• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evolutionary Intelligence and Deep Learning Enabled Diabetic Retinopathy Classification Model

    2022-11-10 02:28:08BassamAlqarallehFahadAldhabanAnasAbukarakiandEsamAlQaralleh
    Computers Materials&Continua 2022年10期

    Bassam A.Y.Alqaralleh,Fahad Aldhaban,Anas Abukaraki and Esam A.AlQaralleh

    1MIS Department,College of Business Administration,University of Business and Technology,Jeddah,21448,Saudi Arabia

    2Department of Computer Science,Faculty of Information Technology,Al-Hussein Bin Talal University,Ma’an,71111,Jordan

    3School of Engineering,Princess Sumaya University for Technology,Amman,11941,Jordan.

    Abstract:Diabetic Retinopathy(DR)has become a widespread illness among diabetics across the globe.Retinal fundus images are generally used by physicians to detect and classify the stages of DR.Since manual examination of DR images is a time-consuming process with the risks of biased results,automated tools using Artificial Intelligence(AI)to diagnose the disease have become essential.In this view,the current study develops an Optimal Deep Learning-enabled Fusion-based Diabetic Retinopathy Detection and Classification (ODL-FDRDC) technique.The intention of the proposed ODLFDRDC technique is to identify DR and categorize its different grades using retinal fundus images.In addition,ODL-FDRDC technique involves region growing segmentation technique to determine the infected regions.Moreover,the fusion of two DL models namely,CapsNet and MobileNet is used for feature extraction.Further,the hyperparameter tuning of these models is also performed via Coyote Optimization Algorithm(COA).Gated Recurrent Unit(GRU)is also utilized to identify DR.The experimental results of the analysis,accomplished by ODL-FDRDC technique against benchmark DR dataset,established the supremacy of the technique over existing methodologies under different measures.

    Keywords:Optimization algorithms;medical images;diabetic retinopathy;deep learning;fusion model

    1 Introduction

    Diabetes Mellitus is a life-threatening disease that has affected 463 million people across the globe and its prevalence is expected to increase up to 700 million by 2045[1].Also,one third of diabetics suffer from Diabetic Retinopathy(DR),an eye disease that is interrelated to diabetes and is increasingly more popular.DR is characterized by advanced vascular disruption in the retina that results in chronic hyperglycemia and it progresses in the diabetics,nevertheless of its seriousness.Globally,it is the major cause of blindness amongst working age adults and is diagnosed among 93 million people[2].Further,DR is predicted to increase even more,owing to high prevalence rate of diabetes in developing Asian countries like China and India[3].

    DR is highly asymptomatic in early stages during when neural retinal damages and medicallyinvisible microvascular changes occur.Therefore,diabetic patients must undergo periodic eye screening followed by appropriate diagnoses and succeeding management of the condition to save themselves from vision loss[4].With only protective measures in hand,such as the control of hypertension,hyperglycemia,and hyperlipidemia,early diagnosis of DR is inevitable.Furthermore,with respect to its treatment methods,the intervention methods that are currently available include laser photocoagulation which considerably reduces the possibility of blindness in diabetic maculopathy and proliferative retinopathy up to 98%.This high rate of revival is possible,only when the disease is diagnosed at early stages and cured immediately[5].Appropriate treatment and early diagnosis are the only preventive measures that can be taken proactively to prevent or delay blindness from DR.

    Regular screening of DR patients and their exploding growth rate in India advocate the requirement for an automated screening method for early diagnosis of DR[6].Timely treatment,earlier detection,and frequent screening are the essential components to be followed in addition to automated diagnosis for preventing blindness.In this background,it is challenging to diagnose the retinal pathologies as it is not readily apparent from retinal images,particularly during early stages.Nonetheless,the present Computer-aided image processing methods have proved their capacity in accurately detecting the abnormal patterns connected to the disease[7].Blood vessel segmentation is generally regarded as an early stage in building CAD tools.So,several methodologies have been introduced in the last few decades to remove blood vessels from retinographic images through classical image processing and automated learning models[8].The current Deep Learning (DL) method,including Convolutional Neural Network (CNN),seems to be an optimum choice for automated diagnosis of ailments in digital healthcare images[9,10].The implementation of CNN has increased in the recent years,with the emergence of supportive tools including activation functions namely,Batch Normalization(BN),Rectified Linear Unit(RLU),Dropout regularization,and so on.

    The current study develops an Optimal Deep Learning enabled Fusion based Diabetic Retinopathy Detection and Classification (ODL-FDRDC) technique.Besides,the proposed ODL-FDRDC technique involves region growing segmentation to determine the infected regions.In addition,two DL models namely,CapsNet and MobileNet are fused together for feature extraction process.The hyperparameter tuning of these models is performed via Coyote Optimization Algorithm (COA).Finally,Gated Recurrent Unit(GRU)is utilized in the identification of DR.The experimental analysis results accomplished by ODL-FDRDC technique against benchmark DR dataset established the model’s superiority under distinct aspects.

