• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Power Domain Multiplexing Waveform for 5G Wireless Networks

    2022-11-09 08:17:46KorhanCengizImranBaigSumitChakravartyArunKumarMahmoudAlbreemMohammedAlsharifPeerapongUthansakulJamelNebhenandAymanAly
    Computers Materials&Continua 2022年1期

    Korhan Cengiz,Imran Baig,Sumit Chakravarty,Arun Kumar,Mahmoud A.Albreem,Mohammed H.Alsharif,Peerapong Uthansakul,Jamel Nebhen and Ayman A.Aly

    1Department of Electrical-Electronics Engineering,Trakya University,22030,Edirne,Turkey

    2Department of Electrical and Computer Engineering,College of Engineering,Dhofar University,Salalah 211,Sultanate of Oman

    3Department of Electrical and Computer Engineering,Kennesaw State University,GA,USA

    4Department of ECE,JECRC University,Jaipur,303905,India

    5Department of Electronics and Communication Engineering,A’Sharqiyah University,Ibra,400,Oman

    6Department of Electrical Engineering,College of Electronics and Information Engineering,Sejong University,Seoul,05006,Korea

    7School of Telecommunication Engineering,Suranaree University of Technology,Nakhon,Ratchasima,Thailand

    8Prince Sattam bin Abdulaziz University,College of Computer Engineering and Sciences,Alkharj,11942,Saudi Arabia

    9Department of Mechanical Engineering,College of Engineering,Taif University,Taif,21944,Saudi Arabia

    Abstract: Power domain non-orthogonal multiple access combined with a universal filtered multi-carrier (NOMA-UFMC) has the potential to cope with fifth generation(5G)unprecedented challenges.NOMA employs powerdomain multiplexing to support several users,whereas UFMC is robust to timing and frequency misalignments.Unfortunately,NOMA-UFMC waveform has a high peak-to-average power(PAPR) issue that creates a negative affect due to multicarrier modulations,rendering it is inefficient for the impending 5G mobile and wireless networks.Therefore,this article seeks to presents a discrete Hartley transform(DHT)pre-coding-based NOMA enabled universal filter multicarrier (UFMC) (DHT-NOMA-UFMC) waveform design for lowering the high PAPR.Additionally,DHT precoding also takes frequency advantage variations in the multipath wireless channel to get significant bit error rate(BER)gain.In the recommended arrangement,the throughput of the system is improved by multiplexing the users in the power domain and permitting the users with good and bad channel conditions to concurrently access the apportioned resources.The simulation outcomes divulge that the projected algorithm accomplished a gain of 5.8 dB as related to the conventional framework.Hence,it is established that the proposed DHT-NOMA-UFMC outperforms the existing NOMA-UFMC waveform.The key benefit of the proposed method over the other waveforms proposed for 5G is content gain due to the power domain multiplexing at the transmitting side.Thus,a huge count of mobile devices could be supported under specific restrictions.DHTNOMA-UFMC can be regarded as the most effective applications for 5G Mobile and Wireless Networks.However,the main drawback of the proposed method is that the Fourier peak and phase signal is not easily estimated.

