• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of Channel Estimation Using ELMx-based in Massive MIMO

    2022-11-10 02:28:10ApinyaInnokChittaponKeawinandPeerapongUthansakul
    Computers Materials&Continua 2022年10期

    Apinya Innok,Chittapon Keawin and Peerapong Uthansakul,*

    1Telecommunications Engineering,Rajamangala University of Technology Isan,Nakhon Ratchasima,30000,Thailand

    2School of Telecommunication Engineering,Suranaree University of Technology,Nakhon Ratchasima,30000,Thailand

    Abstract:In communication channel estimation,the Least Square (LS)technique has long been a widely accepted and commonly used principle.This is because the simple calculation method is compared with other channel estimation methods.The Minimum Mean Squares Error (MMSE),which is developed later,is devised as the next step because the goal is to reduce the error rate in the communication system from the conventional LS technique which still has a higher error rate.These channel estimations are very important to modern communication systems,especially massive MIMO.Evaluating the massive MIMO channel is one of the most researched and debated topics today.This is essential in technology to overcome traditional performance barriers.The better the channel estimation,the more accurate it is.This paper investigated machine learning (ML) for channel estimation.ML channel estimations based on the Extreme Learning Machine (ELMx)group are also implemented.These estimations,known as the ELMx group,include Regularized Extreme Learning Machine(RELM)and Outlier Robust Extreme Learning Machine(ORELM).Then,it was compared with LS and MMSE.The simulation results reveal that the ELMx group outperforms LS and MMSE in channel capacity and bit error rate.Additionally,this paper has proven complexity for verified computational times.The RELM method is less time consuming and has low complexity which is suitable for future use in large MIMO systems.

    Keywords:Channel estimation;capacity;ELM;RELM;ORELM

    1 Introduction

    At present,wireless communication systems are constantly evolving and become one of the most important aspects of life in the field such as medicine,transportation,economy,and society[1,2].Lots of people are more accessible.Nowadays the generation 5(5G)has been achieved by providers,for service and support the use of many people[3].We think about it in terms of massive MIMO systems with a lot of receiving and sending antennas.Massive MIMO has the advantage of being able to send extraordinarily rapid data.Spatial Diversity is the separation of the reception antennas to improve the radio signal’s reliability.Spatial multiplexing,on the other hand,permits numerous distinct data streams to be sent between the transmitter and the receiver.This significantly boosts throughput or capacity.It also enables numerous network users to be served by a single transmitter,thus the name MU-MIMO.Beamforming uses advanced antenna technology to focus a wireless signal in a specific direction researched to increase network speed and capacity rather than transmitting to a large area.Channel estimation can also be utilized as an improvement approach for massive MIMO.The frequently used channel estimation techniques,such as LS and MMSE channel estimation,are both fundamental techniques.The LS and MMSE,on the other hand,have low precision.Because it does not use a noise technique,LS channel estimation has a low computing complexity.The MMSE,on the other hand,includes noise in its calculations[4].In communication scenarios,large-scale MIMO systems are a multitude of modeled case studies for optimization.Hybrid large-scale MIMO is an interesting scenario for many researchers[5,6].However,we chose a large MIMO based system to generate simulation results to process machine learning datasets.In recent years,deep learning has made great progress in the field of big data feature learning.By integrating low-level input for big data with significant diversity and veracity,deep learning models can extract high-level features and build hierarchical representations more effectively.Deep learning for channel estimation has been used to solve nonlinear mapping and nonconvex problems[7,8].Deep learning also has a high rate of convergence and good regression accuracy.The authors proposed deep learning for super-resolution channel estimation and DOA estimation based on massive MIMO systems in their research paper[9].Moreover,Channel State Information Prediction for 5G Wireless Communications:A Deep Learning Approach is one to optimize in 5G typically and the result show interesting[10].Although the deep learning technique performs better,it requires more network training time and is more difficult to calculate channel estimation.With the advancement of big data,optimization algorithm and increased computing resources in promoting enhanced ELM,it is now state-of-the-art(SOA)in areas including brain EEG classification[11].As a result,we propose ELMx,which combines three machine learning algorithms for channel estimation such as ELM,RELM,and ORELM.The hidden layer bias and input weight are generated at random from distributions[12-14].The ELMx can learn at a faster rate and perform well in regression.It is used to optimize the number of hidden neuron nodes during the training phase.The signal received is used as input.In terms of Mean Square Error (MSE),Bit Error Rate(BER),Channel Capacity,Outage Probability,Computational Time,and Computational Complexity,the simulation results show that channel estimation performs better.The results indicated that the proposed learning framework was comparable to SOA with less training time.which is important for continuous communication in data transmission.