    Rest of the paper is arranged as follows.Section 2 offers information about related works,Section 3 discusses about the proposed model,Section 4 details the experimental results,and Section 5 concludes the study.

    2 Literature Review

    Qummar et al.[11]made use of a widely-accessible Kaggle data set that contains retinal images to train an ensemble of five DCNN systems(Dense169,Resnet50,Inceptionv3,Xception and Dense121)in encrypting the rich features.The study was aimed at enhancing the classification accuracy during different phases of DR.The simulation results show that the presented method identified each stage of DR in a different manner compared to existing methodologies and achieved great success than the advanced techniques on similar Kaggle datasets.Beede et al.[12]defined the application of humancentric research about DL method in healthcare centers for the diagnosis of DR disease.Based on the observations and interviews conducted across 11 healthcare centers in Thailand,the study covered information on present eye-screening systems,user expectations for AI-enabled screening process,and post-deployment experience.The results showed that many socio-environment factors affect patient experience,nursing workflows,and the performance of the method.

    In literature[13],the researchers used a dataset as DR data set which was gathered from UCI-ML repository.During inception,the new data set was normalized by Standard scalar method following which PCA system was utilized in the extraction of essential attributes.Furthermore,firefly algorithm was executed to reduce the number of dimensions.This reduced dataset was then fed into DNN system for classification.Li et al.[14]validated and presented a deep ensemble model for diagnosing Diabetic Macular Oedema(DMO)and DR using retina fundus images.The researcher collected 8,739 retina fundus images from a retrospective cohort of 3285 persons.In order to detect DMO and DR,several enhanced Inception-v4 ensembling models were proposed.The study evaluated the efficacy of the algorithm and compared it against human expertise on initial dataset.Further,its generalization was measured on the widely accessible Messidor-2 data set as well.Murcia et al.[15]introduced CAD tools that leverage the efficiency rendered by DL architecture in image analysis process.The presented model depends on a deep residual CNN to extract discriminative features without any previous complex image transformation.This is done so to highlight specific structures or enhance the quality of the image.Additionally,the study also employed transfer learning method to reuse the layers from DNN.This was trained earlier using ImageNet data set,under the hypothesis that the initial layer captures abstract features that could be reutilized for diverse challenges.

    3 The Proposed Model

    In current study,a novel ODL-FDRDC technique has been developed to identify and categorize different grades of DR using retinal fundus images.The proposed ODL-FDRDC technique encompasses preprocessing,region-growing segmentation,fusion-based feature extraction,COAbased hyperparameter optimization,and GRU-based classification processes.The hyperparameter tuning of the fusion models is performed via COA.Fig.1 depicts the overall working process of the proposed ODL-FDRDC technique.

    3.1 Region Growing Segmentation

    In the initial stage of DR grading process,the purpose is to find out the affected regions in fundus images by following region growing segmentation approach.Region growing is a pixelbased segmentation method in which the similarity constraints including texture,intensity,etc.are considered to group the pixels into regions.Firstly,a group of pixels is combined by iteration method.Then,the seed pixels are selected along the region and the group is nurtured by grouping with adjacent pixels that are equivalent and where the region size increases.The growth of the region is terminated if the adjacent pixel does not fulfill the homogeneity conditions and the other seed pixels are selected.This procedure is repeated until each pixel in the image belongs to some region.In the presented method,both threshold and seed point selection take a decision about homogeneity constraint since it plays a significant role in improving the accuracy of segmentation.As mammograms suffer from severe intensity variations,a constant threshold selection alone does not warrant precise segmentation.Therefore,the study focuses on improving the automated DA method so as to generate an optimum threshold and seed point.The step-by-step process for region growing method is given herewith.

    i) Input the abnormal images

    ii) Here,t represents the enhanced thresholds created by DA

    iii) Place t as seed point for region growing method

    iv) Add four neighboring pixels

    v) Evaluate the distance(d)between the mean of region intensity and neighboring pixels.

    vi) Implement region growing when d ≤t on four neighboring pixels and include all when they are not involved earlier in the region as well as store the coordinate of the novel pixels.

    vii) Store the mean of novel region and proceed to step 2 as well as implement the region growing process till all the pixels are grouped.

    Figure 1:Working process of ODL-FDRDC technique

    3.2 Fusion Based Feature Extraction

    In this stage,the segmented images are fed into DL models to derive the feature vectors.Feature fusion process is performed by integrating dual feature vectors from MobileNet and CapsNet models using entropy.It is defined as follows.

