• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Eigenspace Method for Detecting Space-Time Disease Clusters with Unknown Population-Data

    2022-11-09 08:17:24SamiUllahNurulHidayahMohdNorHanitaDaudNoorainiZainuddinHadiFanaeeandAlamgirKhalil
    Computers Materials&Continua 2022年1期

    Sami Ullah,Nurul Hidayah Mohd Nor,Hanita Daud,Nooraini Zainuddin,Hadi Fanaee-T and Alamgir Khalil

    1Department of Fundamental&Applied Sciences,Universiti Teknologi PETRONAS,Seri Iskandar,32610,Perak,Malaysia

    2Center for Applied Intelligent Systems Research(CAISR),Halmstad University,Halmstad,SE-301 18,Sweden

    3Department of Statistics,University of Peshawar,Pakistan

    Abstract: Space-time disease cluster detection assists in conducting disease surveillance and implementing control strategies.The state-of-the-art method for this kind of problem is the Space-time Scan Statistics(SaTScan)which has limitations for non-traditional/non-clinical data sources due to its parametric model assumptions such as Poisson or Gaussian counts.Addressing this problem,an Eigenspace-based method called Multi-EigenSpot has recently been proposed as a nonparametric solution.However,it is based on the population counts data which are not always available in the least developed countries.In addition,the population counts are difficult to approximate for some surveillance data such as emergency department visits and over-the-counter drug sales,where the catchment area for each hospital/pharmacy is undefined.We extend the population-based Multi-EigenSpot method to approximate the potential disease clusters from the observed/reported disease counts only with no need for the population counts.The proposed adaptation uses an estimator of expected disease count that does not depend on the population counts.The proposed method was evaluated on the real-world dataset and the results were compared with the population-based methods:Multi-EigenSpot and SaTScan.The result shows that the proposed adaptation is effective in approximating the important outputs of the population-based methods.

    Keywords: Space-time disease clusters;Eigenspace method;nontraditional data sources;nonparametric methods

    1 Introduction

    With the advent of electronic medical records,syndromic data sources,and low-cost location sensors,data on disease occurrences or other health-related events are increasingly encoded with both spatial and temporal information.Based on this data,Health authorities conduct surveillance to search for the potential clusters of disease or other health-related events.In public health,cluster detection aims to identify those spatiotemporal regions that contain unexpected counts of disease cases or other health-related events.The detection of such potential clusters facilitates the health officials’efforts to identify their targets of interest for possible interventions.Such clusters show the over-density anomalies in the spatiotemporal space which assist epidemiologists in finding the environmental factors responsible for a particular disease outbreak in the area.

    A number of parametric methods have been developed for detecting space-time clusters in public health data.The examples are Space-time Scan Statistic (SaTScan) [1,2],Expectationbased Scan Statistic [3,4],Flexible Space-time Scan Statistic [5,6],Space-time Permutation Scan Statistic [7,8],and EvoGridStatistic [9,10].All these methods are based on Maximum Likelihood Estimation (MLE) which put some constraints on the distribution and quality of data that are valid only for clinical data which are collected from the hospitals and are not necessarily valid for non-traditional/nonclinical data sources.For example,data collected from social media [11],pharmacy sales,and school health surveys are non-traditional or non-clinical data sources for public health surveillance [12],where the parametric model might be very restrictive i.e.,difficult to be followed.For such data sources,MLE-based methods like SaTScan are not an ideal choice for disease cluster detection.Addressing this problem,the nonparametric methods called EigenSpot [13] and Multi-EigenSpot [14] have recently been developed that make no assumption about the distribution and quality of data.However,these nonparametric methods require that the population counts be available.This is a big limitation,because,in some least developed countries census population data are not available.In addition,the population counts are difficult to approximate for some surveillance data such as emergency department visits and over-thecounter drugs sales where the catchment area for each hospital/pharmacy is undefined.Even if the population counts are available,the catchment area population would not be a good denominator since there can be natural geographical disparity in health-care utilization data,due to disparities in disease prevalence,access to health care,and consumer behavior [15].

