• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Secure Rotation Invariant Face Detection System for Authentication

    2022-11-09 08:17:24AmitVermaMohammedBaljonShailendraMishraIqbaldeepKaurRitikaSainiSharadSaxenaandSanjayKumarSharma
    Computers Materials&Continua 2022年1期

    Amit Verma,Mohammed Baljon,Shailendra Mishra,*,Iqbaldeep Kaur,Ritika Saini,Sharad Saxena and Sanjay Kumar Sharma

    1Department of Computer Science&Engineering,Chandigarh Group of Colleges,Mohali,140317,India

    2Department of Computer Engineering,College of Computer&Information Science,Majmaah University,11952,Saudi Arabia

    3Department of Computer Science and Engineering,Thapar Institute of Engineering&Technology,Patiala,147004,India

    4Department of Computer Centre&Campus Network Facility Science Complex,PO Central University,Gachibowli,Hyderabad,500046,Telangana,India

    Abstract:Biometric applications widely use the face as a component for recognition and automatic detection.Face rotation is a variable component and makes face detection a complex and challenging task with varied angles and rotation.This problem has been investigated,and a novice algorithm,namely RIFDS (Rotation Invariant Face Detection System),has been devised.The objective of the paper is to implement a robust method for face detection taken at various angle.Further to achieve better results than known algorithms for face detection.In RIFDS Polar Harmonic Transforms (PHT) technique is combined with Multi-Block Local Binary Pattern (MBLBP) in a hybrid manner.The MBLBP is used to extract texture patterns from the digital image,and the PHT is used to manage invariant rotation characteristics.In this manner,RIFDS can detect human faces at different rotations and with different facial expressions.The RIFDS performance is validated on different face databases like LFW,ORL,CMU,MIT-CBCL,JAFFF Face Databases,and Lena images.The results show that the RIFDS algorithm can detect faces at varying angles and at different image resolutions and with an accuracy of 99.9%.The RIFDS algorithm outperforms previous methods like Viola-Jones,Multi-block Local Binary Pattern(MBLBP),and Polar HarmonicTransforms(PHTs).The RIFDS approach has a further scope with a genetic algorithm to detect faces(approximation)even from shadows.

    Keywords: Pose variations;face detection;frontal faces;facial expressions;emotions

    1 Introduction

    Face recognition is an important process for facial emotion recognition,face tracking,gender classification,multimedia applications,automatic face recognition,and many others [1,2].Many algorithms have been proposed for face detection,but many challenges with efficient and fast detection of faces exist.For example,if faces are tilted,varied with angle,and rotated along the axis,its detection is difficult.Hence,a fast and robust detection system is the need of the hour.Google developed a face recognition algorithm and a huge database consisting of 200 million images and eight million unique searching tasks [3].The auto-tagging function can see another example in Facebook in which the identity of a person can be automatically recognized from an image that he uploads to Facebook [4].Biometric face recognition is a great utility to recognize a person’s identity by comparing his face to an image stored in an ID/passport for security [5].Apart from that,face recognition has drawn attention towards different researches and applications [6].The rotated or tilted image recognition is a great challenge during authentication and pattern recognition system.This is illustrated in Fig.1a.When a photo is taken through the camera,it may detect the face and create a rectangle shape with different angles and poses.This is due to pose variations,lighting conditions,and rotations of a camera during the shooting.It is a complex task to detect the face from the rotated or tilted images.Authors in [7] stated that most recognition algorithms might degrade 10% in face verification,thus indicating that the pose variation remains a significant challenge in face recognition.Authors in [8] suggested thinking about feature representation invariant to pose in recognizing in surveillance videos.

    Figure 1:(a) Rotated face example (b) Facial feature extraction from digital image using MBLBP

    Nevertheless,rotated face recognition remains a challenge in practical scenarios [9-11].The rotation invariant detection capability using various methodologies is summarized in Tabs.1 and 2.So the Multi-block (MBLBP) [12] and Polar Harmonic Transforms (PHT) [1,2] techniques alone are not sufficient for fast display and rotation.For the picture illustrated in Fig.1a.Viola-Jones algorithm [11] is not able to detect the rotated face images.LBP [13] and HOG [1,2] features are also utilized to fetch facial features of the image,but they are not rotation invariant and unable to detect the face from rotated images [14].To address this problem,the paper proposes a Rotation Invariant Face Detection System (RIFDS) technique to detect the face from different angles of rotations [15].RIFDS combines Polar Harmonic Transforms (PHTs) [1,2] with Multi-Block LBP (MBLBP) [12] technique for fast and accurate detection of rotated faces.MBLBP is used to extract the texture features from different angles of the image,and the PHT [1,2] method is implemented to recognize the face from any angle.MBLBP [12] extracts the features from small blocks,and these features are more précises than the features extracted from a single image as a whole [16].

    Table 1:Rotated face detection techniques

    Table 2:Features supported by various methods

    Thus the features extracted from small blocks of a single image are more detailed.This leads to more accurate results.RIFDS uses binary images to display the selected facial features.When a test image is uploaded,it is converted into a grayscale image because image color increases the complexity of multiple color channels (like RGB and CMYK) [9].RIFDS is tested on the face databases,namely JAFFF,ORL,CMU,MIT-CBCL,and LFW.The database contains images with different sizes (i.e.,resolution),poses (i.e.,face direction in left,right,up and down),facial expression (i.e.,fear,joy,cry,anger,happiness,and sadness,shyness),and rotations (i.e.,rotated at different angles).The paper is structured in four main sections: Section 1 introduces the content of the article,Section 2 presents the proposed method,Section 3 validates it experimentally,and lastly,Section 4 concludes the paper.