    3.2.1 CapsNet Model

    DL is a form of CNN which is commonly utilized in various image-processing related disease diagnosis models.It comprises of numerous connected layers with distinct weight values and activation functions.The fundamental DL model includes convolution layer,pooling layer,and connected layer.These distinct activation functions are utilized for weight adjustment.In order to overcome the limitations of the CNN,CapsNet model is presented.Being a deeper network,this model mainly comprises of capsules[16]and a collection of neurons.The activation neuron defines the features of every component in the object.Every individual capsule plays an important part in the determination of individual elements in the object and every capsule iteratively computes the total structure of objects.It saves both object element and spatial data.In comparison with CNNs,CapsNet model involves multiple layers and performs effective feature extraction process.

    3.2.2 MobileNet Model

    Here,MobileNetv2 is utilized to detect and classify DR.It includes a small structure with low computational complexity and high precision.In line with depth-wise separable convolution,MobileNet utilizes a pair of hyperparameters to maintain a tradeoff between performance and effectiveness[17].The basic concept of MobileNet model is decomposition of convolutional kernel.With this concept,the decomposition of a typical convolution kernel takes place in two ways namely depthwise and pointwise convolutions.The former filter carries out the convolution process in all channels and is applied to integrate the outcome of depthwise convolutional layer.Therefore,N typical convolutional kernel gets substituted with M depth wise 1 × 1 convolution kernel and N pointwise convolutional kernel.MobileNet-v2 offers an extract component with inverted residual structures.

    3.3 COA Based Hyperparameter Optimization Process

    In order to optimally tune the hyperparameters involved in fusion models,COA is utilized[18].COA is a novel group optimization technique presented in 2018 by Pierezan et al.,and is simulated based on the performance of coyotes in North America.This technique inspires the present coyote population and its evolution that contains heuristic arbitrary coyote population combination,development,birth,and death,original-group driving-away,and new-group acceptance performance.In COA,decision variable is demonstrated by coyote social-state factor from all the dimensions of a solution vector.All the coyotes signify the solution of the candidate to a problem.The COA group contains the initial coyote population based on the rule of arbitrary equivalent distribution.Therefore,after setting the amount of coyotes from group Np∈N*and from single group Nc∈N*,it can attain Np×Ncindividual coyote.The primary social condition of this individual coyote is arbitrarily set.Eq.(6)expresses the allocation technique of jthdimension of c coyote from p package.

    3.4 GRU Based Classification

    In this final stage,GRU model receives the feature vectors and performs classification.GRU is a different form of LSTM network which can provide the benefits of RNN method.It acquires the features automatically and successfully streamlines the long-term dependent data.It is executed to achieve short-term traffic estimate effectively[19].In GRU networks,the cell infrastructure has hidden state which can be further related to LSTM.Intuitively,input and forget gates from LSTM are combined as a reset gate from GRU.This reset gate defines the combination of a novel input data in prior time.Another gate in GRU is named as upgrade gate which defines several data in the preceding time which are stored in present time.So,GRU is 1 gate lesser than LSTM.Besides,both cell and hidden states from LSTM are combined together as 1 hidden state in GRU.It can be altered so that the GRU networks can generate few parameters,get trained quickly and need lesser information to generalize the model efficiently.Fig.2 illustrates the framework of GRU.The computation equation of GRU is as follows.

    Figure 2:GRU structure

    4 Experimental Validation

    The proposed ODL-FDRDC technique was experimentally validated using MESSIDOR dataset which has a total of 1200 retinal fundus images captured in three ophthalmologic departments.The results of the proposed ODL-FDRDC technique were inspected under distinct Hidden Layers(HL).A few sample images is shown in Fig.3.

    Tab.1 provides the results for overall DR classification analysis,accomplished by ODL-FDRDC technique under distinct HLs.With an HL of 10,the proposed ODL-FDRDC technique classified the class 0 with a sensitivity (sensy) of 0.9945,specyof 0.9939,accuyof 0.9942,precnof 0.9927,and an Fscoreof 0.9936.Next,the presented ODL-FDRDC technique identified class 1 with a sensitivity(sensy)of 0.9935,specyof 0.9971,accuyof 0.9967,precnof 0.9806,and an Fscoreof 0.987.In line with this,ODL-FDRDC technique recognized class 2 with a sensitivity(sensy)of 0.9878,specyof 0.9937,accuyof 0.9925,precnof 0.9758,and an Fscoreof 0.9817.

    Fig.4 depicts the results of average DR detection analysis,accomplished by ODL-FDRDC technique.The results showcase the effective outcomes of the proposed method under distinct HLs.For instance,with 10 HLs,ODL-FDRDC technique obtained an average sensyof 0.9870,specyof 0.9959,accuyof 0.9942,precnof 0.9863,and an Fscoreof 0.9866.Meanwhile,with 20 HLs,the proposed ODL-FDRDC technique attained an average sensyof 0.9851,specyof 0.9955,accuyof 0.9942,precnof 0.9891,and an Fscoreof 0.9871.Eventually,with 30 HLs,the proposed ODL-FDRDC technique offered an averagesensyof 0.9872,specyof 0.9963,accuyof 0.9950,precnof 0.9900,and anFscoreof 0.9886.Lastly,with 40 HLs,the presented ODL-FDRDC technique gained an averagesensyof 0.9888,specyof 0.9966,accuyof 0.9950,precnof 0.9871,and anFscoreof 0.9880.