    In order to address this problem,we adapt the Multi-EigenSpot algorithm to be applicable for disease surveillance in such a realistic scenario.Multi-EigenSpot uses a population-based estimator for expected disease occurrences that has been frequently used in prior arts [9,16].We propose an adaptation by using a different estimator of the expected disease occurrences in the algorithm which does not depend on the population counts.The proposed adaptation infers the expected disease counts from the observed disease counts only.The experimental evaluation on real-world data shows that the proposed adaptation is effective in approximating the significant outputs of the population-based methods.

    Some nonparametric alternatives to the MLE-based scan statistics have also been proposed such as [17-19].However,these are purely spatial techniques that can detect purely spatial clusters while this research focuses on the space-time cluster detection problem.It is evident from the literature that the Eigenspace-based methods [13,14] are the latest nonparametric technique in the spatiotemporal class of methods for areal-count data.

    2 Materials and Methods

    The stepwise process of the proposed approach is given below:

    Step 1: Given the observed disease counts,estimate the spatiotemporal matrices of expected disease cases,Eand Risk measures,Raccording to Eqs.(1) and (2),respectively.

    whereEijis the expected disease count forithsub-region over thejthtime-point;C.jdenotes the total observed/reported cases in the whole study-area at thejthtime-point;P.jthe total population counts in the whole study-area at thejthtime-point;pijthe population counts in theithsub-region at thejthtime-point.

    whereEijis the expected disease count for theithsub-region over thejthtime-point;Cijis the observed/reported disease count in theithsub-region at thejthtime-point;C..is the grand total of the observed/reported disease counts and is calculated as in Eq.(3).

    Step 2: Calculate the principal-left and principal-right singular vectors of matricesCandEusing one-rank singular value decomposition.For matrixC,the principal-left singular vector is denoted bySCand the principal-right singular vector byTC.Similarly,for matrixE,the principal-left singular vector is denoted bySEand the principal-right singular vector byTE.

    Step 3: Compute the difference vector of the left-singular vectors asDS:=SC-SE,and that of the right-singular vectors asDT=TC-TE.

    Step 4: Find the abnormally higher elements in each subtract vectorDSandDTby applying the Z-control chart with the significance level alpha.The abnormally higher elements in the vectorDSare associated with the spatial component of the cluster and in vectorDTto the temporal component.

    Step 5: If the abnormally higher elements are found in spatial as well as temporal dimension,upgrade matrixCby replacing the elements corresponding to the out-of-control components with the respective expected cases to remove the previous cluster.Simultaneously,matrixRis upgraded by replacing the elements corresponding to the out-of-control components by their average value.

    Step 6: To approximate the additional clusters,if exist,reiterate Steps (2-5) until no out-ofcontrol element is found in each difference vector.

    Step 7: In the upgraded matrixR,replace the elements corresponding to the components that are not found to be abnormal by 1 to distinguish clearly between the normal and abnormal regions.

    Step 8: Visualize the resultant matrixRas a heatmap to show multiple clusters with different colors.

    What is novel with the proposed adaptation is the strategy used for estimating the expected disease counts.Population-based Multi-EigenSpot uses the historical temporal information for population-at-risk while our proposed method infers this indirectly from the geographical neighborhood.For each region and time point,we calculate the expected number of a particular disease counts conditioning on the observed marginal.

    Figure 1:An example illustrating the proposed approach

    2.1 Illustrative Example

    Fig.1 shows the detailed process that how our proposed method detects multiple clusters in a spatiotemporal space with no requirement for population counts.For instance,assume that two different hotspots exist in a 3 × 4 spatiotemporal space.The two shaded areas in matrix C (Fig.1) are the two clusters of interest to be approximated by our proposed approach.The intersection of the third row with the first-second columns denotes the most likely hotspot and the second-third rows with the fourth column the secondary (additional) cluster.The input is only the spatiotemporal matrix of the observed disease counts denoted by C.Given the matrix C,the proposed method approximates these two clusters in two iterations.The most likely cluster is detected in the first iteration.The detected hotspot is then removed by replacing the observed counts with the corresponding expected counts,and the method is repeated for the secondary cluster.In the last upgraded matrix R,the cells containing the value M1 represent one cluster and that containing the value M2 represents the other cluster.

