

    Figure 2:(Continued)

    Figure 2:Sample images(a and c)ground truth(b and d)

    Fig.3 visualizes the outcome of the proposed IoTAD-SCI technique on test image.From the figure,it can be understood that the presented IoTAD-SCI technique identified the presence of two anomalies namely‘bicycle and truck’in an efficient manner.

    Figure 3:Anomaly detected image

    Tab.1 provides the results of detection analysis accomplished by IoTAD-SCI technique on Test004 testbed.The results indicate that the presented IoTAD-SCI technique effectually identified all the anomalies with maximum accuracy.For instance,on 142 frames,IoTAD-SCI technique identified anomalies[1,2]withaccyvalues such as 99.69% and 99.68% respectively.Likewise,on 146 frames,the presented IoTAD-SCI technique recognized the anomalies 1 and 2 with accuracy values such as 99.08%and 98.99%correspondingly.Moreover,on 179 frames,the proposed IoTAD-SCI technique categorized the anomalies[1,2]withaccyvalues such as 99.86%and 99.78%respectively.At last,on 180 frames,IoTAD-SCI technique identified the anomalies[1,2]withaccyvalues such as 99.76%and 99.91%correspondingly.

    Table 1:Accuracy of anomalies in Test004 sequences

    A brief comparative anomaly detection analysis was conducted between the proposed IoTADSCI technique and other methods and the results are shown in Fig.4.The outcomes report that the proposed IoTAD-SCI approach achieved effectual outcomes under all the frames.For instance,with 142 frames,IoTAD-SCI technique offered a high accuracy of 99.69%whereas DLAD,RSCNN,FRCNN,and MDT techniques obtained the least accuracy values namely,99.37%,98.49%,93.21%,and 81.39%.Concurrently,with 180 frames,the proposed IoTAD-SCI technique achieved an increased accuracy of 99.84%,whereas DLAD,RSCNN,FRCNN,and MDT techniques reached low accuracy values such as 99.19%,99.14%,86.08%,and 85.84%respectively.

    Figure 4:Accuracy analysis of IoTAD-SCI technique under test004 testbed

    Fig.5 highlights the ROC analysis results achieved by IoTAD-SCI technique on test004 testbed.The figure reports the enhanced anomaly detection outcomes of IoTAD-SCI technique with an increased ROC value of 99.9452.

    Figure 5:ROC analysis of IoTAD-SCI technique under test004 testbed

    Tab.2 offers the results of detection analysis accomplished by IoTAD-SCI approach on Test007 testbed.The results indicate that the proposed IoTAD-SCI technique effectually identified all the anomalies with maximum accuracy.For instance,on 040 frames,IoTAD-SCI methodology identified the anomalies[1,2]withaccyvalues such as 98.47% and 98.47% correspondingly.Besides,on 075 frames,IoTAD-SCI algorithm recognized the anomalies[1,2]withaccyvalues being 96.49% and 96.59% correspondingly.Furthermore,on 135 frames,the proposed IoTAD-SCI technique categorized the anomalies[1,2]with the accuracy values such as 99.75%and 99.67%respectively.Eventually,on 180 frames,IoTAD-SCI approach identified the anomalies 1 and 2 withaccyvalues such as 89.68%and 89.65%correspondingly.

    Table 2:Accuracy of anomalies in Test007 Sequences

    A detailed comparative anomaly detection analysis was conducted upon IoTAD-SCI approach against other techniques and the results are shown in Fig.6.The outcomes demonstrate that the proposed IoTAD-SCI system produced effective outcomes under all the frames.For sample,with 042 frames,the presented IoTAD-SCI technique offered a high accuracy of 98.47%,whereas DLAD,RSCNN,FRCNN,and MDT techniques attained the minimal accuracy values namely,97.52%,94.62%,89.98%,and 85.17%respectively.In addition,with 180 frames,IoTAD-SCI approach offered a maximum accuracy of 89.67%,whereas DLAD,RSCNN,FRCNN,and MDT methodologies reached low accuracy values such as 88.58%,83.65%,81.65%,and 80.88%correspondingly.