    Keywords: NOMA-UFMC;5G;PAPR;BER;DHT-NOMA-UFMC

    1 Introduction

    New forms of multiple and unique carrier waveforms have been introduced for the fifth generation (5G) cell radio networks.In 5G and beyond 5G (B5G),data rates,capacity,lower latency and quality of service (QoS) are expected to be better than previous generations.Thus,this new era of technology is in the hands of 5G network systems,also known as new radio(NR) leading to a very smart and efficient method compared to conventional systems of wireless communications.The mobile industry that began in 1970 has seen many generations such as 1G-4G.The introduction of 1G technology was in the form of analog signal transfers;later,digital methods is applied new second generation (2G) technology.When the demand increased from voice to data,3G then evolved.However,to save the lost signal and information and provide better services known as quality service (QoS),an entirely new technology was introduced,known as fourth generation (4G) [1].It is a well-known fact that approximately after the cycle of 10 years a new method of wireless communication systems developed to meet out the requirements and demands of consumers and provide them growth in digital devices across the globe.As per the trend,it is judged that digital data demands will scale up by about 30% in the next few years,thus achieving a high efficiency will be a great challenge for the next mobile network technology [2].Wireless communications technology has an enormous capacity to change the way we work,behave and do the things we do every day.5G is likely to restructure traditional services by providing better efficiency for work in industrial automation,the medical and health sector,and internet of things (IoT) devices.Although,in the path of 5G,still there are many questions to answer and it’s yet to provide a proper solution to all the issues it has to address.5G is a technology capable of a realistic and upbeat impact on our lives.The 3rdgeneration partnership Project (3GPP) indicates that,5G mainly affects three kinds of applications: enhanced mobile broadband (EMB),device to device (D2D) communication and low latency [3].Strict requirements that the aforementioned application families have are uninterrupted connectivity,huge system throughput,and enhanced spectral efficiency [4].To satisfy the novel challenges in the 5G cellular radios and beyond,more novel multiple access and modulation schemes are being investigated,as the current waveforms are not able to fulfill the necessities and problems posed by the future 5G systems [5].Recently,a large quantity of research has been performed to investigate the pertinence of Universal Filtered Multi-Carries (UFMC) for the 5G cellular radio nets [6].Fig.1a illustrates the conceptual view of UFMC waveform,where the whole spectrum is split into a couple of bands.All sub-bands have a particular couple of orthogonal carriers.To decrease Outof-Band Emissions (OBE) these sub-bands are filtered.The filtering besides reducing the filter span considerably when compared with the other 5G schemes.Additionally,sub-band filters provide design flexibility and reduce the Interference.Therefore,the UFMC is considered by some to be the best option for short burst transmission [7].The UFMC shape also improves the spectral accuracy by not requiring any type of cyclic prefix (CP).NOMA employed a Super Coding (SC)and Successive Interference Cancellation (SIC) at the sending and receiving side of the transceiver.SC helps to access the allocated resources simultaneously by the numbers of sub-carriers.The separation of sub-carriers is accomplished in the power domain and SIC helps to decode the information of the particular users by treating any other signal as noise and finally cancelling it.In the projected framework,a cluster of filters are applied to the group of sub-carriers,which helps to maintain the signal separation,make the system compatible to cognitive radio (CR),and overcome the effect of frequency and time error.The NOMA UFMC is considered as an important contender for 5G radio due to several advantages,such as large device connectivity,efficient utilization of spectrum,high data speed,better connectivity,high capacity,and compatible to the advanced techniques [8].Spectral ineffectiveness,however,is the foremost shortcoming of the typical UFMC,making it impracticable for tomorrow’s 5G systems [9].The UFMC therefore needs to be more rigorously studied and improved to address the problem of spectral inefficiency.Fig.1a shows the basic structure of the NOMA-UFMC,wherekpower range users can be grouped together to support a large number of mobile devices.

    Figure 1:UFMC waveform.(a) UFMC waveform (b) NOMA-UFMC waveform

    Fig.1b also illustrates that each userkconsumes an identical frequency band,but with different output levels to boost system capacity and performance.Unfortunately,NOMA-UFMC waveform suffers from high PAPR.The key objectives of the projected work are as follows:

    · A significant reduction in peak power is accomplished in the hybrid waveform schemes.It is seen that by selecting the different value of V in the projected algorithm,the ideal peak power of the framework can be achieved.

    · The spectral performance of the system is greatly enhanced by integrating the NOMA and UFMC waveforms thus making it suitable for 5G radio.

    · The interference is overcome by implementing SIC at the receiver of the framework and the resources are simultaneously accessed by the number of subscribers.Hence,the throughput of the projected framework is greatly enhanced.

    The overall organization of the paper is: Section 1 summarizes related works;Section 2 compendiously explains the proposed waveform design.Section 3 evaluates the math formulas.Section 4 presents the results and Section 5 completes the work

    2 Related Work

    The DFT spread OFDM (DFT-s-OFDM) is common transmission radio implemented in 4G frameworks because of its low PAPR [10].The DFT-s-OFDM inherits positive points from its forerunner CP-OFDM like outstanding spectrum performance.In CP-OFDM,the IDFT has greater modification that can be decreased by implementing DFT procedure,formerly the IDFT.Furthermore,the method of cyclic prefix (CP) in DFT-s-OFDM facilitates smooth treatment of multi path’s impact.Moreover,it has very low deployment complexities,agile frequency allocation and strong MIMO adaptability.Yet,just like CP-OFDM,the DFT-S-OFDM plus sustains a loss high in OBE and cannot promote 5G requirements [11].For tackling the issues mentioned above,a number of waveform designs were proposed in the state-of-the-art literature.Those are especially proposed to come through the new stiffness’s of 5G cellular nets and beyond.Filter bank multicarrier (FBMC) [12],multi-carrier NOMA (MC-NOMA) [13] and universal filtered multicarrier (UFMC) [14] are included by those waveforms related to the recommended work.The UFMC is most likely introduced for 5G cellular networks.The UFMC comes all the benefits into FBMC and OFDM,in turn while keeping clear of their handicaps [15].The waveform of NOMA,OFDM and UFMC is shown in Fig.2.The debated methods ensure OBE as analogized 4G long term evolution advance (LTE-A) CP-OFDM.However,the spectral ineffectiveness is still the main problem of standard UFMC that makes it infeasible for upcoming 5G systems.The symbols and abbreviations used in the paper is given in Tab.1.