    Figure 2:Heatmap

    3 Results and Discussion

    3.1 Experiment with the Real-World Dataset

    In this section,the proposed approach is applied to the measles case data in Khyber-Pakhtunkhwa,Pakistan (Jan 2016-Dec 2016),assuming the population is unknown.This dataset has been described in detail elsewhere [14].The proposed method is executed in MATLAB(version R2014a).Based on the spatiotemporal data on the observed measles cases,the proposed method with alpha=0.10,results in a heatmap as shown in Fig.2,showing the potential measles hotspots.The resulting heatmap shows three potential measles clusters in Khyber-Pakhtunkhwa in the period from January 2016 to December 2016.The most likely cluster is seen in the district of Bannu for May,October,and December with an average Relative Risk (RR)=1.677,denoted with a dark red color on the heatmap.The secondary cluster is seen in the district Bannu for April with an average RR=1.614,denoted by a light red color on the heatmap.The third cluster is seen in the two districts (Kohat and D.I.Khan) for March and April with an average RR=1.58,represented with a yellow color on the heatmap.These hotspot regions have also been detected by the Multi-EigenSpot and Space-time Scan Statistics in the previous study on the same dataset [14] and hence confirm that the proposed approach is effective for surveillance data with unknown population-at-risk information.

    Figure 3:Geographical map of the study area showing the locations of Measles clusters with red color

    It is obvious from Fig.3 that all the hotspots’regions identified by the proposed approach are adjacent to Federally Administrative Tribal Areas (FATA).Indeed,due to military operations during the years 2014-2016,the Internally Displaced People (IDP) from FATA were settled in the neighboring districts which might have caused the measles outbreak in the hosting districts.Because FATA and IDP camps suffer from a low vaccination rate due to lack of awareness [20,21].

    3.2 Performance Comparison with Population-Based Methods

    In this section,we compare the outputs of our proposed method with Multi-EigenSpot and SaTScan which have already been applied to the same dataset [14].The outputs of these three methods are presented in Tab.1.It is obvious from Tab.1 that the regions detected by our proposed method were also detected by Multi-EigenSpot and SaTScan.Our proposed method detects(Bannu,May,Oct,Dec,) as the most likely cluster and (Bannu,Apr) as the secondary cluster.It is very interesting to know that the most likely and secondary clusters of the proposed approach are the same as detected by the population-based Muti-EigenSpot.Moreover,our approach detects(Kohat,D.I.Khan,Mar,Apr) as the third cluster while Multi-EigenSpot detects (Bannu,Kohat,D.I.Khan,Mar) as the third cluster,showing the two districts and one month in common.

    The outputs of the proposed approach are also included in the significant outputs of the SaTScan.The Space-time Scan Statistics detects (Bannu,Apr-May) as the most likely cluster.This cluster is covered by the first two clusters of the proposed method.The secondary cluster of the SaTScan (Kohat,Mar-Apr) is covered in the third cluster of our proposed method.

    Table 1:The outputs of the proposed method,Multi-EigenSpot,and SaTScan

    The proposed approach detects the first three high-risk clusters while using the population counts,the detection ratio can be increased up to 8 clusters.This suggests that if the population counts are is possible to be approximated,then using this extra information,Multi-EigenSpot performs better than our proposed approach.

    4 Conclusion

    We proposed the first Eigenspace-based method which allows the nonparametric practice to detect clusters in the scenarios where the population counts are unavailable or difficult to approximate.Our proposed method replaces the temporal inference in methods like EigenSpot [13]and Multi-EigenSpot [14] with geographical inference which ultimately results in a method that can be used for hotspots detection in the least developed countries where population data is not available or very expensive to obtain.The results indicate that the proposed approach can detect the significant clusters with no need for the population counts.The proposed adaptation can delineate the boundaries of a disease outbreak and its potential to guide the control efforts in many least developed countries where the population data are not available or difficult to access.In addition,the proposed method can be used as a nonparametric solution for cluster detection in many research fields such as criminology [22,23],network [24],and environment [25] where the population data is not relevant.

    The proposed method does not account for the spatial and temporal covariates which would make it impractical to examine all ‘unusual’events,implicitly diminishing the significance of the surveillance.Extending the proposed method to adjust the population-at-risk-data for spatial and temporal covariate is recommended for future work in this area.

    Acknowledgement: The authors grateful to Universiti Teknologi PETRONAS for providing facilities for the research.