    1.1 Binary Images

    It uses two colors (black and white) and two-pixel values,i.e.,0 and 1.A binary image withmnumber of rows andnnumber of columns hasNpixels and is given by Eq.(1).They display the extracted edges and other facial features in the Multi-Block LBP.When the LBP operator is applied to a digital image,detected edges are shown with white pixel values,and the rest of the image is the background.Different facial features from digital images are extracted by using the LBP operator as shown in Fig.1b,in which extracted features (i.e.,edges) are shown in white color,and the rest are the background.

    1.2 Multi-Block Local Binary Pattern(MBLBP)

    It detects faces from digital images through the concept of head and face boundary extraction.It can detect faces at a 15°angle (i.e.,an image with a pose left side or right side) and 360°(i.e.,frontal face) [12].It is also used to encode the rectangular region’s intensity using a local binary pattern [17].LBP looks at nine pixels at a time (i.e.,a 3 × 3 window of image=9-pixel values) and 2∧9=512 possible values (seeFig.2).MBLBP allows 256 types of different binary patterns to be formed for edge detection and face detection from images.The MBLBP operator is computed to identify the rectangle by comparing the central’s rectangle average intensity,kc,with those of its neighborhood rectangles {k0,...,k8}.In this way,a binary sequence is generated.The MBLBP value is obtained by Eq.(2).

    where,kcis the average intensity of center rectangle andki(i=1..8) are the intensity of neighborhood rectangles.

    Figure 2:Local Binary Pattern (LBP) computation on a 3 × 3 matrix

    1.3 Polar Harmonic Transforms(PHTs)

    They are used for feature extraction and generate an invariant rotation feature.According to it iff(r,θ)represents a continuous image function on a unit disk D={(r,θ): 0 ≤r ≤1,0 ≤θ ≤2Π.The PHT withmrepetition and ordernis given by Eq.(4).

    wherem,nhas the values as (+1,-1,+2,-2,...) andG*is the conjugate ofGand is given by Eq.(5).

    The radial partRn(r) of image is given by Eq.(6).

    With the help of PHTs,non-frontal faces are detected at different angles of rotation of faces(i.e.,±30°,±45°,±60°,±90°,±120°,±135°,±150°,180°,±210°,±225°,±240°,±270°,±300°,±315°,±330°±360)Gradient direction histogram (HOG) features can be used for face recognition under non-restrictive conditions [18].HOG is a feature descriptor used in image and vision processing for face and object detection.The technique measure incidences of gradient alignment in localized part of the test image.This method is comparable to that of edge orientation histograms or scale invariant feature transform descriptors,and shape contexts.The major variance with other techniques is to compute on a dense grid of homogeneously spaced cells and uses touching local contrast normalization for better-quality accuracy.Tab.1 demonstrates various face detection methods to detect the rotated faces.It has been shown that Viola-Jones,HOG features,LBP features,and Multi Block-LBP features are not rotation invariant (i.e.,unable to detect rotated faces).On the other hand,Polar Harmonic Transforms (PHTs) is rotation invariant(i.e.,detect the rotated faces).Tab.2 represents features supported by different methods used for the detection of faces.

    2 Proposed Rotation Invariant Face Detection System(RIFDS)

    2.1 Pre-Processing Framework

    The RIFDS system combines two methods PHT and MBLBP.MBLBP is used to extract texture patterns from the digital image,while PHT keeps rotation invariant characteristics [13].This process is illustrated in Fig.3.Here,a query image is selected to detect the rotated face from the sample data set.Then,pre-processing operations like morphological operators and classification are performed to the query image for fast processing.The query image is rotated at a 45°angle to make it ready for analysis.The facial entities are selected as features (i.e.,eyes,nose,and mouth) from the modified image.Facial features are selected and extracted for the training of the face recognition system.Face detection is applied to the selected features.The rotated face is generated and finally cropped at a 45°angle.The sample dataset is chosen randomly.The proposed system can detect the face from digital images at 30°,45°,60°,90°,120°,135°,150°,180°,210°,225°,240°,270°,300°,315°,330°and 360°angles.Fig.4 represents the detection of the face at different rotations on a digital image.

    2.2 Face Detection at Different Rotations

    PHT technique is used to detect faces at different rotations.PHT is robust to noise,minimum information redundancy,fast and accurate face detection technique at different angles.So basically after selection of the test image and selecting angle with initial morphological operation images have been processed.The PHT techniques and cascading have been performed.Finally,detection of faces at various angle has been achieved.The steps for the algorithm are shown in Algorithm 1 and Fig.5.Here,an image is selected from the dataset and chooses a 140°angle for image rotation.User input for any angle (30°,-30°,45°,-45°,60°,-60°,140°,-140°,180°,270°,-270°and 360°) can be chosen by selecting angle for the given dataset and test image.The selected image is cropped into a circle for better detection and rotation.PHT shown in Eq.(4) is applied to the selected image.The zeroth-order approximation for Eq.(4) is computed by Eq.(8).

    where,xi=(2i+1-N)/D and yk=(2i+1-N)/Dfor k=0,...,N-1 and

    Figure 3:RIFDS system: (a) Sample dataset;(b) Query image;(c) Pre-processing operation applied to the image;(d) Rotated image at a 45° angle;(e) MBLBP facial features are extracted;(f) Combined facial features are selected;(g) The selected features are extracted;(h) Face detector is applied;(i) Face is detected from the query image

    For inner circle mapping,D=N,and outer circle mapping D=The image is reconstructed using the inverse transform function given in Eq.(10).