    3 Proposed Waveform

    Fig.3 shows the structure of the proposed DHT pre-coding-based uplink NOMA-UFMC(DHT-NOMA-UFMC) waveform design.According to the Fig.3,all thekmobile devices are interfixed to the Base Station (BS) concurrently and utilizing the same frequencies but,with the different powers.Assume there arekusers,where all users are utilizing a full band ofNsubcarriers.The QAM modulated symbolXlof whicheverithsubscriber,subsequently S/P transformations is given as:

    Ncorresponds to the count of subcarriers.Then QAM modulation process,the DHT precoding is performed to spread the modulated information and reduce the auto-correlation relationship amongst the modulated signal.S/P conversions,full-bandFofNsubcarriers forithuser is split into number bands forCconstant sub carries.

    whereXlshows the constellation symbols,contained inSsub-bands.A cluster of filters of sizeLis applied to the time domain (TD) signal of DHT-NOMA-UFMC,given as:-

    Figure 2:CP-OFDM,FBMC,and MC-NOMA waveforms comparisons

    Once the filter procedures are carried out,the entire filtered sub-carriers are added to acquire the filtered signal,given as:

    Table 1:Symbols definition

    Figure 3:Proposed structure for downlink DHT-NOMA-UFMC waveform

    wherexirepresent the UFMC symbol forithuser.Lastly,the NOMA-UFMC signal forithuser is multiplexed in the power domain,where several power ranks are chosen by the base station to each user disjoint.After the total power allocationPt,all the transmitted signals are combined to get the DHT-NOMA-UFMC signal that can be given as follows:

    piandxirepresent allocated power and signals for anyithMU respectively.The received signal is given as:

    wherehiis the time division (TD) channel coefficient for anyithMU.Per subcarrier equalization is applied to reduce the effects of network filters.Finally,the data is un-mapped to reconstruct the original signal.

    Peak to average power ratio (PAPR) is the cause of worry in wireless communication and it is defined by the ratio of maximum power used in a transmitted sample symbol divided by the average power used in transmitting the whole symbol in OFDM networks.

    The PAPR of the signal in Eq.(4) can be shown as:

    The Complementary Cumulative Distribution Function (CCDF) is utilized to measure the PAPR.The CCDF of DHT-NOMA-UFMC signal is given as:

    PAPR0 shows the level of clipping.

    4 Numerical Results

    This section discusses the computer-based simulations and analyzes the proposed waveform in MATLAB.The PAPR performance has been investigated for the NOMA-UFMC,DHT-NOMAUFMC and Selective Mapping (SLM) based DHT-NOMA-UFMC waveforms,respectively.The data is randomly produced and several modulation schemes 4-QAM,16-QAM and 64-QAM modulations are utilized.Tab.2 presents various constraints utilized for evaluations and analyzes such constraints in detail.It also shows the simulation constraints of the projected work.In the projected work,we have taken the FFT equivalent to 512,sub-bands are 12 and sub-carriers are also equal to 20.The Dolph-Chebyshev filter is implemented with lengthL=75with Stop-Band Attenuation 38.

    Table 2:Simulation parameter

    Figs.4-6,present a simulation analysis of the PAPR for NOMA-UFMC,DHT-NOMAUFMC,DHT-NOMA-UFMC with SLM (V=2) and DHT-NOMA-UFMC with SLM (V=4) waveforms,respectively by using 4-QAM,16-QAM and 64-QAM.It can be realized from Figs.4-6 that the PAPR of the proposed DHT-NOMA-UFMC is efficient than the conventional NOMA-UFMC waveform.Furthermore,PAPR of the projected system can be further decreased by employing any kind of PAPR reduction scheme,which is suitable for the UFMC.We selected Selective-Mapping (SLM) and combined it with DHT precoding.Both SLM and DHT schemes are selected due to linearity,simplicity,maturity and their suitability for UFMC.It is also noticeable that DHT precoding or SLM or combination of both DHT precoding and SLM improves the PAPR gain.The PAPR gain of the proposed DHT-NOMA-UFMC waveform can be further improved by using the higher values in theVof SLM thought the system complexity will increase.Therefore,selection ofVin SLM should be carefully selected,but this is another area of research beyond the scope of this study.The peak power performance of the projected system,after applying the reduction algorithm to 4-QAM is given in Fig.4.At CCDF of 10-2,the recommended system accomplished a gain of 4,1.4 and 0.6 dB as compared to other methods.It is also seen that by increasing the value ofV,the peak power performance is greatly enhanced.However,the complexity of the system will be high for large value of V.Hence,it is important to find the finest PAPR value,without increasing the complexity.

    Figure 4:PAPR analyses by utilizing 4-QAM

    In Fig.5,the reduction algorithms are applied on NOMA-UFMC for a 16-QAM transmission method.In this case the interference will be more as compared to 4-QAM,since we are transmitting 4 symbols at a time.From the graph,it is noticed that the peak power performance of the 4-QAM is better than the 16-QAM.The projected system achieved a gain of 2.8,1.6 and 0.3 dB as compared to different techniques.The best result is achieved atV=4.