    The following is an overview of the paper’s structure.Section 2 describes the content and approach in-depth,including massive MIMO systems,fundamental channel estimate techniques,and offers machine learning for channel estimation,as well as the features of ELMx.The results are then discussed in Section 3.Finally,in Section 4,the paper’s conclusion is presented.

    2 Material and Method

    As a system model,we built a general communication system focused on massive MIMO to bring the resulting system to compute various results.

    2.1 Massive MIMO Systems

    First,as illustrated in Fig.1,we investigate a typical massive MIMO systems.A block diagram is assumed for delivering data from the X (vector of transmitted signals)to the Y (vector of received signals)with MTtransmitting antennas and MRreceiving antennas.

    Figure 1:A block diagram of Massive MIMO Systems

    The relation between transmitted and received signal is given by

    whereHis a channel response matrix(MR×MT)andnis an additive white complex Gaussian noise vector(MR×1)is fundamental noise models used in data theory to mimic the effects of many random processes occurring in nature.The relationship between the transmitted and received signals can be represented by the matrix

    The channel estimation of massive MIMO systems is discussed in this part because it is important to communicate multiple sets of data using multiple transmitting antennas that deliver data in a matrix format,including interference signals.QPSK is ideal for simulating introductory and unnecessary complexity in massive MIMO systems.The modulation method is considered by the constellation mapping phase.Modulation takes binary bits as input,turns them to a complex value,and uses them as a symbol.With MTtransmitting and MRreceiving antennas,we investigate a flat fading MIMO wireless system.XN(p)represents the symbol for transmission by antenna MTat time instantp.The transmitted symbols are grouped in an MTlength vector,which can be represented as

    where(*)Tis the transpose operation of the matrix.

    2.2 Channel Estimation

    Channel estimation is one of the measures of the performance of today’s wireless communication systems.It plays an important role in a MIMO system.It is used for increasing the capacity by improving the system performance in terms of bit error rate.In this paper,we assume the most techniques in channel estimation such as LS and MMSE for comparing performance with ELM,RELM and ORELM based on ELMx algorithm.

    2.2.1 LS Channel Estimation

    2.2.2 MMSE Channel Estimation

    2.2.3 Machine Learning for Channel Estimation(ELMx)

    whereci=[ci1,ci2,..,cin]Tis the input weight vector connecting of thei-th hidden andβ=[βi1,βi2,...,βim]Tis the output weight vector connecting of thei-th hidden neuron nodes,Viis the bias of thei-th hidden neuron nodes,ando(*)is the SLFNs’activation function.In addition,unlike other machine learning algorithms,the ELM may create the input weightciand biasViat random.

    Figure 2:Structure of extreme learning machine

    Fig.3 in the preparation process,information is essential for this work.This will divide the data preparation process.Two groups,the first group we call training data,are data preparation in massive MIMO systems with different values to require the algorithm to calculate and remember the values.

    Figure 3:Preparation process for ELMx

    The second group is called teaching data.In this group we want the algorithm to learn the desired value as a result.To distinguish the different values,we define it as the channel response of the massive MIMO communication system.After entering the data preparation process.In the workflow of the ELMx group’s algorithms,the steps are as follows

    2.3 Mean Square Error

    The performance of machine learning algorithms may be examined in a variety of ways.Consequently,we apply MSE in Performance Analysis to show a clear conclusion.This metric is widely used to evaluate performance and is based on the findings[9,10].As a result,after computing all channel estimation algorithms,the erroris calculated,and the model forecasts the difference from the real H before finding the mean.We calculate the Gradient of Loss based on the difference and backpropagate the weight.Then,in the following training phase,we apply the Gradient Descent technique to decrease losses.The loss function in regression can given by

    2.4 Estimated Channel Capacity

    The theory of the data rate that can be accomplished over a certain bandwidth (BW) and at a specific signal to noise ratio is known as Shannon Capacity of a channel.It decreases the bit error rate(BER)that cannot be achieved in practice,but as link level design techniques improve,the data rate of noise channel approaches this theoretical bound[18].The capacity in bps/Hz is expressed by

    where IMRis identity matrix(MR×MR),H is channel response of size(MT×MR),(*)His transpose conjugate,and Pt/Pnis signal noise ratio(SNR).

    To estimate the capacity of the channel,we looked at the channel responses obtained using LS,the popular MMSE method,and the other three based on the machine learning application is ELM,RELM,and ORELM techniques.The formula of estimated capacity is written by

    where Cesis the estimated channel capacity,is the estimated channel.