    Figure 4:Face from query image is detected at various degrees

    Algorithm 1: Face detection at different rotations Input: Query image from the dataset Output: Detected face at different rotations 1.Select the query image from the dataset 2.Enter the angle for image rotation (like 30°,-30°,45°,-45°,60°,-60°,140°,-140°,180°,270°,-270° and 360°)3.Crop the input image into a circular shape for better rotation and detection 4.Calculate Polar Harmonic Transformations (PHTs)5.Apply PHT to the query image 6.Use Cascade Object Detector to PHTs image for face detection 7.Detected face are created at angle of rotation (30°,-30°,45°,-45°,60°,-60°,140°,-140°,180°,270°,-270° and 360°)

    Whereminandmaxare the minimum and maximum values ofpandqfor PHT.G′(xi,yk)is the reconstructed image of the original imageG(xi,yk).The mean square for the image is computed by Eq.(11).

    Figure 5:Level 2 DFD of face detection by polar harmonic transforms

    The cascade object detector is used for face detection.Finally,the detected face is created at the rotated angle (140°).The results of face detection are shown in Fig.6.

    Figure 6:Face detection using polar harmonic transformation

    2.3 Facial Features Extraction and Detection

    The Multi-Block LBP is used for facial feature extraction and detection.Initially test image has been selected and after rescaling processed by dividing into blocks.Comparison and binary numbers have been concluded.Further with MBLB and cascading of facial extraction the detection of faces have been performed.The local binary operator is used for the calculation of binary patterns in digital images.Extracted features of the input image are displayed using the binary image.The calculation of the local binary pattern is shown in Fig.2.Comparison of neighboring pixels is done with the center pixel.If the neighbor pixel value is more than or equal to the center pixel value,then assign 1;otherwise,assign 0.The steps to calculate the multi-block local binary pattern for face facial feature extraction and detection are given in Algorithm 2.Figs.7 and 8 show the detection of the face using Multi-Block LBP.

    Algorithm 2: Facial feature extraction and detection Input: Query image selected from the dataset (I)Output: Detected Face 1.Start 2.?Im ∈I //Upload a query image from the database 3.Igr=RGB2B(Im) //Change of the input image to a grayscale image 4.For pixel 1:8 //Divide the image into multiple blocks If (Np >= Cp) Np=1 //Compare neighbor pixels with the central pixel Else Np=0 //Generate a binary number starting from pixels 1 to 8 End If End For 5.For pixel 1:8 NpD=Decimal(Np) //Convert the generated binary number into a decimal number End For//Use the addition and multiply operations on pixel values for Multi-Block LBP and select facial features 6.Final Pixel values=Mult (ADD(NpD1 to NpD8)7.Output <=CascadeObjectDetector MBLBP image 8.End

    Figure 7:Face detection using MB-LBP.(a) Original image,(b) local binary pattern,(c) MBLBP for face detection,(d) output of face detected,(e) MBLBP histogram

    Figure 8:Another example of face detection.(a) Original image,(b) local binary pattern,(c) MBLBP for face detection,(d) output of face detected,(e) MBLBP histogram

    In MBLBP,feature extraction performance also depends on the number of blocks or scale size used to form the filter from the operator.Its’detection process is shown in Fig.9.In MBLBP,sis denoted as the parameter,which is the scale of the MBLBP operator.The feature extraction is implemented with three different scales (3×3,9× 9,12× 12,and 21×21).By using different block sizes,it can be observed that if the scale is small,i.e.,(3×3),it works very effectively,but it cost more than others.The average size filter (9×9) is computed effectively and works very fast.It also works better on noise present in the image.If large-size filters are chosen,they are easy to implement and costs less.But a large amount of discriminative information will be lost.Tab.3 shows the performance of MBLBP with different block numbers.

    Figure 9:Flow diagram of multi-block LBP face detection process

    Table 3:Performance analysis of different block size of MBLBP

    2.4 RIFDS Algorithm Description

    The RIFDS approach of the face detection system is shown in Algorithm 3 and Fig.10.It can detect faces at different angles of rotation with accuracy (i.e.,±30°,±45°,±60°,±90°,±120°,±135°,±150°,180°,±210°,±225°,±240°,±270°,±300°,±315°,±330°and 360°).Data flows of the proposed system are shown in Figs.11 and 12.

    Algorithm 3: The RIFDS algorithm Input: Query image selected from the dataset Output: Detected Face 1.Start 2.Input Im //Upload the test image from the respective database 3.Select the angle of rotation;Angle={30°,-30°,45°,-45°,60°,-60°,140°,-140°,180°,270°,-270° and 360°}4.For Im FeatSel=CascadeObjectDetector{MultiBlock LBP Image} //CascadeObjectDetector on facial features selected using MBLBP to check weather face detection is working on MBLBP End For 5.If (Face is detected using MULTI-BLOCK-LOCAL BINARY PATTERN (MBLBP))Goto Step 5 Else goto step 3 End If 6.ImOut=zPHT(FeatSel) //Apply Polar Harmonic Transforms (PHTs) on facial features extracted using Multi-Block Local Pattern (MULTI-BLOCK-LOCAL BINARY PATTERN(MBLBP))7.ImOutR=RIFDS(ImOut) //Extract facial features using proposed detector (RIFDS)8.End