    Figure 3:Sample images

    Table 1:Results of the analysis of ODL-FDRDC technique under different HLs

    Table 1:Continued

    ROC analysis was conducted for ODL-FDRDC technique on test DR dataset and the results are shown in Fig.5.The results infer the enhanced classification efficiency of the proposed ODL-FDRDC technique with an increased ROC value of 99.9164%.

    Figure 4:(Continued)

    Figure 4:Average analysis results of ODL-FDRDC technique under different measures

    Figure 5:ROC analysis results of ODL-FDRDC technique

    Tab.2 illustrates the results of comparative analysis,accomplished by ODL-FDRDC technique against existing methods under various measures.Fig.6 demonstrates thesensyanalysis outcomes of the proposed ODL-FDRDC technique against recent methods.According to the experimental results,AlexNet model attained the least performance with asensyof 58.70%.Followed by,SqueezeNet,VGG-16,and VGG-19 models achieved lowsensyvalues such as 73.70%,73.30%,and 73.50%respectively.In line with this,ResNet-18 and ResNet-50 models reached considerablesensyvalues such as 97.50%and 98.30%respectively.However,the proposed ODL-FDRDC technique produced the highestsensyof 98.42%.

    Table 2:Comparative analysis results of ODL-FDRDC technique against existing methods

    Figure 6:Sensy analysis results of ODL-FDRDC technique against existing methods

    Fig.7 illustrates thespecyanalysis results of the presented ODL-FDRDC approach against recent algorithms.The experimental outcomes reveal that AlexNet method obtained the least performance with aspecyof 83.30%.Then,SqueezeNet,VGG-16,and VGG-19 techniques achieved lowspecyvalues such as 83.80%,85.70%,and 86.10%correspondingly.Also,ResNet-18 and ResNet-50 methodologies obtained considerablespecyvalues like 91.20% and 94.50% correspondingly.At last,the proposed ODL-FDRDC method produced a superiorspecyof 99.56%.

    Fig.8 depicts theaccyanalysis results,accomplished by ODL-FDRDC technique as well as other recent methods.The experimental outcomes reveal that AlexNet method attained a minimal performance with anaccyof 70%.Likewise,SqueezeNet,VGG-16,and VGG-19 methods reached loweraccyvalues such as 81.80%,84.50%,and 79.80% respectively.In addition,ResNet-18 and ResNet-50 techniques attained considerableaccyvalues such as 90.40% and 92.40% respectively.Eventually,the proposed ODL-FDRDC system accomplished the highestaccyof 99.33%.

    Based on the results and discussion made above,it is evident that the proposed ODL-FDRDC technique is a superior performer as it produced the maximum DR performance over other techniques.

    Figure 7:Specy analysis results of ODL-FDRDC technique against existing methods

    Figure 8:Accy analysis results of ODL-FDRDC technique against existing methods

    5 Conclusion

    In this study,a novel ODL-FDRDC technique has been developed to identify and categorize different grades of DR using retinal fundus images.The proposed ODL-FDRDC technique encompasses preprocessing,region-growing segmentation,fusion-based feature extraction,COAbased hyperparameter optimization,and GRU-based classification.The hyperparameter tuning of the fusion models is performed via COA.The proposed ODL-FDRDC technique was experimentally validated against the benchmark DR dataset and the results were validated under different measures.The outcomes infer that the proposed ODL-FDRDC is a superior performer compared to existing methodologies.Therefore,ODL-FDRDC technique can be used as an effectual tool to perform diagnosis in real-time scenarios.In future,DL-based instance segmentation techniques can be designed to improve DR classification outcomes.