    2.5 Outage Probability

    The outage probability is another mostly performance index for communication techniques[19],in fading channel,can determines the probability of channel capacity under a certain rate which ensures data transmission without loss.The outage probability can be determined as

    where R is the certain Rate of capacity.

    As a result,the transmitter’s best option is to encrypt the data,given that the channel gain is sufficient to support the target rate R when this occurs,it is possible to achieve reliable communication,and otherwise an outage occurs.When the fading gain is h,think of the channel as allowing of information to pass through.As long as the amount of data exceeds the intended rate,reliable decoding is achievable.The outage probability of the Rayleigh channel given the transmission rate R is expressed by

    where Poutdenotes the outage probability of the system that the destination performs detection based only on the received signals from the relay node.

    3 Result and Discussion

    3.1 MSE and BER

    In this section,we evaluate the mean square error (MSE) and bit error rate (BER),as well as the LS and MMSE channel estimates,to validate a group of ELMx algorithms.Massive MIMO systems use 128 transmitting and receiving antennas,each having its own QPSK modulation mapping and pilot number.Tab.1 is explained the ELMx channel estimation technique.The result of MSE performance with all techniques as shown in Fig.4.The LS technique was less effective than the 4 techniques presented.Since the method of obtaining the result is simple and uncomplicated,there is a large margin of error.MMSE technique,with the added complexity,makes it better than LS.Hence,we apply an approach to machine learning,a group we call ELMx,that outperforms LS and MMSE.This is because the ELMx base uses many datasets for training and testing to find results that are close to the target data.

    Figure 4:MSE performance in massive MIMO systems

    Fig.5.shows the BER performance results for all channel estimation.In a massive MIMO-based communication system,128 transmitting antennas (MT) and 128 receiving antennas are considered(MR).The ELMx groups are better than the fundamental approaches of LS and MMSE channel estimation.The result reveal that BER performance of ORELM in ELMx group is the best performance.

    Figure 5:BER performance in Massive MIMO systems

    3.2 Channel Capacity and Outage Probability

    In this section,another measure of performance is channel capacity and outage probability in massive MIMO systems.Then we use Eq.(19)to process and comparing channel capacity,as shown in Figs.6 and 7.,use Eqs.(20)and(21)to process and finding outage probability.

    The test result for channel capacityvs.SNR is shown that the traditional channel estimation LS and MMSE provides less channel capacity than ELM,RELM,and ORELM techniques.The group of ELMx is the best of channel capacity

    Figure 6:Channel capacity performance in massive MIMO systems

    It is obvious that there is a very high probability that the capacity obtained for the massive MIMO channel is significantly higher than that obtained for an AWGN channel.The capacitance is insufficient compared to LS and MMSE,with a probability of 90%there is a capacity of 26 bps/Hz for LS and a capacity of 28 bps/Hz for MMSE.Therefore,we show the finding of high channel probability compared to LS and MMSE,with 90%of the probability.It has a capacity of 62 bps/Hz for ELM and RELM,with a capacity spacing of 34 bps/Hz for MMSE,so a good result and consistent with the method is ORELM as shown in Fig.7.

    Figure 7:Outage probability performance of LS,MMSE and ELMx

    3.3 Computational Complexity

    In this section,many ways for defining complexity with the big O notation are covered in this section[20,21].In terms of simpler functions,the big O notation indicates a function’s limiting behavior when its arguments go towards a given value.It’s part of a wider group of notices.The big O notation considers the largest of parameters,although some parameters cannot be cut off in this paper.Because the complexity in this work is dependent on a lot of variables,it aims to examine the delicate nature of the data by using the number of floating-point operations(flops)to substitute big O notations.A flop is here defined as one addition,subtraction,multiplication,or division of two floating-point numbers.It can be analyzed and shown in Tabs.2-6.

    Table 4:The example of flop calculation for the ELM technique

    Table 1:The ELMx channel estimation algorithm

    Table 2:The example of flop calculation for the LS technique

    Table 3:The example of flop calculation for the MMSE technique

    Table 4:Continued

    Table 5:The example of flop calculation for the RELM technique

    Table 6:The example of flop calculation for the ORELM technique

    Table 6:Continued

    E LM Flops Iteration N-1 X =randi([01],(MT)) MT H = 1√2(randn(MTMR)+j*randn(MTMR)) 2MTMR

    We took the total flops of each algorithm to calculate the number of bits of feedback and determined the number of massive MIMO antennas to determine the difference in flops and adjusted the number of loops.Another method for evaluating performance is computational time by using time as a measure of calculating various values to find the appropriateness of choosing to use as a result,we may be able to deploy and optimize or compare performance with other methods.