    Figure 10:Face detection

    Figure 11:Level 1 DFD for face detection using PHTs and MBLBP

    Figure 12:Level 2 DFD for face detection using PHTs and MBLBP

    3 Results and Discussions

    The RIFDS technique is compared with the previous works on five different face databases:LFW,ORL,MIT-CBCL,JAFFF,and CMU,including different image resolution,poses,and rotations [6].LFW database contains 13,000 images with a resolution for each image as 250 ×250.JAFFF database has a total of 215 images in 256 × 256 resolutions.ORL face dataset contains 400 images in 92 × 112.CMU database contains 1,888 images in both 64 × 112 and 128 × 120.MIT-CBCL face dataset contains 2000 images in 82 × 82,105 × 105,106 × 149,110 × 110 and 115 × 115.Lena images with different image resolution 32 × 32,64 × 64,256× 256,512 × 512 and 1024 × 1024 are also used.Fig.13 shows the face detection results using PHT and MBLBP techniques with a query image at a 180°angle.The same 180°image is tested using the Viola-Jones algorithm,and the results are shown in Fig.14.It is able to detect the frontal face (i.e.,at 360°angle) only and cannot detect the rotated face (i.e.,at 180°angle) as shown in Fig.15.The proposed RIFDS algorithm can detect face accurately at 180°,as shown in Fig.16.Further,it can detect faces at all rotations (i.e.,±30°,±45°,±60°,±90°,±140°,180°,±270°,and 360°).Tab.4 shows the face detection accuracy of the RIFDS detection system at different face databases.Tab.5 represents the comparison of the proposed face detection system with Viola-Jones,LBP,and MBLBP.It has been verified that the proposed face detection system can detect the face at different image resolution like 115 × 115,82 × 82,105 × 105,250 × 250,92 × 118,128 × 120,512 × 512,106 × 49,64 × 64,1024 × 1024 and 256 × 256 and with different facial expressions and emotions,and with different resolutions.

    Figure 13:Face detection at 180 degree.(a) Original image (b) PHT (c) PHT+MBLBP applied(d) output image

    Figure 14:Viola-Jones can detect the frontal face only at 360-degree

    Figure 15:MBLBP cannot detect the rotated face at 180-degree.(a) Original image,(b) MB local binary pattern,(c) MBLBP for face detection,(d) output face detected,(e) MBLBP histogram

    Figure 16:RIFDS at 180-degree compared to Viola-Jones and multi-block-LBP.(a) Original image,(b) PHT applied,(c) PHT+MBLBP applied,and (d) final output

    Table 4:Accuracy of the proposed system (RIFDS) by different face databases

    Table 5:Comparison of the proposed system with Viola-Jones and other algorithms

    The results using RIFDS is shown in Tab.6.The output of face detection using RIFDS on CMU face dataset with different angles (i.e.,30°,-30°,45°,-45°,60°,-60°,140°,-140°,180°,270°,-270°and 360°) and resolutions (115 × 115,82 × 82,110 × 110,106 × 149) is shown in Figs.17 and 19 and with JAFFF dataset is shown in Fig.18.In Fig.20,the results on LENA face dataset with image resolution as 512 × 512 are shown.Fig.21 shows the result analysis of the proposed algorithm along with accuracy and time analysis.The face detection time comparison is shown in Tab.7.Tab.8 shows the comparison of RIFDS with PHT.In the PHT face reorganization method,feature extraction is done from a complete image.One issue in this idea is that it did not extract the features from the rotated image.While in the RIFDS approach,the feature is extracted from small blocks from a single image by using MBLBP,PHT is applied for face recognition.

    Table 6:Face Detection using the proposed system at the different angle of rotation and resolutions

    Table 6:Continued

    Figure 17:Face detection at different rotations result using RIFDS on CMU face database: (a)115 × 115 resolution image;(b) 82 × 82 resolution image;(c) 110 × 110 resolution image;(d)106 × 149 resolution image

    Figure 18:Face detection at different rotation on JAFFF face database and resolution 256 × 256

    Figure 19:Face detection of the proposal on CMU face database

    Figure 20:Face detection of the proposal on LENA face database

    Figure 21:Analysis of rotated faces on (a) All algorithm (b) Different database (c) Time analysis

    Table 7:Face detection time by the proposed face detector

    Table 8:Accuracy Comparison of Proposed Algorithm,RIFDS,and existing PHT

    According to Tabs.4 to Tab.8 and Figs.13 to Fig.20,the objectives of the paper have been achieved using RIFDS technique.The algorithm achieved promising comparable results.The accuracy is 99.99%.For the test images with angle starting from 30°to 180°results shows better performance than the said known algorithm and techniques.