    Figure 6:Accuracy analysis of IoTAD-SCI technique under test007 testbed

    Fig.7 demonstrates the ROC analysis graph generated by IoTAD-SCI approach upon test007 testbed.The figure reveals the improved anomaly detection outcomes of IoTAD-SCI approach with a maximum ROC of 99.9452.

    Figure 7:ROC analysis of IoTAD-SCI technique under test007 testbed

    Figs.8 and 9 show the average anomaly detection outcomes of the presented IoTAD-SCI technique against recent methods on two testbeds.The figure reports that the proposed IoTADSCI technique has the ability to effectively identify the anomalies on both testbeds.For instance,with Test004 testbed,IoTAD-SCI technique reached a high average accuracy value i.e.,99.70%whereas DLAD,RSCNN,FRCNN,and MDT techniques obtained low average accuracy values such as 99.22%,98.84%,86.60%,and 81.27% respectively.Similarly,with Test007 testbed,the proposed IoTAD-SCI technique reached an increased average accuracy of 96%,whereas DLAD,RSCNN,FRCNN,and MDT techniques achieved low average accuracy values namely,95.01%,91.84%,88.34%,and 84.03%.

    Figure 8:Average accuracy analysis results of IoTAD-SCI technique under test004 testbed

    Figure 9:Average accuracy analysis results of IoTAD-SCI technique under test007 testbed

    Finally,running time analysis was conducted between the proposed IoTAD-SCI system and the existing models and the results are shown in Tab.3 and Fig.10[20-22].The results demonstrate that the presented IoTAD-SCI technique required minimal running time compared to other techniques.For instance,with Test004 testbed,the IoTAD-SCI technique offered a minimum running time of 10.159 s,whereas DLAD,RSCNN,FRCNN,and MDT techniques demanded the maximum running times such as 10.825,12.355,12.403 and 12.463 s respectively.At the same time,with Test007 testbed,the proposed IoTAD-SCI technique produced a low running time of 10.504s,whereas DLAD,RSCNN,FRCNN,and MDT techniques attained a maximum running time of 11.043,11.480,11.876 and 12.000 s respectively.Based on the results and discussion made above,it can be understood that the proposed IoTAD-SCI technique is superior compared to existing techniques.

    Table 3:Running time analysis results of IoTAD-SCI technique against existing methods

    Figure 10:Running time analysis of IoTAD-SCI technique with recent algorithms

    5 Conclusion

    In current study,an effective IoTAD-SCI technique has been developed to identify the presence of anomalies in smart city environment.The proposed IoTAD-SCI technique involves the design of DCN technique to detect the anomalies from input video frames.Followed by,AOA is applied to fine tune the hyperparameters of DCN technique whereas ID3 classifier is utilized to classify the identified objects under different classes.The experimental analysis results of IoTAD-SCI technique against the benchmark UCSD anomaly detection dataset were inspected under different measures.The simulation outcomes infer the superiority of the proposed IoTAD-SCI technique under different metrics compared to other recent approaches.As a part of future work,IoTAD-SCI technique can be realized in real time environment.

    Acknowledgement:The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPIP-1308-612-1442)and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.