    Figure 8:Computational time of ELMx

    Fig.8 shows that computational comparison between ELM and RELM,thus corresponding to the computational complexity for the number of nodes from 100 to 500 nodes,the computation time is clearly increased.The result of ORELM reveal that the computational time higher than ELM and RELM when the number of tests increases.Therefore,it make more clear in Fig.9,we show the comparison between ELM and RELM in terms of computational time.

    In terms of computational time,considering performance during the ELM and RELM algorithms,the RELM has a lower computational time than the ELM for all number of testing so,RELM is the best choice for future massive MIMO deployments.

    Figure 9:Computational time of ELM and RELM

    4 Conclusion

    In massive MIMO systems,adding more communication antennas and learning new techniques or procedures can help to improve the system or solve the problem.However,the problem may not be solved because there are multiple channels sent from the base station in the communication system.Therefore,this paper presented channel estimation techniques with machine learning based on massive MIMO systems.The authors apply various techniques to compare with LS,MMSE and ELMx groups.Three algorithms as ELM,RELM and ORELM are studied to test the efficiency of channel estimation.All results in terms of MSE,BER,Capacity,Outage Probability,analysis of computational time and analysis flop are confirmed that RELM was the best.This is because algorithm ORELM consumed longer data learning and testing time,while RELM algorithm spent lower data overfitting time.Therefore,in the future massive MIMO systems with ML,RELM is the best choice for channel estimation.

    For future work,we plan to use the auxiliary information-aware ELM where phase[22],empirical mode decomposition[23],peak value of meditation[24],and wavelet transform decomposition[25,26]may be used as addition information to improve the performance of conventional ELM methods.