    Funding Statement:This Research was funded by the Deanship of Scientific Research at University of Business and Technology,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产高清三级在线| 国产精品久久久久久精品电影| 深爱激情五月婷婷| 日本黄色片子视频| 免费av观看视频| 永久网站在线| 亚洲综合色惰| 亚洲精品影视一区二区三区av| 超碰97精品在线观看| 免费人成在线观看视频色| 国产精品一区二区在线观看99 | 色尼玛亚洲综合影院| 欧美日本视频| 国产精品国产三级专区第一集| 长腿黑丝高跟| 18禁在线无遮挡免费观看视频| 国产单亲对白刺激| 免费看光身美女| 亚洲乱码一区二区免费版| АⅤ资源中文在线天堂| 午夜老司机福利剧场| 极品教师在线视频| 伦精品一区二区三区| 亚洲精品日韩在线中文字幕| 国产一区二区在线av高清观看| 免费观看的影片在线观看| 久久精品国产亚洲av天美| 久久鲁丝午夜福利片| 国产午夜精品久久久久久一区二区三区| 国产精品日韩av在线免费观看| 亚洲av免费高清在线观看| 老师上课跳d突然被开到最大视频| 久久久久久久久久久免费av| 精品久久久久久久久亚洲| 免费大片18禁| 久久久久久久国产电影| 一级黄色大片毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久精品94久久精品| 国内精品宾馆在线| 免费观看精品视频网站| 亚洲av日韩在线播放| 丰满人妻一区二区三区视频av| 精品久久久久久久末码| 男女那种视频在线观看| 纵有疾风起免费观看全集完整版 | 深爱激情五月婷婷| 国产91av在线免费观看| 美女脱内裤让男人舔精品视频| 日韩制服骚丝袜av| 亚洲最大成人手机在线| 成人综合一区亚洲| 亚洲av中文av极速乱| 国产亚洲最大av| 午夜激情欧美在线| 日本熟妇午夜| 久久亚洲精品不卡| 亚洲精品国产av成人精品| 亚洲天堂国产精品一区在线| 亚洲欧美精品自产自拍| 日韩三级伦理在线观看| 水蜜桃什么品种好| 中文字幕av在线有码专区| 天天躁夜夜躁狠狠久久av| 国产一区二区亚洲精品在线观看| 国产精品一二三区在线看| 日日摸夜夜添夜夜添av毛片| 最新中文字幕久久久久| 国产精品电影一区二区三区| 看免费成人av毛片| 国产精品电影一区二区三区| 在线播放国产精品三级| 欧美高清成人免费视频www| 亚洲欧美精品自产自拍| 99久久中文字幕三级久久日本| 日日干狠狠操夜夜爽| 水蜜桃什么品种好| 亚洲天堂国产精品一区在线| 久久久久久久久久久免费av| 日本午夜av视频| 久久综合国产亚洲精品| 亚洲国产精品成人久久小说| 亚洲天堂国产精品一区在线| 国产毛片a区久久久久| 国产成人精品久久久久久| 亚洲精品日韩在线中文字幕| 精品午夜福利在线看| 亚洲婷婷狠狠爱综合网| 最近的中文字幕免费完整| 国产免费又黄又爽又色| 免费av不卡在线播放| 2022亚洲国产成人精品| 91av网一区二区| 国产一区二区亚洲精品在线观看| 简卡轻食公司| 久久久久久久亚洲中文字幕| 国产探花极品一区二区| 身体一侧抽搐| 国产av在哪里看| 日韩大片免费观看网站 | 亚洲综合精品二区| 三级国产精品片| 国产免费又黄又爽又色| 国产黄片美女视频| 免费观看a级毛片全部| 欧美xxxx性猛交bbbb| 国产综合懂色| 欧美变态另类bdsm刘玥| 国产成人freesex在线| 夫妻性生交免费视频一级片| 日韩中字成人| 18禁在线播放成人免费| 亚洲综合精品二区| 嘟嘟电影网在线观看| 国产欧美日韩精品一区二区| 岛国毛片在线播放| 亚洲欧美精品自产自拍| 一区二区三区高清视频在线| 人妻夜夜爽99麻豆av| 男人舔奶头视频| 国产私拍福利视频在线观看| 我要搜黄色片| 亚洲成人久久爱视频| 99久久人妻综合| 国产探花在线观看一区二区| 成年版毛片免费区| 亚洲欧美精品专区久久| 91av网一区二区| 少妇猛男粗大的猛烈进出视频 | 欧美三级亚洲精品| 97人妻精品一区二区三区麻豆| 狠狠狠狠99中文字幕| 水蜜桃什么品种好| .