    Funding Statement: This article was funded by a Fundamental Research Grant Scheme (FRGS)from the Ministry of Education,Malaysia (Ref: FRGS/1/2018/STG06/UTP/02/1) and a Yayasan Universiti Teknologi PETRONAS-Fundamental Research Grant (cost center of 015LC0-013)received by Hanita Daud,URLs: https://www.mohe.gov.my/en/initiatives-2/187-program-utama/penyelidikan/548-research-grants-information;https://www.utp.edu.my/yayasan/Pages/default.aspx.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    在线亚洲精品国产二区图片欧美| 黄色a级毛片大全视频| 人人妻人人添人人爽欧美一区卜| 亚洲精品第二区| 久久久久久久大尺度免费视频| 国产av一区二区精品久久| 久久人妻熟女aⅴ| 一区二区av电影网| 亚洲av电影在线观看一区二区三区| 久久久久久久久久久久大奶| 国产主播在线观看一区二区 | 多毛熟女@视频| 亚洲国产精品999| 欧美大码av| 国产成人免费观看mmmm| 午夜日韩欧美国产| 国产午夜精品一二区理论片| 精品一区二区三卡| 婷婷色av中文字幕| 国语对白做爰xxxⅹ性视频网站| 老司机影院毛片| 韩国精品一区二区三区| 国产老妇伦熟女老妇高清| 国产成人精品久久二区二区免费| 国产免费视频播放在线视频| 欧美日韩黄片免| 又大又黄又爽视频免费| 伦理电影免费视频| 欧美成人午夜精品| 亚洲久久久国产精品| 亚洲精品日韩在线中文字幕| 免费久久久久久久精品成人欧美视频| 国产精品久久久久成人av| 午夜精品国产一区二区电影| 亚洲av美国av| 男女边摸边吃奶| 大片电影免费在线观看免费| 热99国产精品久久久久久7| 国产野战对白在线观看| 亚洲成色77777| 日韩伦理黄色片| av国产精品久久久久影院| 韩国高清视频一区二区三区| 国产精品久久久人人做人人爽| 国产女主播在线喷水免费视频网站| 国产成人av教育| 两个人看的免费小视频| 高清欧美精品videossex| 十分钟在线观看高清视频www| 又粗又硬又长又爽又黄的视频| 99国产精品99久久久久| 久久久久久久久免费视频了| 青春草亚洲视频在线观看| 91老司机精品| 欧美日韩福利视频一区二区| 免费不卡黄色视频| 一区二区三区精品91| 欧美日韩一级在线毛片| 一本色道久久久久久精品综合| 亚洲欧美清纯卡通| 精品亚洲成a人片在线观看| 国产精品一区二区在线观看99| bbb黄色大片| 日日爽夜夜爽网站| 亚洲av综合色区一区| 国产成人一区二区在线| 亚洲五月婷婷丁香| 久久午夜综合久久蜜桃| 亚洲精品成人av观看孕妇| kizo精华| 1024视频免费在线观看| 精品欧美一区二区三区在线| 我要看黄色一级片免费的| 91成人精品电影| 色94色欧美一区二区| 国产成人av教育| 中文字幕av电影在线播放| 我要看黄色一级片免费的| 日韩一区二区三区影片| avwww免费| 久久久久久人人人人人| 新久久久久国产一级毛片| 日韩电影二区| 欧美人与善性xxx| 免费观看人在逋| 亚洲欧美成人综合另类久久久| 欧美日韩一级在线毛片| 中文精品一卡2卡3卡4更新| 91老司机精品| 国产亚洲av高清不卡| 精品一品国产午夜福利视频| 