    Funding Statement:This work was supported by Suranaree University of Technology (SUT) and Thailand Science Research and Innovation(TSRI).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品一区二区三区四区久久| 国产精品99久久99久久久不卡| 国产一级毛片七仙女欲春2| 亚洲自拍偷在线| 深夜精品福利| 免费观看的影片在线观看| 亚洲国产精品久久男人天堂| 两性午夜刺激爽爽歪歪视频在线观看| 精品电影一区二区在线| 国产成人福利小说| tocl精华| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 制服人妻中文乱码| 白带黄色成豆腐渣| 成年女人看的毛片在线观看| 88av欧美| 午夜精品久久久久久毛片777| 中文字幕人妻熟人妻熟丝袜美 | 男人的好看免费观看在线视频| 法律面前人人平等表现在哪些方面| 小蜜桃在线观看免费完整版高清| 亚洲精品一卡2卡三卡4卡5卡| av国产免费在线观看| 久久久久久大精品| 日本黄色片子视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 舔av片在线| 欧美日韩福利视频一区二区| 天堂av国产一区二区熟女人妻| 国产一级毛片七仙女欲春2| 免费电影在线观看免费观看| 亚洲成av人片免费观看| 精品一区二区三区av网在线观看| 亚洲一区二区三区色噜噜| 男女下面进入的视频免费午夜| 午夜亚洲福利在线播放| 欧美另类亚洲清纯唯美| 熟女电影av网| 长腿黑丝高跟| 欧美色视频一区免费| 九色国产91popny在线| 小说图片视频综合网站| 国产成年人精品一区二区| 俺也久久电影网| 级片在线观看| 麻豆成人av在线观看| 一区福利在线观看| 成人无遮挡网站| svipshipincom国产片| 国产黄片美女视频| 美女黄网站色视频| 一级作爱视频免费观看| 色综合婷婷激情| 伊人久久大香线蕉亚洲五| 天堂√8在线中文| 最近在线观看免费完整版| 亚洲在线自拍视频| 国产爱豆传媒在线观看| 亚洲精品国产精品久久久不卡| 国产精品嫩草影院av在线观看 | 桃红色精品国产亚洲av| 99精品在免费线老司机午夜| 久久精品人妻少妇| 亚洲狠狠婷婷综合久久图片| 国产69精品久久久久777片| 欧美日本视频| 欧美bdsm另类| 女人十人毛片免费观看3o分钟| 色综合欧美亚洲国产小说| 国产免费男女视频| 国产野战对白在线观看| 91久久精品国产一区二区成人 | 99国产极品粉嫩在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美日韩一级在线毛片| 小蜜桃在线观看免费完整版高清| 午夜福利欧美成人| a在线观看视频网站| 欧美大码av| 午夜福利在线观看免费完整高清在 | 国产成人a区在线观看| 变态另类成人亚洲欧美熟女| 亚洲精品粉嫩美女一区| 成人鲁丝片一二三区免费| 内射极品少妇av片p| 啦啦啦免费观看视频1| 免费搜索国产男女视频| 丰满人妻熟妇乱又伦精品不卡| av福利片在线观看| 天堂√8在线中文| 国产麻豆成人av免费视频| 欧美日本视频| 久久婷婷人人爽人人干人人爱| 欧美xxxx黑人xx丫x性爽| 亚洲avbb在线观看| 国产极品精品免费视频能看的| 国产欧美日韩精品亚洲av| 日韩有码中文字幕| 中文字幕高清在线视频| 国产一区二区在线观看日韩 | 搞女人的毛片| 国产91精品成人一区二区三区| 黄色女人牲交| 一个人免费在线观看的高清视频| 精品99又大又爽又粗少妇毛片 | 内射极品少妇av片p| 在线观看一区二区三区| 午夜福利视频1000在线观看| 亚洲午夜理论影院| 国产成人系列免费观看| 久久九九热精品免费| 中文字幕久久专区| av国产免费在线观看| 午夜福利在线观看吧| 亚洲人成网站高清观看| 日本与韩国留学比较| 日本免费a在线| 亚洲av不卡在线观看| 一个人看的www免费观看视频| 日韩欧美三级三区| 亚洲成a人片在线一区二区| 岛国在线观看网站| 国产私拍福利视频在线观看| 在线免费观看不下载黄p国产 | 精品久久久久久久人妻蜜臀av| 免费看a级黄色片| 久久久久久久精品吃奶| 精品国内亚洲2022精品成人| 亚洲国产精品sss在线观看| 亚洲欧美日韩卡通动漫| 国产色婷婷99| 美女大奶头视频| 欧美黑人巨大hd| 久久国产精品人妻蜜桃| 亚洲乱码一区二区免费版| 69av精品久久久久久| 