国产精品久久| 人妻夜夜爽99麻豆av| 久久婷婷人人爽人人干人人爱| 舔av片在线| 最近手机中文字幕大全| 成年av动漫网址| 日韩国内少妇激情av| 日产精品乱码卡一卡2卡三| 国产高清视频在线观看网站| 男插女下体视频免费在线播放| 亚洲人成网站高清观看| 国语自产精品视频在线第100页| 日日啪夜夜撸| 久久精品影院6| 91精品伊人久久大香线蕉| 亚洲精品乱码久久久v下载方式| 亚洲,欧美,日韩| 22中文网久久字幕| 99久久中文字幕三级久久日本| 一区二区三区四区激情视频| 久久久久久久国产电影| 国内精品一区二区在线观看| 亚洲精品乱码久久久久久按摩| 久久久久久久久大av| 日本av手机在线免费观看| 欧美色视频一区免费| 日本一本二区三区精品| 三级男女做爰猛烈吃奶摸视频| 纵有疾风起免费观看全集完整版 | 一二三四中文在线观看免费高清| 国产老妇伦熟女老妇高清| 欧美另类亚洲清纯唯美| 欧美日韩国产亚洲二区| 久久热精品热| 久久久久久国产a免费观看| 国产精华一区二区三区| 久久精品国产亚洲av天美| 日韩国内少妇激情av| 亚洲国产精品sss在线观看| 亚洲av电影在线观看一区二区三区 | 美女被艹到高潮喷水动态| 日本黄大片高清| 亚洲自偷自拍三级| 午夜亚洲福利在线播放| 少妇熟女欧美另类| 国产探花在线观看一区二区| 午夜福利在线观看免费完整高清在| 91aial.com中文字幕在线观看| 男女国产视频网站| 国产中年淑女户外野战色| 日韩一区二区视频免费看| 色网站视频免费| 亚洲精品日韩在线中文字幕| 成年女人永久免费观看视频| 亚洲欧美清纯卡通| 久久久久久久亚洲中文字幕| 国产成人精品久久久久久| 亚洲精品成人久久久久久| 精品久久国产蜜桃| 国产精品熟女久久久久浪| 成人美女网站在线观看视频| 99久久九九国产精品国产免费| www日本黄色视频网| av视频在线观看入口| 国产91av在线免费观看| 成年版毛片免费区| 草草在线视频免费看| 91在线精品国自产拍蜜月| 99热全是精品| 成人欧美大片| 中文天堂在线官网| 97在线视频观看| 国产精品一二三区在线看| 国产又色又爽无遮挡免| 自拍偷自拍亚洲精品老妇| 青春草亚洲视频在线观看| 久久久久网色| 亚洲美女搞黄在线观看| 亚洲色图av天堂| 精品久久久久久电影网 | 三级经典国产精品| 五月伊人婷婷丁香| 久久99热这里只频精品6学生 | 最近中文字幕2019免费版| 我的女老师完整版在线观看| 嫩草影院入口| 日本黄色片子视频| 尾随美女入室| 国产成人精品久久久久久| 99久久中文字幕三级久久日本| 国内精品宾馆在线| 午夜精品一区二区三区免费看| 国产av码专区亚洲av| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产欧洲综合997久久,| 2021少妇久久久久久久久久久| 天堂网av新在线| 日本黄色视频三级网站网址| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久久av| 禁无遮挡网站| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看| 国产av在哪里看| 中国国产av一级| 水蜜桃什么品种好| 91狼人影院| 亚洲av成人精品一二三区| 性插视频无遮挡在线免费观看| 高清毛片免费看| 三级男女做爰猛烈吃奶摸视频| 99热网站在线观看| 亚洲欧美清纯卡通| 国产精品永久免费网站| 久久精品91蜜桃| 综合色av麻豆| 国产精品美女特级片免费视频播放器| 精品久久久久久久人妻蜜臀av| 成人毛片60女人毛片免费| 亚洲熟妇中文字幕五十中出| 国产人妻一区二区三区在| 联通29元200g的流量卡| 波野结衣二区三区在线| 亚洲伊人久久精品综合 | 最近最新中文字幕大全电影3| 国产极品精品免费视频能看的| 国产男人的电影天堂91| 好男人在线观看高清免费视频| 国产精品人妻久久久久久| 亚洲精品乱码久久久久久按摩| 久久久久久久午夜电影| 啦啦啦啦在线视频资源| 亚洲国产精品合色在线| 国产一区二区在线观看日韩| 色播亚洲综合网| 久久久久久久久久久丰满| 国语自产精品视频在线第100页| www.色视频.com| 午夜福利视频1000在线观看| 可以在线观看毛片的网站| 2022亚洲国产成人精品| 久久综合国产亚洲精品| 欧美极品一区二区三区四区| 两个人的视频大全免费| 久久精品影院6| 51国产日韩欧美| 搞女人的毛片| 亚洲美女视频黄频| 日韩亚洲欧美综合| 国产又色又爽无遮挡免| 欧美日韩精品成人综合77777| 免费观看性生交大片5| 尤物成人国产欧美一区二区三区| 全区人妻精品视频| 精品久久国产蜜桃| 麻豆乱淫一区二区| 少妇高潮的动态图| 国产精品久久久久久精品电影| 亚洲婷婷狠狠爱综合网| videos熟女内射| 在线天堂最新版资源| 欧美一区二区国产精品久久精品| 