    Funding Statement:This project was supported financially by Institution Fund projects under grant no.(IFPIP-1308-612-1442).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    日韩高清综合在线| 伦理电影免费视频| 亚洲精品乱码久久久v下载方式 | 久久久久精品国产欧美久久久| 91九色精品人成在线观看| 亚洲av五月六月丁香网| 色噜噜av男人的天堂激情| 黄色视频,在线免费观看| 俺也久久电影网| 成人亚洲精品av一区二区| 亚洲在线自拍视频| 国产乱人伦免费视频| 2021天堂中文幕一二区在线观| 99热只有精品国产| 天天躁日日操中文字幕| 婷婷丁香在线五月| 少妇熟女aⅴ在线视频| www.自偷自拍.com| 麻豆国产97在线/欧美| 欧美黑人巨大hd| 国产97色在线日韩免费| 亚洲av片天天在线观看| 午夜免费成人在线视频| av在线天堂中文字幕| 久久久国产成人免费| 亚洲天堂国产精品一区在线| 午夜两性在线视频| 久久精品aⅴ一区二区三区四区| 制服丝袜大香蕉在线| 国产成人av教育| 啦啦啦观看免费观看视频高清| av福利片在线观看| 啦啦啦免费观看视频1| 国产成人福利小说| 观看美女的网站| 国产精品av视频在线免费观看| 少妇丰满av| 草草在线视频免费看| 亚洲国产欧洲综合997久久,| 国产蜜桃级精品一区二区三区| avwww免费| 嫩草影院精品99| 毛片女人毛片| 蜜桃久久精品国产亚洲av| 好看av亚洲va欧美ⅴa在| 欧美一区二区精品小视频在线| 国产精品一及| 亚洲七黄色美女视频| 别揉我奶头~嗯~啊~动态视频| 在线播放国产精品三级| 特级一级黄色大片| 91字幕亚洲| 村上凉子中文字幕在线| av中文乱码字幕在线| 熟女电影av网| 国产午夜福利久久久久久| 国产精品98久久久久久宅男小说| 九色国产91popny在线| 最新美女视频免费是黄的| 亚洲av成人一区二区三| 欧美激情久久久久久爽电影| 久久精品综合一区二区三区| 1000部很黄的大片| 国产三级在线视频| 天堂动漫精品| 亚洲欧美日韩卡通动漫| 麻豆国产av国片精品| 亚洲最大成人中文| 亚洲自拍偷在线| 国产精品自产拍在线观看55亚洲| 老司机福利观看| 岛国在线观看网站| 国产精品免费一区二区三区在线| 熟女人妻精品中文字幕| 特级一级黄色大片| 国产免费av片在线观看野外av| a级毛片在线看网站| 亚洲精品456在线播放app | 日韩有码中文字幕| 99热这里只有精品一区 | 成人欧美大片| av黄色大香蕉| av天堂中文字幕网| 日本 av在线| 国产精品精品国产色婷婷| 最近最新免费中文字幕在线| 亚洲国产色片| 99热6这里只有精品| 99在线人妻在线中文字幕| 日韩 欧美 亚洲 中文字幕| 亚洲专区国产一区二区| 淫妇啪啪啪对白视频| 国产高清三级在线| 最新美女视频免费是黄的| 国产单亲对白刺激| 国产单亲对白刺激| 日本黄色片子视频| 免费在线观看成人毛片| 精品熟女少妇八av免费久了| 成人性生交大片免费视频hd| bbb黄色大片| 一本一本综合久久| bbb黄色大片| 成人18禁在线播放| 天天一区二区日本电影三级| 国产乱人视频| 国产成人精品无人区| bbb黄色大片| 久久午夜综合久久蜜桃| www日本在线高清视频| 国产爱豆传媒在线观看| 国产蜜桃级精品一区二区三区| 俄罗斯特黄特色一大片| 