    Figure 5:PAPR analyses by utilizing 16-QAM

    The peak performance of the NOMA-UFMC for 64-QAM is given in the Fig.6.In this case the interference will be high as compared to the 4-QAM and 16-QAM,since we are transmitting 6 symbols at a time.The utilization of 64-QAM will increase the capacity,spectral performance and data speed.However,there is a maximum probability that the peak power performance of the system will be low.From Fig.6,it is seen that the peak power values of the reduction algorithm is large as compared to other transmission schemes.The peak power value obtained after applying a reduction method are 8.4 dB for DHT-SLM (V=4),8.8 for DHT-SLM (V=2) and 9.8 dB for DHT as equated to the peak power of NOMA-UFMC 11.2 dB (reference).

    Figure 6:PAPR analyses by utilizing 64-QAM

    To analyze the throughput of the projected framework,the SNR Vs BER curves are given in Fig.7.At the BER of 10-3,the SNR requirement of NOMA-UFMC is 8.8 dB,DHTNOMA-UFMC is 7.4 dB,SLM-NOMA-UFMC (V=2) is 5.8 dB and SLM-NOMA-UFMC(V=4) is 4.2 dB.Hence,it is concluded that the projected framework is an improvement over the conventional methods.

    Figure 7:SNR vs.BER for 64-QAM

    Fig.8 indicated the throughput comparison of OFDM,UFMC,NOMA and NOMA-UFMC.It is seen that the projected method achieved a gain of 5.8,4.2 and 2.8 dB as compared to the traditional waveform schemes.

    Figure 8:SNR vs.BER

    Tab.3 presents a summary of the PAPR performances of the different waveforms by using different QAMs.The effect of various QAMs is more apparent on the DHT Pre-coded NOMAUFMC waveforms and DHT Pre-coded NOMA-UFMC waveforms based on SLM (V=2,4).The PAPR performance degrades with higher modulation order.Hence,modulation order should be carefully selected.

    Table 3:PAPR comparison in dBs

    Tab.4 Summarizes the performance analysis of the different 5G candidate waveforms.The complexity of the proposed waveform is directly proportional to the number of sub-bands and their lengths.The complexity can be decreased up to 4.5 times by utilizing poly-phase implementations.The complexity of the proposed wave form can also be decreased by implementing less length of FFTs and a lower number of sub bands [16].Currently,a hardware design is implemented in [17] to decrease the complexity of UFMC based waveform.

    Consequently,it could be concluded that the suggested DHT-NOMA-UFMC waveform could hold more users as compared with the existing UFMC by using power domain multiplexing.When the proposed waveform is compared with other 5G candidates,its advantages are content gain and throughput gain to support a great number of 5G users.

    Table 4:Comparative analysis of the 5G candidate waveforms

    Table 4:Continued

    5 Conclusion

    In this study,we proposed and designed a new DHT-NOMA-UFMC for the future 5G mobile and wireless networks.The simulations in MATLAB were made to evaluate the PAPR performances.DHT pre-coding and SLM combined with DHT precoding is employed to reduce the PAPR.According to the evaluations and analyzes,the proposed waveform out-performs the standard NOMA-UFMC.The implementations complexities of the projected transmission techniques are very high,but they can be decreased by determining lower level FFTs and restricting the count of sub-bands.Further,the main drawback of the proposed method is that Fourier peak and phase signal is not easily estimated.The key benefit of the proposed method over the other waveforms proposed for 5G is content gain due to the power domain multiplexing at the transmitting side.Thus,a huge count of mobile devices could be supported under specific restrictions.DHT-NOMA-UFMC can be regarded as the most effective applications for 5G Mobile and Wireless Networks.