亚洲天堂国产精品一区在线| 午夜免费成人在线视频| 日本 欧美在线| 久久久久久久亚洲中文字幕 | 俄罗斯特黄特色一大片| 国产 一区 欧美 日韩| 精品人妻偷拍中文字幕| 欧美zozozo另类| 一本精品99久久精品77| 国产男靠女视频免费网站| 久久6这里有精品| 中文在线观看免费www的网站| 亚洲电影在线观看av| 成人特级av手机在线观看| 国产69精品久久久久777片| 一个人看的www免费观看视频| 亚洲精品美女久久久久99蜜臀| 久9热在线精品视频| 中文字幕人妻熟人妻熟丝袜美 | 日韩高清综合在线| 日韩欧美在线乱码| 男女做爰动态图高潮gif福利片| 亚洲五月婷婷丁香| 亚洲av中文字字幕乱码综合| 亚洲片人在线观看| 亚洲国产色片| 成人永久免费在线观看视频| 亚洲av免费在线观看| 无人区码免费观看不卡| 亚洲专区国产一区二区| 精品久久久久久久毛片微露脸| 老司机福利观看| 亚洲人成网站在线播放欧美日韩| 欧美性猛交黑人性爽| 一卡2卡三卡四卡精品乱码亚洲| 中文亚洲av片在线观看爽| 久久精品综合一区二区三区| 日韩欧美在线二视频| 午夜福利在线观看免费完整高清在 | а√天堂www在线а√下载| 99久久成人亚洲精品观看| 老熟妇仑乱视频hdxx| 国产黄色小视频在线观看| 黄色丝袜av网址大全| 好男人电影高清在线观看| 狠狠狠狠99中文字幕| 国产在线精品亚洲第一网站| 搡老岳熟女国产| 国产精华一区二区三区| 亚洲欧美日韩东京热| 免费电影在线观看免费观看| 婷婷丁香在线五月| 中文字幕av成人在线电影| 亚洲七黄色美女视频| 天堂网av新在线| 日韩精品青青久久久久久| 久久6这里有精品| 人妻丰满熟妇av一区二区三区| 欧美日本亚洲视频在线播放| 一级作爱视频免费观看| 国产老妇女一区| 精品久久久久久久毛片微露脸| svipshipincom国产片| 精品电影一区二区在线| 性色avwww在线观看| 成人精品一区二区免费| 丰满的人妻完整版| 亚洲欧美激情综合另类| 两个人的视频大全免费| 日韩欧美精品免费久久 | 亚洲精品在线观看二区| 久久久色成人| 国产乱人伦免费视频| 亚洲av日韩精品久久久久久密| 91麻豆av在线| 男人舔奶头视频| 久久久久久久精品吃奶| 欧美日韩国产亚洲二区| 88av欧美| www.熟女人妻精品国产| 国产午夜精品久久久久久一区二区三区 | 成年女人毛片免费观看观看9| 在线天堂最新版资源| 免费大片18禁| 成人精品一区二区免费| 亚洲av美国av| 日韩欧美在线二视频| 此物有八面人人有两片| 亚洲五月婷婷丁香| 亚洲av二区三区四区| 亚洲av日韩精品久久久久久密| 国内久久婷婷六月综合欲色啪| 精品电影一区二区在线| 成年人黄色毛片网站| 欧美乱色亚洲激情| 亚洲国产欧美人成| 真实男女啪啪啪动态图| 久久这里只有精品中国| 欧美黄色淫秽网站| 动漫黄色视频在线观看| 91久久精品国产一区二区成人 | 精品乱码久久久久久99久播| 午夜福利成人在线免费观看| 日韩人妻高清精品专区| 男人和女人高潮做爰伦理| 欧美激情久久久久久爽电影| 日韩欧美免费精品| 国产精品电影一区二区三区| av欧美777| 黄色片一级片一级黄色片| 国产乱人伦免费视频| 综合色av麻豆| 精品国内亚洲2022精品成人| 一进一出好大好爽视频| 校园春色视频在线观看| 2021天堂中文幕一二区在线观| 美女cb高潮喷水在线观看| 熟妇人妻久久中文字幕3abv| a级毛片a级免费在线| 国产综合懂色| av欧美777| 老司机午夜十八禁免费视频| 一区二区三区激情视频| 欧美成人a在线观看| 久久久久免费精品人妻一区二区| 午夜福利免费观看在线| 丁香六月欧美| 少妇的逼好多水| 久久久久精品国产欧美久久久| 色在线成人网| 亚洲人与动物交配视频| 午夜两性在线视频| 久久6这里有精品| 中文字幕高清在线视频| 国产精品三级大全| 法律面前人人平等表现在哪些方面| 亚洲真实伦在线观看| 精品欧美国产一区二区三| 国产精品国产高清国产av| 成人特级av手机在线观看| 男女那种视频在线观看| 国产精品久久久人人做人人爽| 日本黄色片子视频| 日韩免费av在线播放| 男人的好看免费观看在线视频| 亚洲国产精品合色在线| 69人妻影院| 看片在线看免费视频| 亚洲,欧美精品.| 内地一区二区视频在线| 男女下面进入的视频免费午夜| 两人在一起打扑克的视频| 不卡一级毛片| 男人的好看免费观看在线视频| 激情在线观看视频在线高清| 成人午夜高清在线视频| 天天一区二区日本电影三级| 免费观看人在逋| 国产精品电影一区二区三区| 国产av不卡久久| 国产在视频线在精品| 在线观看一区二区三区| 亚洲av电影不卡..