国产在线免费精品| 女人久久www免费人成看片| 91国产中文字幕| 大片电影免费在线观看免费| 精品高清国产在线一区| 老司机靠b影院| 亚洲成人免费av在线播放| 久久av网站| 性色av乱码一区二区三区2| 国产熟女午夜一区二区三区| e午夜精品久久久久久久| 国产精品亚洲av一区麻豆| 亚洲欧美日韩高清在线视频 | 日韩欧美一区视频在线观看| 韩国精品一区二区三区| 涩涩av久久男人的天堂| 欧美激情极品国产一区二区三区| 久久人妻熟女aⅴ| av国产精品久久久久影院| 久久精品成人免费网站| 亚洲专区国产一区二区| 另类精品久久| 999精品在线视频| 少妇 在线观看| 在线亚洲精品国产二区图片欧美| 各种免费的搞黄视频| 久久热在线av| 日本一区二区免费在线视频| 国产黄频视频在线观看| 两性夫妻黄色片| 亚洲色图 男人天堂 中文字幕| 久久九九热精品免费| 国产精品av久久久久免费| 成人国语在线视频| a级毛片黄视频| 国产午夜精品一二区理论片| 日本色播在线视频| 久久精品国产综合久久久| 少妇精品久久久久久久| 欧美在线一区亚洲| 制服人妻中文乱码| 国产精品一区二区精品视频观看| 热99久久久久精品小说推荐| 日本色播在线视频| 精品卡一卡二卡四卡免费| 久久毛片免费看一区二区三区| 亚洲av美国av| 国产成人av教育| 欧美 亚洲 国产 日韩一| 考比视频在线观看| 国产精品偷伦视频观看了| 国产1区2区3区精品| 自线自在国产av| 亚洲欧美一区二区三区黑人| 一级毛片电影观看| 欧美成人精品欧美一级黄| 国产免费现黄频在线看| 精品久久蜜臀av无| 九色亚洲精品在线播放| 一二三四社区在线视频社区8| 免费观看a级毛片全部| 精品少妇内射三级| 亚洲av成人不卡在线观看播放网 | 亚洲av国产av综合av卡| 久久青草综合色| 十八禁高潮呻吟视频| 男女免费视频国产| 搡老乐熟女国产| 欧美 日韩 精品 国产| 成在线人永久免费视频| 国产精品三级大全| 久久精品久久久久久久性| 亚洲中文av在线| 国产精品人妻久久久影院| 久久久久国产精品人妻一区二区| 亚洲国产日韩一区二区| 各种免费的搞黄视频| 一级黄片播放器| 国产精品九九99| 亚洲成国产人片在线观看| 狂野欧美激情性bbbbbb| 在线精品无人区一区二区三| 十分钟在线观看高清视频www| 亚洲精品一卡2卡三卡4卡5卡 | 99精国产麻豆久久婷婷| svipshipincom国产片| 国产成人欧美| 国产精品一区二区在线观看99| 亚洲精品国产一区二区精华液| 啦啦啦啦在线视频资源| 亚洲人成77777在线视频| 成人三级做爰电影| 老汉色∧v一级毛片| 欧美日韩综合久久久久久| 日韩中文字幕视频在线看片| 久久人人爽人人片av| 看十八女毛片水多多多| 日本猛色少妇xxxxx猛交久久| 国产一级毛片在线| 久久人妻福利社区极品人妻图片 | 18禁观看日本| 在线天堂中文资源库| 视频区图区小说| 老司机影院成人| 欧美人与善性xxx| 成人国产av品久久久| 久久99一区二区三区| 777久久人妻少妇嫩草av网站| 美女视频免费永久观看网站| 一区二区日韩欧美中文字幕| 女性生殖器流出的白浆| 国产成人一区二区三区免费视频网站 | 在线观看人妻少妇| 国产亚洲av高清不卡| 欧美老熟妇乱子伦牲交| 国产女主播在线喷水免费视频网站| 精品欧美一区二区三区在线| 啦啦啦视频在线资源免费观看| 中文乱码字字幕精品一区二区三区| 国产精品一区二区精品视频观看| 三上悠亚av全集在线观看| 国产精品麻豆人妻色哟哟久久| 考比视频在线观看| 久久毛片免费看一区二区三区| 91精品三级在线观看| 成人亚洲精品一区在线观看| 久久99精品国语久久久| 亚洲欧美日韩另类电影网站| 欧美在线黄色| 18禁国产床啪视频网站| 男女无遮挡免费网站观看| 2018国产大陆天天弄谢| 国产不卡av网站在线观看| 久热这里只有精品99| www.