    Funding Statement: This work was supported by SUT Research and Development Funds and by Thailand Science Research and Innovation (TSRI).Also,this work was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University,Saudi Arabia.In addition,support by the Taif University Researchers Supporting Project number (TURSP-2020/77),Taif University,Taif,Saudi Arabia.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    久久久水蜜桃国产精品网| 久久久精品国产亚洲av高清涩受| 免费少妇av软件| 黄色 视频免费看| 搡老熟女国产l中国老女人| 国产区一区二久久| 日韩人妻精品一区2区三区| 免费看十八禁软件| 国产精品秋霞免费鲁丝片| 日韩有码中文字幕| 精品福利永久在线观看| 日韩欧美一区视频在线观看| 在线观看免费视频日本深夜| 国产精品久久久久成人av| 一级毛片女人18水好多| 国产精品免费大片| 女人精品久久久久毛片| 日韩一卡2卡3卡4卡2021年| 成年人黄色毛片网站| 亚洲国产欧美一区二区综合| 亚洲av熟女| 亚洲av欧美aⅴ国产| 一个人免费在线观看的高清视频| 在线观看免费视频网站a站| 亚洲少妇的诱惑av| 99久久人妻综合| 精品福利观看| 9191精品国产免费久久| 夫妻午夜视频| 精品无人区乱码1区二区| 最近最新中文字幕大全免费视频| 日本欧美视频一区| 18禁观看日本| 侵犯人妻中文字幕一二三四区| 看片在线看免费视频| av一本久久久久| 中文字幕人妻熟女乱码| 最近最新免费中文字幕在线| 国产午夜精品久久久久久| 国产蜜桃级精品一区二区三区 | 国产不卡av网站在线观看| 国产亚洲精品第一综合不卡| 亚洲精品成人av观看孕妇| 欧美性长视频在线观看| 亚洲成人手机| 国产成人av激情在线播放| 午夜精品久久久久久毛片777| 精品人妻熟女毛片av久久网站| 亚洲精品久久成人aⅴ小说| 不卡一级毛片| 久久久久国产精品人妻aⅴ院 | 午夜免费观看网址| 亚洲少妇的诱惑av| 老熟妇仑乱视频hdxx| 曰老女人黄片| 亚洲午夜理论影院| 久久国产精品人妻蜜桃| 色综合欧美亚洲国产小说| 如日韩欧美国产精品一区二区三区| 在线看a的网站| av有码第一页| 丰满的人妻完整版| 欧美精品高潮呻吟av久久| 建设人人有责人人尽责人人享有的| 欧美人与性动交α欧美软件| 亚洲欧美日韩高清在线视频| 国产成人啪精品午夜网站| 18禁裸乳无遮挡免费网站照片 | 9191精品国产免费久久| 成熟少妇高潮喷水视频| 夫妻午夜视频| 可以免费在线观看a视频的电影网站| 久久这里只有精品19| 国产男女超爽视频在线观看| 日韩欧美三级三区| 欧美在线黄色| 涩涩av久久男人的天堂| 亚洲中文字幕日韩| 免费日韩欧美在线观看| 搡老熟女国产l中国老女人| 亚洲欧美日韩高清在线视频| 在线播放国产精品三级| 国产激情欧美一区二区| 777米奇影视久久| 99精品久久久久人妻精品| 人成视频在线观看免费观看| 精品久久久久久久毛片微露脸| 国产欧美亚洲国产| 亚洲片人在线观看| 久久精品国产a三级三级三级| 一区二区三区激情视频| 欧美性长视频在线观看| 国产免费男女视频| 精品少妇久久久久久888优播| 99精品久久久久人妻精品| 天天添夜夜摸| 热re99久久精品国产66热6| 欧美精品啪啪一区二区三区| 成人精品一区二区免费| 脱女人内裤的视频| 国产人伦9x9x在线观看| 欧美国产精品一级二级三级| 精品久久蜜臀av无| 日本vs欧美在线观看视频| 精品熟女少妇八av免费久了| 国产欧美日韩一区二区精品| 日韩大码丰满熟妇| 久久精品91无色码中文字幕| 久久99一区二区三区| 极品教师在线免费播放| 中文字幕另类日韩欧美亚洲嫩草| 国产精品二区激情视频| 80岁老熟妇乱子伦牲交| 国产真人三级小视频在线观看| 午夜影院日韩av| 人人妻,人人澡人人爽秒播| 麻豆成人av在线观看| 国产亚洲精品久久久久久毛片 | 精品一品国产午夜福利视频| 免费黄频网站在线观看国产| 免费看a级黄色片| 亚洲精品在线观看二区| 欧美精品亚洲一区二区| 老司机亚洲免费影院| 曰老女人黄片| 激情在线观看视频在线高清 | 五月开心婷婷网| 19禁男女啪啪无遮挡网站| 啦啦啦 在线观看视频| 欧美黄色片欧美黄色片| 