在线观看| 丁香欧美五月| 99久久综合精品五月天人人| 国产三级在线视频| 日本黄色片子视频| 午夜影院日韩av| 亚洲人成电影免费在线| 色哟哟哟哟哟哟| a在线观看视频网站| 国产乱人伦免费视频| 亚洲av第一区精品v没综合| 在线播放无遮挡| АⅤ资源中文在线天堂| 啦啦啦韩国在线观看视频| 黄片小视频在线播放| 特大巨黑吊av在线直播| 少妇人妻一区二区三区视频| 欧美黄色淫秽网站| 国产真实伦视频高清在线观看 | 午夜福利视频1000在线观看| 日本黄色视频三级网站网址| www.www免费av| 国产精品国产高清国产av| 日本免费a在线| 国产亚洲精品av在线| 欧美日韩中文字幕国产精品一区二区三区| 真人做人爱边吃奶动态| 麻豆国产97在线/欧美| 午夜精品一区二区三区免费看| 最新中文字幕久久久久| 亚洲精品456在线播放app | 国产高潮美女av| 99riav亚洲国产免费| 手机成人av网站| 观看美女的网站| 久久久久免费精品人妻一区二区| 免费大片18禁| 亚洲va日本ⅴa欧美va伊人久久| 最近视频中文字幕2019在线8| 一级毛片高清免费大全| 淫秽高清视频在线观看| 9191精品国产免费久久| 舔av片在线| 中文字幕av在线有码专区| 国产国拍精品亚洲av在线观看 | 日韩欧美一区二区三区在线观看| 国产高清videossex| 99久久精品热视频| 国产在视频线在精品| 久久久成人免费电影| 亚洲av不卡在线观看| 亚洲成人中文字幕在线播放| 99久国产av精品| 精品久久久久久,| 美女高潮的动态| 日本与韩国留学比较| 国产视频内射| 日韩欧美精品v在线| 欧美黄色淫秽网站| 国产真人三级小视频在线观看| 亚洲精品456在线播放app | 久久久久亚洲av毛片大全| 三级毛片av免费| 国产爱豆传媒在线观看| 精品无人区乱码1区二区| 日韩欧美国产一区二区入口| 国产视频内射| 亚洲精品成人久久久久久| 特大巨黑吊av在线直播| 久久这里只有精品中国| 国产 一区 欧美 日韩| 亚洲,欧美精品.| 国产高清三级在线| 亚洲,欧美精品.| 99热这里只有是精品50| 国产一区二区在线av高清观看| 夜夜躁狠狠躁天天躁| 一二三四社区在线视频社区8| 国产色婷婷99| 久久久久久大精品| 国产精品亚洲美女久久久| 亚洲av一区综合| 搞女人的毛片| 老鸭窝网址在线观看| 国产精品1区2区在线观看.| 亚洲五月天丁香| 免费av不卡在线播放| 日韩欧美精品免费久久 | 深夜精品福利| 国产av麻豆久久久久久久| 亚洲国产欧美人成| 国产亚洲精品一区二区www| 国内毛片毛片毛片毛片毛片| 亚洲国产精品合色在线| 成人无遮挡网站| 亚洲国产高清在线一区二区三| 十八禁人妻一区二区| 精品国产超薄肉色丝袜足j| 国产在视频线在精品| 久久中文看片网| 亚洲在线自拍视频| 亚洲无线在线观看| 国产熟女xx| 欧美一区二区亚洲| 亚洲av五月六月丁香网| 黄片大片在线免费观看| 国产高潮美女av| 三级毛片av免费| 免费看a级黄色片| 老司机午夜福利在线观看视频| 国产av在哪里看| 欧美3d第一页| 搡女人真爽免费视频火全软件 | 91av网一区二区| 亚洲avbb在线观看| 日韩欧美三级三区| 一级毛片高清免费大全| 一个人免费在线观看电影| www日本在线高清视频| 69av精品久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 十八禁人妻一区二区| 精品国产超薄肉色丝袜足j| av女优亚洲男人天堂| 国产乱人视频| 成人鲁丝片一二三区免费| 日韩 欧美 亚洲 中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 色吧在线观看| 99精品在免费线老司机午夜| 深爱激情五月婷婷| 亚洲av二区三区四区| 嫁个100分男人电影在线观看| 精品一区二区三区人妻视频| 午夜激情福利司机影院| eeuss影院久久| 日本在线视频免费播放| АⅤ资源中文在线天堂| 欧美日韩国产亚洲二区| 精品久久久久久久末码| 99久久久亚洲精品蜜臀av| 午夜激情欧美在线| 3wmmmm亚洲av在线观看| 最新美女视频免费是黄的| 中文字幕人妻丝袜一区二区| 午夜日韩欧美国产| 岛国在线免费视频观看| 全区人妻精品视频| bbb黄色大片| 日韩欧美精品v在线| 99热这里只有精品一区| 国产精品一区二区三区四区久久| 韩国av一区二区三区四区| 久久6这里有精品| 亚洲成人免费电影在线观看| 热99re8久久精品国产| 欧美3d第一页| 国内少妇人妻偷人精品xxx网站| 