    4 Conclusions

    This paper presents a new algorithm called Rotation Invariant Face Detection System(RIFDS) to detect the face from different angles of rotations.It aims to fast and accurately detect rotated faces by combining Polar Harmonic Transforms (PHTs) with Multi-Block LBP (MBLBP).In the RIFDS approach,texture patterns are extracted from the image using MBLBP,and PHT is used to keep invariant rotation characteristics.The proposed face detection system is able to detect faces within a short time and at different angles (i.e.,30°,-30°,45°,-45°,60°,-60°,140°,-140°,180°,270°,-270°and 360).There are scary limitations of this hybrid approach.Firstly,if the scale of MBLBP is 3 × 3,it will not be able to acquire the primary features of a large scale.To solve this issue,the process is then generalized to used neighbor’s information.The other is that whenppis used without Bessal Functions,not any other radial kernel can be defined explicitly,which causes some time increase the computational complexity if not defined properly.The technique is also tested for face detection at different image resolutions.It has been tested and verified that the proposed RIFDS technique can detect faces with different angles,facial expressions,and emotions speedily and accurately.The accuracy achieved is 99.99% as margin of.01% is due to noise and external uncontrollable factors like calculating ability of the algorithm as per significant figures of any numeric value.The extension or futuristic benefits of the algorithm can be used in the domain of automation,machine learning and deep learning through genetic algorithms for face detections from shadows.The application of the algorithm are in the areas of Twin face recognition,Object and shape recognition,Video or live surveillance,detection of face in the incarnation and in medical image processing for tumor detection by focusing the detection of malignant cells.

    Acknowledgement: The authors sincerely acknowledge the support from Majmaah University,Saudi Arabia for this research.