无人区码免费观看不卡| 欧美大码av| 岛国在线观看网站| 亚洲美女黄片视频| 一个人免费在线观看的高清视频| 后天国语完整版免费观看| 午夜成年电影在线免费观看| 好看av亚洲va欧美ⅴa在| 在线a可以看的网站| 日韩精品青青久久久久久| 岛国视频午夜一区免费看| 18禁美女被吸乳视频| 在线观看日韩欧美| 久久午夜综合久久蜜桃| 国产精品乱码一区二三区的特点| 欧美高清成人免费视频www| 国产视频一区二区在线看| 国产欧美日韩精品一区二区| 国产v大片淫在线免费观看| 一本精品99久久精品77| 国产在线精品亚洲第一网站| 久久久久国产一级毛片高清牌| 国产麻豆成人av免费视频| 99精品久久久久人妻精品| 久久久国产成人免费| 最近在线观看免费完整版| 黄片大片在线免费观看| 好男人在线观看高清免费视频| 真人一进一出gif抽搐免费| 在线观看日韩欧美| 日本撒尿小便嘘嘘汇集6| 国产成人aa在线观看| 一本一本综合久久| 午夜精品久久久久久毛片777| 国产人伦9x9x在线观看| 超碰成人久久| 久久国产乱子伦精品免费另类| 欧美一区二区国产精品久久精品| 一进一出抽搐动态| 一本精品99久久精品77| 欧美日韩精品网址| 搡老岳熟女国产| 舔av片在线| 久9热在线精品视频| 日本在线视频免费播放| 午夜日韩欧美国产| 12—13女人毛片做爰片一| 国产高清激情床上av| 免费大片18禁| 99久久精品国产亚洲精品| 免费观看精品视频网站| 黄色 视频免费看| 国产精品一及| 香蕉国产在线看| 国产久久久一区二区三区| 757午夜福利合集在线观看| 亚洲精品一区av在线观看| 国产精品日韩av在线免费观看| www.www免费av| 亚洲男人的天堂狠狠| 久久久久免费精品人妻一区二区| 日韩人妻高清精品专区| 欧美一区二区国产精品久久精品| 一进一出抽搐动态| 亚洲午夜理论影院| 国产伦一二天堂av在线观看| 搡老熟女国产l中国老女人| 伊人久久大香线蕉亚洲五| 亚洲av美国av| 久久久色成人| 看片在线看免费视频| 精品一区二区三区视频在线观看免费| 欧美日本亚洲视频在线播放| 男女床上黄色一级片免费看| 午夜福利成人在线免费观看| 成年版毛片免费区| 色噜噜av男人的天堂激情| 亚洲欧美一区二区三区黑人| 欧美中文综合在线视频| 免费av不卡在线播放| 日韩 欧美 亚洲 中文字幕| 香蕉丝袜av| 操出白浆在线播放| 国产熟女xx| 亚洲专区中文字幕在线| 亚洲成人中文字幕在线播放| 人妻夜夜爽99麻豆av| 性色avwww在线观看| 久久久久久久精品吃奶| 一边摸一边抽搐一进一小说| 午夜精品久久久久久毛片777| 欧美色欧美亚洲另类二区| 亚洲avbb在线观看| 九色国产91popny在线| 午夜日韩欧美国产| 手机成人av网站| 日本黄色视频三级网站网址| 1000部很黄的大片| 啦啦啦免费观看视频1| 岛国视频午夜一区免费看| 亚洲精品美女久久久久99蜜臀| 99久久99久久久精品蜜桃| 国产v大片淫在线免费观看| 九色国产91popny在线| 中文资源天堂在线| 韩国av一区二区三区四区| 国产毛片a区久久久久| 日本黄大片高清| 午夜影院日韩av| 天天躁狠狠躁夜夜躁狠狠躁| 美女免费视频网站| 日韩欧美 国产精品| 国产三级在线视频| 国产高清激情床上av| 久久精品综合一区二区三区| 国产黄色小视频在线观看| 夜夜爽天天搞| 亚洲国产色片| 国内久久婷婷六月综合欲色啪| 啦啦啦韩国在线观看视频| 好看av亚洲va欧美ⅴa在| av天堂在线播放| 亚洲av电影在线进入| 在线观看免费午夜福利视频| 好看av亚洲va欧美ⅴa在| ponron亚洲| 国产精品一区二区三区四区久久| 最近最新免费中文字幕在线| 久久国产精品人妻蜜桃| 国产乱人视频| 黄色视频,在线免费观看| 国产69精品久久久久777片 | 一区二区三区高清视频在线| 亚洲狠狠婷婷综合久久图片| 亚洲av电影不卡..