久久国产精品大桥未久av| 深夜精品福利| 中文字幕人妻丝袜一区二区| 少妇被粗大的猛进出69影院| av视频免费观看在线观看| 天天影视国产精品| 免费少妇av软件| 18禁观看日本| 色在线成人网| 欧美日韩亚洲高清精品| 国产亚洲av高清不卡| 水蜜桃什么品种好| 在线观看免费视频日本深夜| 一边摸一边抽搐一进一出视频| 手机成人av网站| 韩国av一区二区三区四区| 少妇猛男粗大的猛烈进出视频| 在线观看免费高清a一片| 啦啦啦在线免费观看视频4| 国产99久久九九免费精品| 9色porny在线观看| 高清欧美精品videossex| 日韩免费高清中文字幕av| 亚洲色图综合在线观看| 中文字幕高清在线视频| 丝袜美足系列| 咕卡用的链子| 欧美日韩av久久| 一级毛片精品| 午夜成年电影在线免费观看| 中文字幕色久视频| 国产aⅴ精品一区二区三区波| 日韩欧美在线二视频 | 欧美 日韩 精品 国产| 成人特级黄色片久久久久久久| 自线自在国产av| 亚洲av成人不卡在线观看播放网| 亚洲欧美色中文字幕在线| 亚洲少妇的诱惑av| 精品国产一区二区三区四区第35| 日韩 欧美 亚洲 中文字幕| 美女高潮喷水抽搐中文字幕| 女人久久www免费人成看片| 男女免费视频国产| 亚洲av熟女| 黄片大片在线免费观看| 69精品国产乱码久久久| 精品无人区乱码1区二区| 久久人人爽av亚洲精品天堂| 午夜成年电影在线免费观看| 黄色a级毛片大全视频| xxx96com| netflix在线观看网站| 午夜福利影视在线免费观看| 亚洲成人免费电影在线观看| 欧美亚洲日本最大视频资源| 精品一品国产午夜福利视频| 久久精品国产清高在天天线| 亚洲av电影在线进入| 18禁美女被吸乳视频| 久久精品91无色码中文字幕| 最新的欧美精品一区二区| 黄色片一级片一级黄色片| 中文字幕色久视频| 自拍欧美九色日韩亚洲蝌蚪91| 最近最新中文字幕大全电影3 | 99国产综合亚洲精品| 黑丝袜美女国产一区| 夜夜爽天天搞| 亚洲人成伊人成综合网2020| 欧美一级毛片孕妇| 国产人伦9x9x在线观看| 欧美精品亚洲一区二区| 女人高潮潮喷娇喘18禁视频| 黄片小视频在线播放| 国产成人影院久久av| 欧美日韩亚洲国产一区二区在线观看 | av福利片在线| 成人三级做爰电影| 美女福利国产在线| 动漫黄色视频在线观看| 精品人妻1区二区| 男女床上黄色一级片免费看| 亚洲国产欧美一区二区综合| 亚洲成a人片在线一区二区| 黑人欧美特级aaaaaa片| 99久久99久久久精品蜜桃| 一边摸一边做爽爽视频免费| 欧美+亚洲+日韩+国产| 午夜福利乱码中文字幕| 99国产精品免费福利视频| 欧美日韩亚洲综合一区二区三区_| 最近最新中文字幕大全免费视频| 久久这里只有精品19| 人人妻人人添人人爽欧美一区卜| 亚洲av成人一区二区三| 天天躁夜夜躁狠狠躁躁| 天堂动漫精品| 亚洲五月婷婷丁香| 婷婷丁香在线五月| 91在线观看av| 精品电影一区二区在线| 中文字幕人妻丝袜一区二区| 久久久国产成人免费| 久久久国产一区二区| 中文字幕高清在线视频| 国产精品综合久久久久久久免费 | 日韩三级视频一区二区三区| 最近最新中文字幕大全免费视频| 波多野结衣一区麻豆| 成熟少妇高潮喷水视频| 免费在线观看日本一区| 777久久人妻少妇嫩草av网站| 亚洲专区中文字幕在线| 搡老岳熟女国产| 在线天堂中文资源库| 久久久久久久精品吃奶| 老司机午夜十八禁免费视频| 亚洲欧洲精品一区二区精品久久久| 一级毛片高清免费大全| 精品一区二区三区视频在线观看免费 | 69av精品久久久久久| 别揉我奶头~嗯~啊~动态视频| 国产精品欧美亚洲77777| 91精品国产国语对白视频| 手机成人av网站| 男女午夜视频在线观看| 国产欧美日韩精品亚洲av| 最近最新免费中文字幕在线| 中文字幕色久视频| 真人做人爱边吃奶动态| 亚洲专区国产一区二区| 婷婷精品国产亚洲av在线 | 精品第一国产精品| 欧美精品亚洲一区二区| 久久国产精品男人的天堂亚洲| 大香蕉久久网| 高清毛片免费观看视频网站 | 国产成人精品久久二区二区91| 国产麻豆69| 久久影院123| 757午夜福利合集在线观看| 无遮挡黄片免费观看| 欧美日本中文国产一区发布| 又大又爽又粗| 大片电影免费在线观看免费| 国产亚洲精品一区二区www | 超色免费av| 大片电影免费在线观看免费| 亚洲欧美一区二区三区久久| 美女视频免费永久观看网站| 少妇被粗大的猛进出69影院| 久久人妻熟女aⅴ| 国产精品亚洲av一区麻豆| 9191精品国产免费久久| 国产在线观看jvid| 黄色视频不卡| 成人手机av| 精品无人区乱码1区二区| 精品第一国产精品| 又紧又爽又黄一区二区| 在线视频色国产色| 