99热这里只有是精品在线观看| 不卡视频在线观看欧美| 久久精品国产自在天天线| 天天躁日日操中文字幕| 精品久久久噜噜| 国产毛片a区久久久久| 国产精品久久久久久精品电影| 1024手机看黄色片| 精品国内亚洲2022精品成人| 日韩人妻高清精品专区| 久久综合国产亚洲精品| 亚洲国产精品国产精品| 亚洲第一区二区三区不卡| 亚洲国产欧美人成| 日本黄色片子视频| 国产黄片美女视频| 美女黄网站色视频| 一级黄片播放器| 少妇高潮的动态图| 久久人人爽人人爽人人片va| 成年免费大片在线观看| 亚洲成色77777| 99在线人妻在线中文字幕| 99热全是精品| 一个人看的www免费观看视频| 欧美精品国产亚洲| 国内精品宾馆在线| 91狼人影院| 日日撸夜夜添| 中文字幕精品亚洲无线码一区| 亚洲成av人片在线播放无| 久久国产乱子免费精品| 亚洲精品影视一区二区三区av| 欧美97在线视频| 欧美一区二区精品小视频在线| 国产精品女同一区二区软件| 色尼玛亚洲综合影院| 亚洲精品aⅴ在线观看| a级毛片免费高清观看在线播放| 青春草国产在线视频| 久久久久久久久久久免费av| 亚洲熟妇中文字幕五十中出| 最近的中文字幕免费完整| 三级经典国产精品| 亚洲av成人av| 韩国高清视频一区二区三区| 欧美日韩综合久久久久久| 国产精品人妻久久久影院| 卡戴珊不雅视频在线播放| 精品久久久久久成人av| 九九在线视频观看精品| 亚洲国产欧洲综合997久久,| 午夜激情福利司机影院| 伦精品一区二区三区| 国产精品国产三级国产av玫瑰| 日韩一区二区三区影片| 久久久久久久久久久免费av| 亚洲内射少妇av| 免费看日本二区| 九九在线视频观看精品| 久久久精品欧美日韩精品| 精品久久久久久成人av| 纵有疾风起免费观看全集完整版 | 日韩中字成人| 免费观看的影片在线观看| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 国产精品一二三区在线看| 国产精品国产高清国产av| 国产一区亚洲一区在线观看| 美女高潮的动态| 精品国产一区二区三区久久久樱花 | 久久草成人影院| 国产午夜精品一二区理论片| 国产极品天堂在线| 能在线免费看毛片的网站| 久久久久免费精品人妻一区二区| 我的女老师完整版在线观看| 超碰97精品在线观看| 久久热精品热| 能在线免费看毛片的网站| 欧美高清成人免费视频www| 日日撸夜夜添| 婷婷色av中文字幕| 国产成人精品久久久久久| 免费看美女性在线毛片视频| 国产又黄又爽又无遮挡在线| 国产精品国产三级专区第一集| 亚洲精品影视一区二区三区av| 日日摸夜夜添夜夜添av毛片| 国产私拍福利视频在线观看| 女人被狂操c到高潮| 全区人妻精品视频| 日日干狠狠操夜夜爽| 免费av观看视频| 免费不卡的大黄色大毛片视频在线观看 | 日本av手机在线免费观看| 久久久久性生活片| 人体艺术视频欧美日本| 亚洲欧洲日产国产| 国产单亲对白刺激| 三级国产精品欧美在线观看| 亚洲欧美日韩卡通动漫| 午夜免费男女啪啪视频观看| 99热网站在线观看| 亚洲欧美清纯卡通| 欧美人与善性xxx| 变态另类丝袜制服| 亚洲精品一区蜜桃| 哪个播放器可以免费观看大片| 久久久国产成人免费| 夫妻性生交免费视频一级片| 国国产精品蜜臀av免费| 亚洲国产精品国产精品| 成人三级黄色视频| 国产真实乱freesex| 亚洲成人av在线免费| 日本免费a在线| 日韩欧美国产在线观看| 两个人的视频大全免费| 午夜亚洲福利在线播放| 国产欧美日韩精品一区二区| 国产精品一及| 成人二区视频| 午夜福利在线观看免费完整高清在| 亚洲av电影在线观看一区二区三区 | 人妻夜夜爽99麻豆av| 国产成人a∨麻豆精品| 亚洲成av人片在线播放无| 久久人人爽人人爽人人片va| 亚洲精品一区蜜桃| 亚洲自拍偷在线| 久99久视频精品免费| 国产精品久久久久久久电影| 亚洲欧美日韩卡通动漫| 国产午夜精品论理片| 有码 亚洲区| 天堂影院成人在线观看| 少妇被粗大猛烈的视频| 好男人在线观看高清免费视频| 久久久久久久久久久免费av| 偷拍熟女少妇极品色| 赤兔流量卡办理| 欧美精品国产亚洲| 天堂影院成人在线观看| 精华霜和精华液先用哪个| 国产69精品久久久久777片| 波多野结衣高清无吗| 99在线视频只有这里精品首页| 亚洲成人av在线免费| 日韩av在线大香蕉| 欧美97在线视频| 国产一区亚洲一区在线观看| 久99久视频精品免费| 岛国在线免费视频观看| 91精品国产九色| 国产精品福利在线免费观看| 国产精品美女特级片免费视频播放器| 