在线观看| 一区二区三区激情视频| 欧美午夜高清在线| 免费看美女性在线毛片视频| 性欧美人与动物交配| 欧美精品啪啪一区二区三区| 男女下面进入的视频免费午夜| 老鸭窝网址在线观看| 日本三级黄在线观看| 久久国产精品影院| 波多野结衣高清作品| 给我免费播放毛片高清在线观看| 精品久久久久久久人妻蜜臀av| 91字幕亚洲| 99国产综合亚洲精品| e午夜精品久久久久久久| 超碰成人久久| 在线观看一区二区三区| 免费搜索国产男女视频| 久久国产精品人妻蜜桃| 免费av毛片视频| 免费人成视频x8x8入口观看| 中文在线观看免费www的网站| 亚洲专区国产一区二区| 亚洲av免费在线观看| 1024手机看黄色片| 日本熟妇午夜| 国产欧美日韩一区二区三| 日韩高清综合在线| 国产欧美日韩精品一区二区| av国产免费在线观看| 成人午夜高清在线视频| 在线免费观看不下载黄p国产 | 中文字幕久久专区| 成人三级黄色视频| 首页视频小说图片口味搜索| 国产精品1区2区在线观看.| 香蕉av资源在线| 两性夫妻黄色片| 窝窝影院91人妻| 国产男靠女视频免费网站| 观看美女的网站| 久久伊人香网站| 国产99白浆流出| 成在线人永久免费视频| 亚洲欧美精品综合久久99| 757午夜福利合集在线观看| 99re在线观看精品视频| 禁无遮挡网站| 精品不卡国产一区二区三区| АⅤ资源中文在线天堂| 国产97色在线日韩免费| 国产精品98久久久久久宅男小说| 亚洲精品国产精品久久久不卡| 美女高潮的动态| 国产免费男女视频| 国产91精品成人一区二区三区| 禁无遮挡网站| 国产亚洲精品一区二区www| 无遮挡黄片免费观看| 中亚洲国语对白在线视频| 国产高清三级在线| 神马国产精品三级电影在线观看| 久久久久国产精品人妻aⅴ院| 久久亚洲精品不卡| 最近在线观看免费完整版| 91在线观看av| 国产一区二区在线观看日韩 | 欧美在线黄色| 一本久久中文字幕| 亚洲中文日韩欧美视频| 亚洲av电影在线进入| 校园春色视频在线观看| ponron亚洲| 搡老妇女老女人老熟妇| 伦理电影免费视频| 欧美一区二区精品小视频在线| 制服丝袜大香蕉在线| 黄色丝袜av网址大全| 色哟哟哟哟哟哟| or卡值多少钱| 在线播放国产精品三级| www.自偷自拍.com| 制服丝袜大香蕉在线| 亚洲国产中文字幕在线视频| 夜夜看夜夜爽夜夜摸| 母亲3免费完整高清在线观看| 欧美黄色淫秽网站| 国产极品精品免费视频能看的| 成人特级av手机在线观看| 婷婷丁香在线五月| 日韩欧美 国产精品| 性色av乱码一区二区三区2| 亚洲第一电影网av| 91字幕亚洲| 91久久精品国产一区二区成人 | 色吧在线观看| 99久久精品国产亚洲精品| 国产熟女xx| 日韩人妻高清精品专区| 久久久水蜜桃国产精品网| 99riav亚洲国产免费| 亚洲国产色片| 精品一区二区三区av网在线观看| 日本黄大片高清| 色综合站精品国产| 精品无人区乱码1区二区| 丁香六月欧美| 国产毛片a区久久久久| 国产精品久久久久久久电影 | 国产1区2区3区精品| 国产精品99久久99久久久不卡| 一级黄色大片毛片| 亚洲片人在线观看| 日日干狠狠操夜夜爽| 成熟少妇高潮喷水视频| 亚洲成av人片在线播放无| 