日本精品一区二区三区蜜桃| 中亚洲国语对白在线视频| 日韩欧美在线二视频 | 男女床上黄色一级片免费看| 欧美亚洲 丝袜 人妻 在线| 国产激情久久老熟女| 国产免费男女视频| 女人被躁到高潮嗷嗷叫费观| 在线观看一区二区三区激情| 1024香蕉在线观看| 在线观看午夜福利视频| 99久久综合精品五月天人人| 日韩有码中文字幕| 久久热在线av| 亚洲精品国产色婷婷电影| 久久 成人 亚洲| 老司机在亚洲福利影院| 亚洲 国产 在线| 日韩欧美一区二区三区在线观看 | 久久性视频一级片| 欧美成人免费av一区二区三区 | 水蜜桃什么品种好| 91成人精品电影| a级片在线免费高清观看视频| 亚洲精品中文字幕一二三四区| 两性夫妻黄色片| 久久这里只有精品19| 日日夜夜操网爽| 好男人电影高清在线观看| 日韩三级视频一区二区三区| 久久午夜亚洲精品久久| 9色porny在线观看| 欧美成人午夜精品| 在线永久观看黄色视频| 色精品久久人妻99蜜桃| 高清av免费在线| 不卡av一区二区三区| av线在线观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 岛国毛片在线播放| 欧美日韩一级在线毛片| 欧美久久黑人一区二区| 亚洲专区国产一区二区| 精品一品国产午夜福利视频| 国产有黄有色有爽视频| 免费在线观看亚洲国产| 亚洲精品久久午夜乱码| 大型黄色视频在线免费观看| a级片在线免费高清观看视频| 大型av网站在线播放| 国产亚洲欧美98| 亚洲中文日韩欧美视频| 日韩欧美国产一区二区入口| 99精品欧美一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 欧美中文综合在线视频| 激情在线观看视频在线高清 | 99久久综合精品五月天人人| 精品一区二区三区视频在线观看免费 | 欧美人与性动交α欧美精品济南到| 国产片内射在线| 老司机在亚洲福利影院| 搡老岳熟女国产| 国产亚洲精品久久久久5区| av福利片在线| 好看av亚洲va欧美ⅴa在| 啦啦啦免费观看视频1| 99riav亚洲国产免费| 久久ye,这里只有精品| 激情在线观看视频在线高清 | 免费观看a级毛片全部| 午夜免费鲁丝| 黄网站色视频无遮挡免费观看| 久久香蕉国产精品| 欧美色视频一区免费| 在线观看免费高清a一片| 成人av一区二区三区在线看| 成年人免费黄色播放视频| 欧美乱妇无乱码| 黑人欧美特级aaaaaa片| 一二三四在线观看免费中文在| 国产精品免费一区二区三区在线 | 黄色怎么调成土黄色| 中国美女看黄片| 人人妻人人添人人爽欧美一区卜| av线在线观看网站| 五月开心婷婷网| 午夜久久久在线观看| 国产99白浆流出| 一二三四社区在线视频社区8| 久久香蕉激情| 韩国av一区二区三区四区| 精品久久久久久,| 欧美在线一区亚洲| 亚洲情色 制服丝袜| 亚洲 国产 在线| 一夜夜www| 美女扒开内裤让男人捅视频| 在线观看66精品国产| 亚洲av日韩精品久久久久久密| 99热网站在线观看| 亚洲自偷自拍图片 自拍| 国产高清激情床上av| 制服诱惑二区| 亚洲国产欧美网| 欧美黑人精品巨大| tocl精华| 精品高清国产在线一区| 国产成人系列免费观看| 视频在线观看一区二区三区| 一级毛片女人18水好多| 99re在线观看精品视频| 国产色视频综合| 国产成人精品久久二区二区免费| 国产av一区二区精品久久| 亚洲五月婷婷丁香| 少妇猛男粗大的猛烈进出视频| 婷婷精品国产亚洲av在线 | 啦啦啦视频在线资源免费观看| 亚洲成人免费av在线播放| 亚洲av日韩在线播放| 高清在线国产一区| 日本黄色视频三级网站网址 | 亚洲国产中文字幕在线视频| 国产亚洲精品久久久久久毛片 | 国产高清国产精品国产三级| 极品少妇高潮喷水抽搐| 久久中文字幕一级| 亚洲情色 制服丝袜| 久久久久久免费高清国产稀缺| 国产成人精品在线电影| 亚洲色图综合在线观看| 国产又色又爽无遮挡免费看| 国产成人精品无人区| 无限看片的www在线观看| 深夜精品福利| 欧美日韩国产mv在线观看视频| 精品亚洲成a人片在线观看| 国产欧美日韩综合在线一区二区| 亚洲成人免费电影在线观看| 亚洲熟妇熟女久久| 在线播放国产精品三级| 久久精品熟女亚洲av麻豆精品| 亚洲欧美激情综合另类| 欧美成人午夜精品| 亚洲熟妇熟女久久| 中文字幕最新亚洲高清| 国产精品综合久久久久久久免费 | 亚洲在线自拍视频| 99热网站在线观看| 午夜激情av网站| 国产精品香港三级国产av潘金莲| 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 久久久久久久久免费视频了| 亚洲专区中文字幕在线| 在线天堂中文资源库| 