自偷自拍.com| 久久亚洲国产成人精品v| 老熟女久久久| www.999成人在线观看| 伊人久久大香线蕉亚洲五| 无遮挡黄片免费观看| 日本av手机在线免费观看| 久久 成人 亚洲| 国产一级毛片在线| 大香蕉久久网| 欧美日韩一级在线毛片| 人人澡人人妻人| 久久精品国产a三级三级三级| 欧美日韩综合久久久久久| 18禁裸乳无遮挡动漫免费视频| 欧美人与性动交α欧美软件| 日韩 欧美 亚洲 中文字幕| 久久久久久久久久久久大奶| 成人影院久久| 在线观看www视频免费| 一二三四社区在线视频社区8| 国产欧美日韩综合在线一区二区| 美女福利国产在线| 丁香六月天网| 高清黄色对白视频在线免费看| 七月丁香在线播放| 我的亚洲天堂| av线在线观看网站| 丝袜美腿诱惑在线| 国产精品人妻久久久影院| 精品福利观看| kizo精华| 69精品国产乱码久久久| 人人妻人人添人人爽欧美一区卜| 999久久久国产精品视频| 最近中文字幕2019免费版| 可以免费在线观看a视频的电影网站| 久久精品亚洲熟妇少妇任你| 午夜福利一区二区在线看| 欧美日韩视频精品一区| 夫妻午夜视频| 久久久久网色| 老熟女久久久| 美女视频免费永久观看网站| 黄网站色视频无遮挡免费观看| 男人爽女人下面视频在线观看| 极品少妇高潮喷水抽搐| 午夜福利免费观看在线| 国产伦人伦偷精品视频| 搡老乐熟女国产| videos熟女内射| 麻豆av在线久日| 制服人妻中文乱码| 国产精品久久久久久精品电影小说| 熟女少妇亚洲综合色aaa.| 丰满迷人的少妇在线观看| 热99国产精品久久久久久7| 亚洲专区中文字幕在线| 午夜福利一区二区在线看| 国产精品久久久人人做人人爽| 国产淫语在线视频| 视频区欧美日本亚洲| 老司机影院毛片| 男女边摸边吃奶| 国产精品一国产av| 国产亚洲精品久久久久5区| 永久免费av网站大全| 久热这里只有精品99| 免费在线观看影片大全网站 | 免费av中文字幕在线| 国产精品欧美亚洲77777| 免费在线观看日本一区| 9热在线视频观看99| 久久久久国产精品人妻一区二区| 丝袜喷水一区| 日韩,欧美,国产一区二区三区| 日韩大码丰满熟妇| 日韩大片免费观看网站| 99国产精品一区二区三区| 国产淫语在线视频| 成人国产av品久久久| 老司机影院毛片| 亚洲精品日本国产第一区| 国产真人三级小视频在线观看| 1024视频免费在线观看| 91老司机精品| 女人被躁到高潮嗷嗷叫费观| 人体艺术视频欧美日本| 高清av免费在线| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品成人久久小说| 久久精品国产a三级三级三级| 日本a在线网址| 国产精品秋霞免费鲁丝片| 一本久久精品| 欧美人与善性xxx| 亚洲欧洲精品一区二区精品久久久| 久久精品国产a三级三级三级| 女性生殖器流出的白浆| 国产精品国产av在线观看| 99国产精品一区二区蜜桃av | 久久亚洲国产成人精品v| 午夜福利在线免费观看网站| 亚洲成色77777| 麻豆av在线久日| 视频区图区小说| 又粗又硬又长又爽又黄的视频| 久久久久久久久免费视频了| 亚洲欧美一区二区三区国产| 婷婷成人精品国产| 国产一区有黄有色的免费视频| 国产在线免费精品| 成人国产av品久久久| 美女大奶头黄色视频| 男女无遮挡免费网站观看| 国产亚洲午夜精品一区二区久久| av天堂久久9| 一区二区三区激情视频| 免费看不卡的av| 七月丁香在线播放| 一区二区三区激情视频| 免费看不卡的av| 婷婷色麻豆天堂久久| 国产麻豆69| 亚洲国产欧美网| 日本欧美视频一区| 亚洲色图 男人天堂 中文字幕| 一边摸一边抽搐一进一出视频| 国产成人精品久久二区二区免费| 最近手机中文字幕大全| 9热在线视频观看99| 一区福利在线观看| 久久中文字幕一级| 婷婷色麻豆天堂久久| 熟女少妇亚洲综合色aaa.