日韩欧美国产一区二区入口| 国产高潮美女av| 视频区欧美日本亚洲| 桃红色精品国产亚洲av| 伦理电影免费视频| 日韩国内少妇激情av| 日韩免费av在线播放| av在线天堂中文字幕| 日韩欧美在线二视频| 午夜福利在线在线| 十八禁人妻一区二区| 黑人操中国人逼视频| 午夜免费观看网址| av片东京热男人的天堂| 欧美三级亚洲精品| 免费大片18禁| 亚洲精品中文字幕一二三四区| 国产av一区在线观看免费| 精品电影一区二区在线| 精品久久久久久久末码| 中文资源天堂在线| 免费电影在线观看免费观看| 国产成人一区二区三区免费视频网站| 91在线观看av| 国产免费av片在线观看野外av| 亚洲国产精品久久男人天堂| 日韩欧美国产一区二区入口| 毛片女人毛片| 757午夜福利合集在线观看| 国产av不卡久久| 国产单亲对白刺激| 欧美日韩黄片免| 精品久久国产蜜桃| 水蜜桃什么品种好| 观看免费一级毛片| 波野结衣二区三区在线| 国产一区二区在线观看日韩| 色播亚洲综合网| 人妻系列 视频| 人人妻人人看人人澡| 日韩av不卡免费在线播放| 淫秽高清视频在线观看| 成人av在线播放网站| 欧美一级a爱片免费观看看| 成人毛片60女人毛片免费| 亚洲自偷自拍三级| 综合色丁香网| 啦啦啦啦在线视频资源| av在线亚洲专区| 深夜a级毛片| 91精品伊人久久大香线蕉| 别揉我奶头 嗯啊视频| 黄色一级大片看看| 在线观看一区二区三区| 18禁在线无遮挡免费观看视频| 欧美成人午夜免费资源| 国产av码专区亚洲av| 听说在线观看完整版免费高清| 亚洲天堂国产精品一区在线| 只有这里有精品99| 一本一本综合久久| 2022亚洲国产成人精品| 1024手机看黄色片| 欧美日韩综合久久久久久| 美女xxoo啪啪120秒动态图| 夜夜爽夜夜爽视频| 美女国产视频在线观看| 99热这里只有是精品在线观看| 中文亚洲av片在线观看爽| 听说在线观看完整版免费高清| 亚洲国产精品国产精品| 国产av在哪里看| 最后的刺客免费高清国语| av在线蜜桃| 91久久精品国产一区二区成人| kizo精华| 国产一区二区在线av高清观看| 色尼玛亚洲综合影院| 久久99精品国语久久久| 午夜福利视频1000在线观看| 看十八女毛片水多多多| 校园人妻丝袜中文字幕| 国产激情偷乱视频一区二区| 国产精品一及| 少妇的逼水好多| 国产av不卡久久| 高清毛片免费看| av在线观看视频网站免费| 亚洲欧美日韩高清专用| 国产午夜精品论理片| 国产黄a三级三级三级人| 亚洲国产精品久久男人天堂| 97人妻精品一区二区三区麻豆| 精品欧美国产一区二区三| 成年版毛片免费区| 午夜亚洲福利在线播放| a级一级毛片免费在线观看| 爱豆传媒免费全集在线观看| 午夜激情欧美在线| 日本午夜av视频| 桃色一区二区三区在线观看| av.在线天堂| 丰满乱子伦码专区| 精品久久国产蜜桃| av国产久精品久网站免费入址| 亚洲国产精品国产精品| 1000部很黄的大片| 亚州av有码| 一边摸一边抽搐一进一小说| 成人亚洲精品av一区二区| 男女下面进入的视频免费午夜| 男女视频在线观看网站免费| 中国美白少妇内射xxxbb| 少妇的逼好多水| 久久久a久久爽久久v久久| 久久亚洲精品不卡| 久久草成人影院| 亚洲精品亚洲一区二区| 国产老妇伦熟女老妇高清| 99视频精品全部免费 在线| 69av精品久久久久久| 久久久久久久久久成人| 久久久久久久午夜电影| 别揉我奶头 嗯啊视频| av国产免费在线观看| 秋霞在线观看毛片| 亚洲av日韩在线播放| 97热精品久久久久久| 