亚洲免费av在线视频| 成人精品一区二区免费| 久久精品熟女亚洲av麻豆精品| 免费观看人在逋| 久久ye,这里只有精品| 久热爱精品视频在线9| 久久久久精品人妻al黑| 欧美乱妇无乱码| 精品少妇久久久久久888优播| 不卡一级毛片| 在线天堂中文资源库| 少妇的丰满在线观看| 丁香六月欧美| 亚洲国产精品合色在线| 99在线人妻在线中文字幕 | 看免费av毛片| 女人高潮潮喷娇喘18禁视频| 天天操日日干夜夜撸| 亚洲午夜理论影院| 亚洲国产看品久久| 免费在线观看黄色视频的| av天堂久久9| 精品亚洲成国产av| 免费女性裸体啪啪无遮挡网站| 黄色怎么调成土黄色| 男人舔女人的私密视频| 免费看十八禁软件| 黄色怎么调成土黄色| 99riav亚洲国产免费| 久久中文看片网| 日本a在线网址| 高清av免费在线| 看免费av毛片| ponron亚洲| 亚洲性夜色夜夜综合| 性少妇av在线| 国产成+人综合+亚洲专区| 亚洲成人国产一区在线观看| 国产精品 国内视频| 老司机午夜福利在线观看视频| 97人妻天天添夜夜摸| 啦啦啦 在线观看视频| 亚洲人成伊人成综合网2020| 国产亚洲av高清不卡| 日韩欧美三级三区| 老司机午夜福利在线观看视频| 久久久久久久国产电影| 国产男女超爽视频在线观看| 国产精品免费大片| 一级黄色大片毛片| 另类亚洲欧美激情| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕av电影在线播放| 91字幕亚洲| 男人操女人黄网站| 欧美国产精品va在线观看不卡| 国产成人精品在线电影| www.精华液| 精品一区二区三卡| 这个男人来自地球电影免费观看| 我的亚洲天堂| 国产欧美日韩一区二区三| 在线观看日韩欧美| 999久久久精品免费观看国产| 大香蕉久久网| 黑人欧美特级aaaaaa片| 男人舔女人的私密视频| 欧美人与性动交α欧美精品济南到| 91在线观看av| 国产午夜精品久久久久久| 久久这里只有精品19| 黄色成人免费大全| 在线国产一区二区在线| 久热爱精品视频在线9| av有码第一页| 精品第一国产精品| 午夜精品国产一区二区电影| 黄色视频,在线免费观看| 国产片内射在线| 欧美黑人精品巨大| 欧美黄色淫秽网站| svipshipincom国产片| 夜夜夜夜夜久久久久| 不卡一级毛片| 精品国产一区二区三区四区第35| 99久久国产精品久久久| 黄色怎么调成土黄色| 精品视频人人做人人爽| 女警被强在线播放| av线在线观看网站| 免费不卡黄色视频| 一边摸一边做爽爽视频免费| 久久天躁狠狠躁夜夜2o2o| 看片在线看免费视频| 午夜福利免费观看在线| 国内久久婷婷六月综合欲色啪| 欧美 日韩 精品 国产| 国产一区有黄有色的免费视频| 很黄的视频免费| 精品电影一区二区在线| 久久久水蜜桃国产精品网| 男女高潮啪啪啪动态图| 久久人人97超碰香蕉20202| 久久精品91无色码中文字幕| 成人18禁高潮啪啪吃奶动态图| 1024香蕉在线观看| x7x7x7水蜜桃| 国产精品1区2区在线观看. | 免费在线观看影片大全网站| 欧美日韩一级在线毛片| 老熟妇仑乱视频hdxx| 51午夜福利影视在线观看| 国产在视频线精品| 久久精品国产清高在天天线| www.熟女人妻精品国产| 亚洲三区欧美一区| 99riav亚洲国产免费| 国产精品98久久久久久宅男小说| 精品免费久久久久久久清纯 | 久久精品国产亚洲av香蕉五月 | 免费黄频网站在线观看国产| 亚洲成国产人片在线观看| 极品少妇高潮喷水抽搐| 亚洲欧美激情综合另类| 午夜福利视频在线观看免费| 久久久国产一区二区| 亚洲精品久久成人aⅴ小说| 午夜成年电影在线免费观看| 久热这里只有精品99| www.熟女人妻精品国产| 国产高清激情床上av| 国产精品永久免费网站| 人妻 亚洲 视频| 夫妻午夜视频| 久久中文看片网| av国产精品久久久久影院| 日本精品一区二区三区蜜桃| 91老司机精品| 十八禁网站免费在线| 国产精品秋霞免费鲁丝片| 无遮挡黄片免费观看| 欧美黄色淫秽网站| 午夜两性在线视频| 国产色视频综合| 18禁观看日本| 日韩人妻精品一区2区三区| 国产精品99久久99久久久不卡| 日韩欧美免费精品| 亚洲欧美日韩高清在线视频| 亚洲熟妇中文字幕五十中出 | 亚洲熟妇中文字幕五十中出 | 麻豆av在线久日| 国产精品1区2区在线观看. | 巨乳人妻的诱惑在线观看| 亚洲avbb在线观看| 国产精品久久久人人做人人爽| 超色免费av| 欧美 日韩 精品 国产| 亚洲人成电影免费在线| 在线观看免费视频日本深夜| 国产精华一区二区三区| 美女视频免费永久观看网站| 大型av网站在线播放| 欧美日韩精品网址| 久久中文字幕人妻熟女| 一级毛片女人18水好多|