| 91字幕亚洲| 成人手机av| 亚洲免费av在线视频| 老司机影院成人| 国产一区二区三区综合在线观看| 欧美黄色淫秽网站| 亚洲欧美一区二区三区久久| 国产精品九九99| 午夜免费鲁丝| 亚洲成人免费av在线播放| 一区二区三区精品91| av电影中文网址| 午夜福利乱码中文字幕| 99精品久久久久人妻精品| 国产精品99久久99久久久不卡| 中文字幕另类日韩欧美亚洲嫩草| 国产成人一区二区在线| 久久久久久亚洲精品国产蜜桃av| 建设人人有责人人尽责人人享有的| 久久人妻福利社区极品人妻图片 | 欧美亚洲日本最大视频资源| 男女边摸边吃奶| 午夜91福利影院| 国产午夜精品一二区理论片| 啦啦啦在线观看免费高清www| 一级a爱视频在线免费观看| 高清黄色对白视频在线免费看| 国产在视频线精品| 国产男女超爽视频在线观看| av在线播放精品| 91精品三级在线观看| 两个人看的免费小视频| 国产又色又爽无遮挡免| 国产亚洲欧美精品永久| 国产日韩欧美在线精品| 成人国语在线视频| 亚洲少妇的诱惑av| 18禁黄网站禁片午夜丰满| 亚洲欧美激情在线| 电影成人av| 亚洲国产最新在线播放| 日本黄色日本黄色录像| 亚洲综合色网址| 啦啦啦视频在线资源免费观看| 亚洲av成人不卡在线观看播放网 | 亚洲欧美日韩高清在线视频 | 午夜免费观看性视频| 人妻人人澡人人爽人人| 性色av一级| 亚洲九九香蕉| 日韩免费高清中文字幕av| 男女床上黄色一级片免费看| 亚洲少妇的诱惑av| 欧美精品一区二区大全| 人人妻人人添人人爽欧美一区卜| 久久ye,这里只有精品| 成年动漫av网址| 又粗又硬又长又爽又黄的视频| 国产精品久久久av美女十八| 老司机午夜十八禁免费视频| 巨乳人妻的诱惑在线观看| 精品少妇黑人巨大在线播放| 婷婷丁香在线五月| tube8黄色片| 国产成人影院久久av| 欧美久久黑人一区二区| 嫩草影视91久久| 如日韩欧美国产精品一区二区三区| 丁香六月欧美| 日韩精品免费视频一区二区三区| 又粗又硬又长又爽又黄的视频| 男女午夜视频在线观看| 久久性视频一级片| 在线观看www视频免费| 日韩熟女老妇一区二区性免费视频| 99re6热这里在线精品视频| 亚洲精品日韩在线中文字幕| 啦啦啦视频在线资源免费观看| 精品人妻在线不人妻| 各种免费的搞黄视频| 少妇精品久久久久久久| 国产精品人妻久久久影院| 日韩视频在线欧美| 一边亲一边摸免费视频| 精品视频人人做人人爽| 亚洲国产中文字幕在线视频| 巨乳人妻的诱惑在线观看| 国产男人的电影天堂91| 日韩 欧美 亚洲 中文字幕| 高清av免费在线| 精品一品国产午夜福利视频| 亚洲成国产人片在线观看| 性色av一级| 欧美在线一区亚洲| av不卡在线播放| 免费高清在线观看日韩| 丰满少妇做爰视频| 99精国产麻豆久久婷婷| 国产在视频线精品| 中文字幕人妻丝袜制服| 国产一区二区三区av在线| 大码成人一级视频| 精品亚洲乱码少妇综合久久| 国产成人一区二区三区免费视频网站 | 下体分泌物呈黄色| www.av在线官网国产| 91精品国产国语对白视频| 精品人妻在线不人妻| 中文字幕最新亚洲高清| 亚洲第一青青草原| 久久ye,这里只有精品| 国产精品国产av在线观看| 伦理电影免费视频| 亚洲,欧美精品.