欧美+日韩+精品| 淫秽高清视频在线观看| 亚洲三级黄色毛片| 亚洲av成人精品一二三区| 啦啦啦啦在线视频资源| 日本免费一区二区三区高清不卡| 国产精品嫩草影院av在线观看| 九九在线视频观看精品| 美女内射精品一级片tv| 色综合色国产| 久久久色成人| 深夜a级毛片| 国产色爽女视频免费观看| 丰满乱子伦码专区| 国产精品一区二区三区四区免费观看| 在现免费观看毛片| 日韩欧美精品v在线| 高清在线视频一区二区三区 | 国产视频首页在线观看| 免费无遮挡裸体视频| 国产片特级美女逼逼视频| 深夜a级毛片| 日本一本二区三区精品| 乱人视频在线观看| 波野结衣二区三区在线| 欧美xxxx性猛交bbbb| 午夜a级毛片| 午夜福利成人在线免费观看| 91aial.com中文字幕在线观看| 欧美xxxx性猛交bbbb| 91午夜精品亚洲一区二区三区| 久久6这里有精品| 国产伦理片在线播放av一区| 精品久久久久久电影网 | 成人亚洲精品av一区二区| 精品国产三级普通话版| 国产在线一区二区三区精 | 男女视频在线观看网站免费| 九草在线视频观看| 99九九线精品视频在线观看视频| av在线亚洲专区| 国产高清国产精品国产三级 | 久久精品国产亚洲av涩爱| 国产亚洲91精品色在线| 久久久久久久久久久丰满| 国产不卡一卡二| 午夜爱爱视频在线播放| 亚洲中文字幕一区二区三区有码在线看| 99在线视频只有这里精品首页| 国产精品一区二区性色av| 亚洲av免费高清在线观看| 九九在线视频观看精品| 亚洲婷婷狠狠爱综合网| 成人亚洲欧美一区二区av| 18禁在线无遮挡免费观看视频| 人人妻人人澡人人爽人人夜夜 | 久久婷婷人人爽人人干人人爱| 欧美极品一区二区三区四区| 热99在线观看视频| 亚洲国产成人一精品久久久| 欧美日韩在线观看h| 国产视频内射| 亚洲成人精品中文字幕电影| 日韩欧美国产在线观看| 国产国拍精品亚洲av在线观看| 欧美97在线视频| 男女国产视频网站| 亚洲在久久综合| 搡老妇女老女人老熟妇| 亚洲三级黄色毛片| 欧美精品国产亚洲| 黄色配什么色好看| 国语对白做爰xxxⅹ性视频网站| 国产亚洲5aaaaa淫片| 晚上一个人看的免费电影| 国产 一区精品| 天堂网av新在线| 亚洲精品国产成人久久av| 黄色欧美视频在线观看| 日日干狠狠操夜夜爽| 免费av不卡在线播放| 欧美成人一区二区免费高清观看| 大话2 男鬼变身卡| 久久精品综合一区二区三区| 日韩,欧美,国产一区二区三区 | 在线观看66精品国产| 我要搜黄色片| 成人毛片a级毛片在线播放| 国产美女午夜福利| 日本黄色视频三级网站网址| 亚洲欧美精品综合久久99| 五月伊人婷婷丁香| 波多野结衣巨乳人妻| 欧美一区二区国产精品久久精品| 人体艺术视频欧美日本| 精品一区二区三区视频在线| 22中文网久久字幕| 精品人妻一区二区三区麻豆| av又黄又爽大尺度在线免费看 | 看免费成人av毛片| 丝袜美腿在线中文| 久久久久国产网址| 狠狠狠狠99中文字幕| 内射极品少妇av片p| 日韩成人av中文字幕在线观看| 黄色一级大片看看| av国产久精品久网站免费入址| 日本黄色视频三级网站网址| 国产片特级美女逼逼视频| 亚洲精品久久久久久婷婷小说 | 丰满乱子伦码专区| 看黄色毛片网站| 嫩草影院精品99| 国产亚洲精品av在线| 日韩成人av中文字幕在线观看| 99久久九九国产精品国产免费| 亚洲高清免费不卡视频| 欧美三级亚洲精品| 亚洲欧美日韩高清专用| 1000部很黄的大片| 国产视频内射| 日韩精品有码人妻一区| 国产av一区在线观看免费|