国产极品精品免费视频能看的| 一区二区三区乱码不卡18| 岛国毛片在线播放| 一个人免费在线观看电影| 中国美白少妇内射xxxbb| 色综合站精品国产| 成人美女网站在线观看视频| 亚洲av.av天堂| 亚洲精品一区蜜桃| 最新中文字幕久久久久| 国产精品一二三区在线看| 成人毛片a级毛片在线播放| 嫩草影院入口| 伦理电影大哥的女人| 欧美zozozo另类| 久久鲁丝午夜福利片| 国产黄片视频在线免费观看| 国产亚洲精品av在线| 淫秽高清视频在线观看| 成人欧美大片| 亚洲美女视频黄频| 99久国产av精品| 久久精品国产自在天天线| 成人二区视频| 亚洲乱码一区二区免费版| 桃色一区二区三区在线观看| 你懂的网址亚洲精品在线观看 | 特级一级黄色大片| 一级二级三级毛片免费看| 免费av观看视频| 久久久久久大精品| 联通29元200g的流量卡| 国产亚洲91精品色在线| 成人美女网站在线观看视频| 日韩三级伦理在线观看| 又爽又黄无遮挡网站| 亚洲第一区二区三区不卡| 视频中文字幕在线观看| 中文字幕亚洲精品专区| 国内少妇人妻偷人精品xxx网站| 日日摸夜夜添夜夜爱| 联通29元200g的流量卡| 99久久精品热视频| 久久久久网色| 网址你懂的国产日韩在线| 亚洲av成人av| 国产精品久久久久久久久免| 黄色配什么色好看| 黑人高潮一二区| 三级国产精品片| 国产精品国产高清国产av| 亚洲欧洲日产国产| 国产探花在线观看一区二区| 久久精品久久久久久噜噜老黄 | 欧美一区二区精品小视频在线| 亚洲最大成人手机在线| 国产成人精品久久久久久| 亚洲av免费高清在线观看| 精品熟女少妇av免费看| 1024手机看黄色片| 欧美精品一区二区大全| 久久国内精品自在自线图片| 高清午夜精品一区二区三区| 国产在视频线精品| 日本黄色视频三级网站网址| 99久久精品国产国产毛片| 国产午夜福利久久久久久| 久久久久九九精品影院| 你懂的网址亚洲精品在线观看 | 亚洲第一区二区三区不卡| 国产精品嫩草影院av在线观看| 亚洲精品aⅴ在线观看| 国产成人aa在线观看| 亚洲精品,欧美精品| 免费看日本二区| 国产不卡一卡二| 久久精品国产亚洲av天美| 美女黄网站色视频| 久久精品熟女亚洲av麻豆精品 | 丰满人妻一区二区三区视频av| 亚洲人成网站高清观看| 亚洲av成人av| 99久久精品一区二区三区| 变态另类丝袜制服| 精品久久久久久久人妻蜜臀av| 九九热线精品视视频播放| 欧美高清成人免费视频www| 亚洲av一区综合| 国产伦一二天堂av在线观看| 国产黄片视频在线免费观看| 99久久九九国产精品国产免费| 免费搜索国产男女视频| 老司机影院毛片| 国产在视频线精品| 国产精品综合久久久久久久免费| 午夜激情福利司机影院| 深夜a级毛片| 精品久久久久久成人av| 国产精品一及| 啦啦啦观看免费观看视频高清| 97在线视频观看| 亚洲无线观看免费| 亚洲av熟女| 最近中文字幕2019免费版| 国产老妇伦熟女老妇高清| 22中文网久久字幕| 51国产日韩欧美| 97人妻精品一区二区三区麻豆| 男女国产视频网站| 国产午夜精品一二区理论片| 我要搜黄色片| 看十八女毛片水多多多| 午夜免费激情av| 91久久精品电影网| 三级国产精品片| 男女下面进入的视频免费午夜| 国产在视频线在精品| 久久人人爽人人爽人人片va| 小蜜桃在线观看免费完整版高清| 嫩草影院精品99| 伦理电影大哥的女人| 2021少妇久久久久久久久久久| 亚洲激情五月婷婷啪啪| 国产一级毛片在线| 国产精品av视频在线免费观看| 日本一本二区三区精品| 久久久精品94久久精品| 国产精品不卡视频一区二区| 美女xxoo啪啪120秒动态图| 99久久九九国产精品国产免费| 一区二区三区乱码不卡18| 久久久久久九九精品二区国产| 青春草国产在线视频| 3wmmmm亚洲av在线观看| 直男gayav资源| 国产精品一区二区三区四区久久| 波多野结衣巨乳人妻| 久久99热这里只频精品6学生 | 亚洲一级一片aⅴ在线观看| 联通29元200g的流量卡| 亚洲最大成人av| 岛国毛片在线播放| 日本一二三区视频观看| 久久精品人妻少妇| 久热久热在线精品观看| 久久久久久伊人网av| av专区在线播放| 国产黄色小视频在线观看| 黄色日韩在线| 久久久久网色| av播播在线观看一区| 99久久成人亚洲精品观看| 国产成人精品婷婷| av在线亚洲专区| 午夜福利在线观看吧| 午夜福利高清视频| 蜜桃亚洲精品一区二区三区| 日韩制服骚丝袜av| 天堂网av新在线| 校园人妻丝袜中文字幕| 在线天堂最新版资源| 99热全是精品|