    Funding Statement: The authors would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project Number No-R-2021-154.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲精品在线观看二区| 国产亚洲欧美在线一区二区| 99久久九九国产精品国产免费| 变态另类成人亚洲欧美熟女| 婷婷丁香在线五月| 亚洲国产精品999在线| 女同久久另类99精品国产91| 一级黄色大片毛片| 成年版毛片免费区| 99久久99久久久精品蜜桃| 欧美+日韩+精品| 精品一区二区三区视频在线观看免费| 美女高潮喷水抽搐中文字幕| 两个人视频免费观看高清| 在线看三级毛片| 99热精品在线国产| 国内少妇人妻偷人精品xxx网站| 国产精品,欧美在线| 色播亚洲综合网| 久久久国产成人精品二区| 午夜免费男女啪啪视频观看 | 18禁黄网站禁片免费观看直播| 国产精品国产高清国产av| 亚洲av熟女| 99国产综合亚洲精品| 免费人成视频x8x8入口观看| 嫩草影院入口| 别揉我奶头~嗯~啊~动态视频| 久久午夜亚洲精品久久| 日韩欧美精品免费久久 | 69av精品久久久久久| 简卡轻食公司| 国产欧美日韩精品一区二区| 国产免费一级a男人的天堂| 日韩欧美一区二区三区在线观看| 亚洲黑人精品在线| 国产人妻一区二区三区在| 成年女人毛片免费观看观看9| 成人av在线播放网站| 美女cb高潮喷水在线观看| 日本三级黄在线观看| 亚洲国产精品合色在线| 男女做爰动态图高潮gif福利片| 在线观看美女被高潮喷水网站 | 网址你懂的国产日韩在线| 欧美在线黄色| 一边摸一边抽搐一进一小说| 精品午夜福利视频在线观看一区| 成人一区二区视频在线观看| 国产精品伦人一区二区| 久久草成人影院| 亚洲精品乱码久久久v下载方式| 中出人妻视频一区二区| 在线十欧美十亚洲十日本专区| 亚洲美女黄片视频| 观看美女的网站| 欧美黄色淫秽网站| 伦理电影大哥的女人| 久久精品国产自在天天线| 成人午夜高清在线视频| 亚洲天堂国产精品一区在线| 两个人的视频大全免费| 我要看日韩黄色一级片| 精品99又大又爽又粗少妇毛片 | 日本一二三区视频观看| 精品人妻一区二区三区麻豆 | 天堂影院成人在线观看| 亚洲成人久久性| 99在线人妻在线中文字幕| 亚洲人成电影免费在线| 亚洲无线观看免费| av国产免费在线观看| 欧美激情在线99| 精品99又大又爽又粗少妇毛片 | 婷婷六月久久综合丁香| 亚洲精品影视一区二区三区av| 能在线免费观看的黄片| 欧美成人免费av一区二区三区| 精品久久久久久久久久久久久| 国产在线男女| 91狼人影院| 亚洲经典国产精华液单 | 国产精品女同一区二区软件 | 欧美乱妇无乱码| 直男gayav资源| 一本综合久久免费| 老鸭窝网址在线观看| 亚洲乱码一区二区免费版| 成人高潮视频无遮挡免费网站| 午夜日韩欧美国产| 国产精品综合久久久久久久免费| 国产精品久久久久久亚洲av鲁大| 日韩欧美免费精品| 亚洲精品456在线播放app | 亚洲专区国产一区二区| 一二三四社区在线视频社区8| 真人一进一出gif抽搐免费| 免费人成在线观看视频色| 午夜福利高清视频| 成人特级av手机在线观看| 国内精品久久久久久久电影| 99久久九九国产精品国产免费| 九九久久精品国产亚洲av麻豆| 97热精品久久久久久| 中文字幕av在线有码专区| 国产精品人妻久久久久久| 嫩草影视91久久| 最近视频中文字幕2019在线8| 日本黄色片子视频| 免费av不卡在线播放| 色吧在线观看| 国产成人av教育| 国产伦在线观看视频一区| 精华霜和精华液先用哪个| 丝袜美腿在线中文| 日韩大尺度精品在线看网址| 国产av在哪里看| 少妇裸体淫交视频免费看高清| 婷婷丁香在线五月| 国产午夜福利久久久久久| 亚洲内射少妇av| 国内精品久久久久久久电影| 网址你懂的国产日韩在线| 日韩欧美三级三区| 色视频www国产| 又黄又爽又免费观看的视频| 国产精品免费一区二区三区在线| 国产成人av教育| 国产伦一二天堂av在线观看| 国产蜜桃级精品一区二区三区| 一本一本综合久久| 国产伦在线观看视频一区| 国内揄拍国产精品人妻在线| av女优亚洲男人天堂| 国产精品人妻久久久久久| 18禁黄网站禁片免费观看直播| 欧美成人a在线观看| 99热这里只有是精品50| 自拍偷自拍亚洲精品老妇| 日韩av在线大香蕉| 免费人成在线观看视频色| 国产av在哪里看| 日韩av在线大香蕉| 国产激情偷乱视频一区二区| 色噜噜av男人的天堂激情| 日韩高清综合在线| 色5月婷婷丁香| avwww免费| 禁无遮挡网站| 国产免费男女视频| 久久人人爽人人爽人人片va | 亚洲第一区二区三区不卡| 久久久久久国产a免费观看| 亚洲一区高清亚洲精品| 永久网站在线| 嫩草影院精品99| 午夜福利成人在线免费观看| 国产高清视频在线播放一区| 99久久无色码亚洲精品果冻| 国产在线男女| 久久久久久久久大av| 精品熟女少妇八av免费久了| 99久久九九国产精品国产免费| 久久久久久久久久黄片| 国产精品伦人一区二区| 每晚都被弄得嗷嗷叫到高潮| 99久久无色码亚洲精品果冻| 欧美高清成人免费视频www| 午夜福利欧美成人| 国产成人aa在线观看| 日韩国内少妇激情av| 男女做爰动态图高潮gif福利片| 1024手机看黄色片| 国产毛片a区久久久久| 3wmmmm亚洲av在线观看| 51国产日韩欧美| 欧美精品啪啪一区二区三区| 国产国拍精品亚洲av在线观看| 亚洲欧美激情综合另类| 国产亚洲精品久久久久久毛片| 熟女电影av网| 亚洲,欧美精品.