| 午夜免费鲁丝| 看免费成人av毛片| 亚洲国产欧美网| 中文字幕人妻丝袜制服| 在线 av 中文字幕| 最近中文字幕2019免费版| 亚洲精品国产av成人精品| 最近中文字幕2019免费版| av不卡在线播放| 深夜精品福利| 男女高潮啪啪啪动态图| 国产主播在线观看一区二区 | 99久久人妻综合| 亚洲国产av新网站| 国产精品麻豆人妻色哟哟久久| 最新在线观看一区二区三区 | 亚洲国产精品一区二区三区在线| 国产免费一区二区三区四区乱码| 国产精品九九99| 91精品伊人久久大香线蕉| 精品久久久久久久毛片微露脸 | 91精品三级在线观看| 精品久久久久久电影网| 亚洲精品一区蜜桃| 久久久精品国产亚洲av高清涩受| 999久久久国产精品视频| 在线观看免费午夜福利视频| 三上悠亚av全集在线观看| 美女主播在线视频| 成年av动漫网址| 少妇人妻久久综合中文| 天天躁狠狠躁夜夜躁狠狠躁| 女警被强在线播放| 亚洲av电影在线进入| 中文字幕最新亚洲高清| 亚洲人成网站在线观看播放| 亚洲欧洲日产国产| 国产av一区二区精品久久| 性少妇av在线| 又粗又硬又长又爽又黄的视频| 午夜福利视频在线观看免费| 国产熟女午夜一区二区三区| 国产成人欧美| 99香蕉大伊视频| 自线自在国产av| 免费不卡黄色视频| 丁香六月天网| www.精华液| kizo精华| 黄色a级毛片大全视频| 亚洲精品美女久久av网站| 黄色毛片三级朝国网站| 国产成人精品在线电影| 美国免费a级毛片| 免费观看人在逋| 亚洲精品日本国产第一区| 欧美精品人与动牲交sv欧美| 水蜜桃什么品种好| 久久精品成人免费网站| 啦啦啦啦在线视频资源| 欧美日韩福利视频一区二区| 99久久人妻综合| 首页视频小说图片口味搜索 | 精品国产乱码久久久久久小说| 天天影视国产精品| 亚洲 欧美一区二区三区| 亚洲欧美一区二区三区黑人| 女人被躁到高潮嗷嗷叫费观| www.精华液| 午夜福利免费观看在线| 秋霞在线观看毛片| 一级毛片 在线播放| 午夜福利,免费看| 高清欧美精品videossex| 91国产中文字幕| 无遮挡黄片免费观看| 黄色a级毛片大全视频| 大话2 男鬼变身卡| 亚洲成人免费电影在线观看 | 久久天堂一区二区三区四区| 99九九在线精品视频| 亚洲五月婷婷丁香| 亚洲第一av免费看| 高清不卡的av网站| 久久天躁狠狠躁夜夜2o2o | 精品国产乱码久久久久久男人| 精品国产超薄肉色丝袜足j| 亚洲av男天堂| 欧美黑人欧美精品刺激| 最近手机中文字幕大全| 久久精品亚洲av国产电影网| 国产日韩欧美在线精品| 丁香六月欧美| 免费看十八禁软件| 无遮挡黄片免费观看| 一级毛片女人18水好多 | 亚洲精品中文字幕在线视频| 午夜激情久久久久久久| 国产精品.久久久| 精品少妇一区二区三区视频日本电影| 一级毛片 在线播放| 精品少妇黑人巨大在线播放| 下体分泌物呈黄色| 亚洲伊人久久精品综合| 高清视频免费观看一区二区| 一本综合久久免费| 亚洲一区二区三区欧美精品| 在线观看人妻少妇| 国产99久久九九免费精品| 老鸭窝网址在线观看| 十八禁高潮呻吟视频| 黄色a级毛片大全视频| 人成视频在线观看免费观看| 国产在线一区二区三区精| 亚洲国产精品一区三区| 亚洲欧美一区二区三区黑人| 国产爽快片一区二区三区| 亚洲欧洲精品一区二区精品久久久| 一级毛片黄色毛片免费观看视频| 国产成人欧美| 欧美少妇被猛烈插入视频| 叶爱在线成人免费视频播放| 悠悠久久av| 亚洲精品国产色婷婷电影| 欧美日韩综合久久久久久| 国产一级毛片在线| 丰满人妻熟妇乱又伦精品不卡| 色94色欧美一区二区| 精品国产超薄肉色丝袜足j| 美女扒开内裤让男人捅视频| 天天添夜夜摸| 免费在线观看影片大全网站 | 国产一区有黄有色的免费视频| 一区二区三区四区激情视频| 这个男人来自地球电影免费观看| 国产精品久久久av美女十八| 男男h啪啪无遮挡| 久久九九热精品免费| 日韩欧美一区视频在线观看| 欧美日韩国产mv在线观看视频| 亚洲天堂av无毛|