非洲黑人性xxxx精品又粗又长| 日韩欧美 国产精品| e午夜精品久久久久久久| avwww免费| 亚洲人成网站高清观看| 听说在线观看完整版免费高清| 国产精品国产高清国产av| 日本一二三区视频观看| 人人妻,人人澡人人爽秒播| 成人亚洲精品av一区二区| 宅男免费午夜| 精品久久久久久久人妻蜜臀av| 少妇裸体淫交视频免费看高清| 亚洲精品一卡2卡三卡4卡5卡| tocl精华| 精品久久久久久,| 99久久成人亚洲精品观看| 亚洲内射少妇av| 亚洲一区二区三区不卡视频| 成人无遮挡网站| 午夜福利高清视频| 免费看日本二区| 免费av毛片视频| 国产激情偷乱视频一区二区| av视频在线观看入口| 国产精品久久久久久久电影 | avwww免费| 国产成人av激情在线播放| 国产精品自产拍在线观看55亚洲| 婷婷亚洲欧美| 麻豆成人午夜福利视频| 亚洲自拍偷在线| 级片在线观看| 精品久久久久久久毛片微露脸| 国产精品国产高清国产av| 男人和女人高潮做爰伦理| 国产三级在线视频| 亚洲天堂国产精品一区在线| 噜噜噜噜噜久久久久久91| 亚洲色图av天堂| 真人一进一出gif抽搐免费| 国产男靠女视频免费网站| 成人18禁在线播放| 久久久久久国产a免费观看| 成人高潮视频无遮挡免费网站| 禁无遮挡网站| 亚洲成人精品中文字幕电影| 欧美大码av| 中文字幕熟女人妻在线| 一级黄色大片毛片| 国产成人aa在线观看| 午夜福利欧美成人| 99精品在免费线老司机午夜| av视频在线观看入口| 三级国产精品欧美在线观看| 久久精品国产99精品国产亚洲性色| 欧美午夜高清在线| 在线播放无遮挡| 免费看十八禁软件| 丰满的人妻完整版| 天堂网av新在线| 我要搜黄色片| 国产一级毛片七仙女欲春2| 国产69精品久久久久777片| 高清日韩中文字幕在线| 国产熟女xx| 午夜免费激情av| 日本与韩国留学比较| 国产aⅴ精品一区二区三区波| 久久精品综合一区二区三区| h日本视频在线播放| 18禁黄网站禁片午夜丰满| 亚洲片人在线观看| 成人精品一区二区免费| 欧美xxxx黑人xx丫x性爽| 此物有八面人人有两片| 99久久成人亚洲精品观看| 噜噜噜噜噜久久久久久91| 在线a可以看的网站| 国内精品久久久久久久电影| 久久精品国产清高在天天线| 18+在线观看网站| 国产精品久久视频播放| 嫩草影视91久久| 99久久成人亚洲精品观看| 最近视频中文字幕2019在线8| 国产精品亚洲一级av第二区| e午夜精品久久久久久久| 亚洲,欧美精品.| 欧美+日韩+精品| 欧美成狂野欧美在线观看| 亚洲精品日韩av片在线观看 | 热99在线观看视频| 亚洲av中文字字幕乱码综合| 精品久久久久久久末码| 免费看a级黄色片| 国产精品一区二区免费欧美| 亚洲av第一区精品v没综合| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久电影中文字幕| 亚洲av日韩精品久久久久久密| 一级黄色大片毛片| 国产97色在线日韩免费| 国产精品,欧美在线| 国产免费男女视频| av女优亚洲男人天堂| 精品国产三级普通话版| 色综合婷婷激情| 桃红色精品国产亚洲av| 精华霜和精华液先用哪个| 一级毛片女人18水好多| 欧美在线一区亚洲| 神马国产精品三级电影在线观看| 九色国产91popny在线| 亚洲欧美一区二区三区黑人| 我的老师免费观看完整版| 欧美日韩亚洲国产一区二区在线观看| 欧美一区二区国产精品久久精品| 国产老妇女一区| 性欧美人与动物交配| 亚洲18禁久久av| 成人国产综合亚洲| 成人av在线播放网站| 久久久成人免费电影| 国产伦在线观看视频一区| 最近在线观看免费完整版| 亚洲美女视频黄频| 欧美日韩国产亚洲二区| av女优亚洲男人天堂| 久久久成人免费电影| 无限看片的www在线观看| 成人av在线播放网站| 国产免费av片在线观看野外av| 韩国av一区二区三区四区| 久久久色成人| 九九久久精品国产亚洲av麻豆| 亚洲无线观看免费| 麻豆成人午夜福利视频| 国产精品久久久人人做人人爽| 欧美乱色亚洲激情| 欧美日韩福利视频一区二区| 久久久久久久久大av| 国产精品乱码一区二三区的特点| 熟女人妻精品中文字幕| 国产91精品成人一区二区三区| 亚洲最大成人中文| 中文字幕精品亚洲无线码一区| 美女高潮喷水抽搐中文字幕| 色老头精品视频在线观看| 亚洲人与动物交配视频| 黄片小视频在线播放| 激情在线观看视频在线高清| 日本撒尿小便嘘嘘汇集6| 长腿黑丝高跟| 精品不卡国产一区二区三区| 成年女人毛片免费观看观看9| 在线看三级毛片| 精品久久久久久,|