| 可以在线观看的亚洲视频| 亚洲va日本ⅴa欧美va伊人久久| 我的女老师完整版在线观看| 国产单亲对白刺激| 国产精品国产高清国产av| 波多野结衣高清作品| 亚洲人成电影免费在线| 麻豆一二三区av精品| 白带黄色成豆腐渣| 国产伦精品一区二区三区视频9| 国产精品女同一区二区软件 | 国产单亲对白刺激| 在线播放无遮挡| 日本免费一区二区三区高清不卡| 国产精品日韩av在线免费观看| www.www免费av| 午夜福利成人在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品sss在线观看| 久久精品综合一区二区三区| 日韩 亚洲 欧美在线| 天堂网av新在线| 成人特级黄色片久久久久久久| 欧美bdsm另类| 日本 欧美在线| 国产精品伦人一区二区| 国产伦精品一区二区三区四那| 级片在线观看| 老司机福利观看| 精品人妻熟女av久视频| 日韩高清综合在线| 欧美性猛交╳xxx乱大交人| 久久久久久久久大av| 他把我摸到了高潮在线观看| 欧美黄色片欧美黄色片| 国产探花极品一区二区| 好男人电影高清在线观看| 免费观看人在逋| 日本在线视频免费播放| 国产精品久久久久久久电影| 精品久久国产蜜桃| 51国产日韩欧美| 午夜日韩欧美国产| 精品人妻1区二区| 久久久久久大精品| 可以在线观看的亚洲视频| 成人一区二区视频在线观看| 国产一区二区三区视频了| 国产精品免费一区二区三区在线| 超碰av人人做人人爽久久| 亚洲成av人片免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产伦在线观看视频一区| 最好的美女福利视频网| 精品午夜福利在线看| 国模一区二区三区四区视频| 成年女人毛片免费观看观看9| 91在线观看av| 91字幕亚洲| 五月玫瑰六月丁香| 国产亚洲av嫩草精品影院| 国产高清三级在线| 亚洲专区国产一区二区| 亚洲国产欧洲综合997久久,| 日本黄色片子视频| 少妇高潮的动态图| 他把我摸到了高潮在线观看| 99久国产av精品| 人妻夜夜爽99麻豆av| 69av精品久久久久久| 波多野结衣巨乳人妻| 九九久久精品国产亚洲av麻豆| aaaaa片日本免费| 一区二区三区激情视频| 天天躁日日操中文字幕| 成人特级av手机在线观看| 日本三级黄在线观看| 国产一区二区三区视频了| av视频在线观看入口| 精品久久久久久久人妻蜜臀av| 亚洲综合色惰| 国产精品久久电影中文字幕| 亚洲精品日韩av片在线观看| 欧美色欧美亚洲另类二区| 精品国产亚洲在线| 成人无遮挡网站| 国产伦一二天堂av在线观看| 噜噜噜噜噜久久久久久91| 久久久久久久亚洲中文字幕 | xxxwww97欧美| 12—13女人毛片做爰片一| 国产精品久久久久久人妻精品电影| 国产av麻豆久久久久久久| 久久99热这里只有精品18| 成年免费大片在线观看| 中文字幕av成人在线电影| 一本久久中文字幕| 久久国产精品影院| 日本免费a在线| 成人欧美大片| 十八禁网站免费在线| 精品久久久久久成人av| 欧美在线黄色| 欧美黄色淫秽网站| 人人妻,人人澡人人爽秒播| 给我免费播放毛片高清在线观看| 99视频精品全部免费 在线| 日本免费a在线| 乱码一卡2卡4卡精品| 村上凉子中文字幕在线| 日本撒尿小便嘘嘘汇集6| 国产一区二区三区视频了| 亚洲精华国产精华精| 内射极品少妇av片p| 有码 亚洲区| 老女人水多毛片| 午夜a级毛片| 桃色一区二区三区在线观看| 欧美+亚洲+日韩+国产| 久久久久九九精品影院| 小说图片视频综合网站| а√天堂www在线а√下载| 真人做人爱边吃奶动态| 国产国拍精品亚洲av在线观看| 日本在线视频免费播放| 日本 av在线| 男人狂女人下面高潮的视频| 午夜影院日韩av| 可以在线观看的亚洲视频| 久久精品91蜜桃| 天天躁日日操中文字幕| 国语自产精品视频在线第100页| 欧美一区二区亚洲| 小蜜桃在线观看免费完整版高清| 精品久久久久久久久av| 日本一本二区三区精品| 国产91精品成人一区二区三区| 午夜福利成人在线免费观看| 亚洲精品成人久久久久久| 久久久久性生活片| 国产爱豆传媒在线观看| 国产亚洲精品久久久com| 亚洲专区国产一区二区| 中亚洲国语对白在线视频| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕熟女人妻在线| 99久久99久久久精品蜜桃| 国产精品,欧美在线| 国产精品亚洲av一区麻豆| 欧美区成人在线视频| 成人特级av手机在线观看| 男女之事视频高清在线观看| www.999成人在线观看| 国产麻豆成人av免费视频| 日本熟妇午夜| 午夜a级毛片| www.www免费av| 看片在线看免费视频| 欧美bdsm另类| 麻豆成人午夜福利视频| 欧美+日韩+精品| 天堂动漫精品| 亚洲av电影不卡..在线观看| 欧美激情国产日韩精品一区| 国产精品人妻久久久久久| 亚洲美女视频黄频| 简卡轻食公司| 成人永久免费在线观看视频| 亚洲成人久久性| 亚洲熟妇中文字幕五十中出| 97超级碰碰碰精品色视频在线观看| 国产伦一二天堂av在线观看| 亚洲国产欧洲综合997久久,| 两人在一起打扑克的视频| 国产熟女xx| 久久这里只有精品中国| 国产麻豆成人av免费视频| 校园春色视频在线观看| 欧美+日韩+精品| 日韩欧美精品v在线| 精品久久久久久久久av| 可以在线观看的亚洲视频| 国产熟女xx| 黄色女人牲交| 日韩高清综合在线| 十八禁国产超污无遮挡网站| 悠悠久久av| 天美传媒精品一区二区| 亚洲av不卡在线观看| 欧美三级亚洲精品| 有码 亚洲区| 午夜福利成人在线免费观看| 亚洲国产高清在线一区二区三| a级毛片a级免费在线| 成熟少妇高潮喷水视频| 国产一级毛片七仙女欲春2| 国产一区二区亚洲精品在线观看| 国产精品久久久久久久久免 | 国产一区二区三区视频了| 一级毛片久久久久久久久女| 尤物成人国产欧美一区二区三区| 日韩免费av在线播放| 18禁在线播放成人免费| 中文在线观看免费www的网站| 嫩草影视91久久| www.www免费av| 国产伦在线观看视频一区| 美女高潮喷水抽搐中文字幕| 少妇人妻精品综合一区二区 | 欧美成狂野欧美在线观看| 窝窝影院91人妻| 国产高清激情床上av| av视频在线观看入口| 亚洲美女搞黄在线观看 | 国产欧美日韩一区二区精品| 欧美国产日韩亚洲一区| 亚洲电影在线观看av| 国产黄色小视频在线观看| 又爽又黄a免费视频| 欧美日本亚洲视频在线播放| 真人一进一出gif抽搐免费| 欧美+日韩+精品| 91麻豆精品激情在线观看国产| aaaaa片日本免费| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av日韩精品久久久久久密| 一级av片app| 国内精品美女久久久久久| 97热精品久久久久久| 国产精品亚洲美女久久久| 最新中文字幕久久久久| 国产美女午夜福利| 在线十欧美十亚洲十日本专区| 国产91精品成人一区二区三区| 热99re8久久精品国产| 亚洲av五月六月丁香网| 在线免费观看的www视频| 老司机午夜福利在线观看视频| 国产免费一级a男人的天堂| а√天堂www在线а√下载| 国产成人a区在线观看| 国产真实伦视频高清在线观看 | 亚洲五月婷婷丁香| 中文字幕av在线有码专区| 一进一出好大好爽视频| 国产视频内射| 欧美区成人在线视频| 性色av乱码一区二区三区2| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 非洲黑人性xxxx精品又粗又长| 一区二区三区激情视频| 成人性生交大片免费视频hd| 午夜福利18| 一卡2卡三卡四卡精品乱码亚洲| 亚洲美女视频黄频| 九色国产91popny在线| 床上黄色一级片| 美女免费视频网站| 热99re8久久精品国产| 亚洲成人精品中文字幕电影| 欧洲精品卡2卡3卡4卡5卡区| 大型黄色视频在线免费观看| 亚洲美女视频黄频| 婷婷丁香在线五月| 村上凉子中文字幕在线| 亚洲人与动物交配视频| av在线蜜桃| 最近最新免费中文字幕在线| 内射极品少妇av片p| 90打野战视频偷拍视频| 可以在线观看毛片的网站| 国产精品免费一区二区三区在线| 日韩欧美在线二视频| 午夜福利18| 别揉我奶头~嗯~啊~动态视频| 欧美区成人在线视频| 嫩草影院新地址| 在线播放无遮挡| 亚洲内射少妇av| 亚洲av成人精品一区久久| 久久精品综合一区二区三区| 亚洲最大成人中文| 性色avwww在线观看| 国产高清视频在线播放一区| 又爽又黄无遮挡网站| 久久亚洲精品不卡| 精品一区二区三区av网在线观看| 亚洲狠狠婷婷综合久久图片| 国产精品一区二区三区四区免费观看 | 别揉我奶头~嗯~啊~动态视频| av天堂在线播放| 色av中文字幕| 深夜精品福利| 国产熟女xx| 欧美成人a在线观看| 日本黄大片高清| 亚洲人成伊人成综合网2020| 午夜a级毛片| 99热这里只有是精品50| 舔av片在线| 精品福利观看| 麻豆国产av国片精品| 日本与韩国留学比较| 国产精品久久电影中文字幕| 久久精品影院6| 久久久久免费精品人妻一区二区| 亚洲精华国产精华精| 日韩欧美 国产精品| 久久99热6这里只有精品| 国产高清激情床上av| 人妻丰满熟妇av一区二区三区| 中文字幕熟女人妻在线| 婷婷精品国产亚洲av| 最近在线观看免费完整版| 悠悠久久av| 首页视频小说图片口味搜索| 国产免费av片在线观看野外av| 免费观看精品视频网站| 欧美日韩中文字幕国产精品一区二区三区| 亚洲一区二区三区不卡视频| 老鸭窝网址在线观看| 12—13女人毛片做爰片一| 女人被狂操c到高潮| 黄色女人牲交| 少妇的逼水好多| 免费人成视频x8x8入口观看| 国产高潮美女av| 亚洲第一欧美日韩一区二区三区| 欧美黄色片欧美黄色片| 好看av亚洲va欧美ⅴa在| 欧美xxxx黑人xx丫x性爽| 成人毛片a级毛片在线播放| 中出人妻视频一区二区| 亚洲18禁久久av| 91狼人影院| 99riav亚洲国产免费| 神马国产精品三级电影在线观看| 日韩欧美在线二视频| 亚洲av成人av| 久久国产精品人妻蜜桃| 欧美性猛交╳xxx乱大交人| 一级黄色大片毛片| 99热6这里只有精品| 最新中文字幕久久久久| av专区在线播放| 欧美激情在线99| 12—13女人毛片做爰片一| 蜜桃亚洲精品一区二区三区| 亚洲精品色激情综合| 国产成+人综合+亚洲专区| 18禁裸乳无遮挡免费网站照片| 神马国产精品三级电影在线观看| 国内久久婷婷六月综合欲色啪| 久久精品综合一区二区三区| 一个人看的www免费观看视频| 国产成人aa在线观看| 国内揄拍国产精品人妻在线| 国产伦精品一区二区三区四那| 日韩av在线大香蕉| 亚洲一区二区三区色噜噜| 日日干狠狠操夜夜爽| 不卡一级毛片| 如何舔出高潮| 精品久久久久久久久av| 国产白丝娇喘喷水9色精品| 可以在线观看的亚洲视频| 午夜a级毛片| 真人做人爱边吃奶动态| 精品久久久久久久末码| 午夜免费成人在线视频| 国产大屁股一区二区在线视频| 一个人免费在线观看的高清视频| 亚洲国产精品合色在线| 日韩有码中文字幕| 九九久久精品国产亚洲av麻豆| 看黄色毛片网站| 久久久久国内视频| 欧美日本亚洲视频在线播放| 又黄又爽又刺激的免费视频.| 极品教师在线免费播放| 久久精品91蜜桃| 免费看日本二区| АⅤ资源中文在线天堂| 99久久九九国产精品国产免费| 亚洲成人久久爱视频| 99久久精品热视频| 国产亚洲精品综合一区在线观看| 一个人观看的视频www高清免费观看| 久久热精品热| 尤物成人国产欧美一区二区三区| av在线天堂中文字幕| 成年女人看的毛片在线观看| 亚洲第一欧美日韩一区二区三区| 床上黄色一级片| 波野结衣二区三区在线| 亚洲成a人片在线一区二区| 久久精品国产亚洲av香蕉五月| 18+在线观看网站| 午夜免费激情av| 精品久久久久久,| 日韩大尺度精品在线看网址| 免费人成视频x8x8入口观看| 国产精品久久久久久亚洲av鲁大| 久久人妻av系列| 亚洲七黄色美女视频| 精品人妻偷拍中文字幕| 欧美国产日韩亚洲一区| 18禁在线播放成人免费| 人妻夜夜爽99麻豆av| 一级黄片播放器| 欧美黄色片欧美黄色片| 久久久久国产精品人妻aⅴ院| 51国产日韩欧美| 黄片小视频在线播放| 国产熟女xx| 亚洲av一区综合| 熟妇人妻久久中文字幕3abv| 天天躁日日操中文字幕| 亚洲经典国产精华液单 | 国产午夜精品论理片| 偷拍熟女少妇极品色| 老熟妇乱子伦视频在线观看| 精品一区二区三区视频在线| 国产午夜精品久久久久久一区二区三区 | 嫩草影院入口| 亚洲中文字幕一区二区三区有码在线看| 在现免费观看毛片| 欧美+亚洲+日韩+国产| 欧美黄色淫秽网站| 国产伦精品一区二区三区视频9| 国产在线精品亚洲第一网站| 亚州av有码|