• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Helix Inspired 28 GHz Broadband Antenna with End-Fire Radiation Pattern

    2022-11-09 08:17:22HijabZahraWahajAbbasAwanNiamatHussainSyedMuzahirAbbasandSubhasMukhopadhyay
    Computers Materials&Continua 2022年1期

    Hijab Zahra,Wahaj Abbas Awan,Niamat Hussain,Syed Muzahir Abbas,4 and Subhas Mukhopadhyay

    1School of Engineering,Faculty of Science and Engineering,Macquarie University,Sydney,NSW,2109,Australia

    2Department of Integrated IT Engineering,Seoul National University of Science and Technology,Seoul,01811,Korea

    3Department of Information and Communication Engineering,Chungbuk National University,Chungbuk,28644,Korea

    4BENELEC,Botany,Sydney,NSW,2019,Australia

    Abstract: This paper presents the design and characterization of a via free planar single turn helix for 28 GHz broadband applications.The proposed antenna is designed using ROGERS RO4003 material,having a simple structure and end-fire radiation pattern.The antenna comprises of a compact dimension of 1.36 λ0 × 0.9 λ0 with a thickness of 0.0189 λ0 (where λ0 is the free-space wavelength at the central frequency of 28 GHz).Parametric study has been carried out to investigate the impact of key design parameters and to achieve an optimum design.Results show a good agreement between the simulated and measured results.A single turn helical inspired antenna covers-10 dB impedance bandwidth of 26.25-30.14 GHz having a peak gain of 5.83 dB and radiation efficiency up to 85%.Moreover,linear array configurations with 2 and 4 elements have been analyzed for applications with higher gain and space constraints.Presented array configurations are suitable for applications having space constraints in one dimension.Results show that peak gain up to 8.2 dB and 11.1 dB can be achieved with 2 and 4 elements,respectively.Due to its simple planar and via free structure,this antenna is suitable for 5G communications and for sensing,imaging,IoT and tracking applications at 28 GHz band spectrum.

    Keywords: Compact antenna;millimeter wave antenna;28 GHz;5G antenna

    1 Introduction

    The fifth generation (5G) of mobile communications promised higher Gbps data rates with very low latency to support the ever-increasing number of users.The higher data rates are directly associated to bandwidth,therefore radio frequency (RF) front ends operating at millimeter-wave part of the spectrum have drawn significant attention of the researchers [1].It also provides better communication services for all use cases of 5G,namely,Enhanced Mobile Broadband(eMBB),Machine Type Communication (MTC) and Ultra-reliable Low-latency Communication (URLLC) [2].However,high atmospheric absorption at the mm-wave frequencies requires antennas with high gain and increased directivity.In order to achieve these propitious characteristics promised by the 5G standards,suitable antennas characterized by a compact size,a large bandwidth,as well as a high gain are strongly required [3,4].

    Recently,various studies are conducted to obtain antenna designs to fulfill the requirements of future wireless communication technologies.The antennas capable of end fire radiation with high gain and increased directivity are prominent among these designs [5-10].Several designs have been reported for 5G mm-wave applications [11-21].A dual polarized end-fire phased array,with 4 elements,having 25% bandwidth at-6 dB matching is presented.The reported gain is 7.48-8.14 dBi and 4.49-8.05 dBi,for horizontal and vertical polarizations,respectively [11].Similarly,8-element reconfigurable phased array with planar structure has reported gain of about 10 dBi and 4.3 dBi for single element in end-fire mode [12],whereas,4-element reconfigurable phased array with gain in the range of 5.3-8.2 dBi for end-fire mode has also been presented [13].Hong et al.reported 16-element mesh-grid patch antenna array where the single element has gain of 3.5 dBi [14],whereas,Ta et al.has reported 8-element array with planar single element having gain of 4.5-5.8 dBi [15].A MIMO antenna consisting of radiating patch with air filled slots demonstrated gain of 5.13 dBi [16].It can be deduced from the above discussion that single element with lower gains were used to achieve higher gains [11-16].Here the presented antenna has measured gain in the range of 4 to 6 dB,which is suitable for 5G mm-wave applications.

    In addition,various helical antennas are reported exhibiting higher gain and directivity,as well as large operational bandwidth [17-22].However,the conventional helical antennas suffer from the main shortcoming of high profile with increased physical height.Consequently,this led the researchers to conduct studies in order to obtain a compact helical antenna with low profile,however maintaining the merits of high gain and directivity as required by the future communication systems.Therefore,planar helix antennas are realized by the researchers,especially for the mm-wave frequency range.In [19],a low-profile helical antenna is proposed,where the antenna is realized to be planar with printed strips and plated via holes to obtain wideband and end-fire radiation pattern.In [20],a wideband printed antenna based on the classical end fire-mode helical antenna with curved microstrip transmission lines is proposed.The antenna array obtains very high gain,however the design has increased fabrication complexity.In [21],planar configuration is employed to obtain a low-profile helical antenna with reduced length.The proposed antenna is composed of 6 arm patterns placed on the top and bottom side of the substrate and connected through vias.Another work in [22] presented a compact wideband end fire antenna using planar technology.The antenna is designed using two Rogers 4350 PCBs adhered together to form an RF PCB with approx.3 mm thickness.This helix antenna obtains compactness,wide bandwidth,and high gain.The helical antenna designs discussed above are planar and compact in structure however multiple vias are integrated to connect the upper and bottom helical arms,which increases the level of complexity as well as the manufacturing cost of the design.

    Therefore,in order to address the aforementioned challenges this paper presents a 5G broadband antenna inspired by the planar helix-shaped antenna.The major contribution of the proposed work can be summarized as follows:

    · The presented work is characterized by simple geometrical structure,compact size,broad bandwidth,and high gain.

    · The presented work was inspired by helix antennas without employing any vias,thus significantly reducing the design complexity of end-fire antennas.

    · Strong agreement between simulated and measured results makes the proposed work a potential candidate for 5G communications and for sensing,tracking,internet of things(IoT),and imaging applications using 28 GHz frequency band.

    2 Antenna Design and Characterization

    2.1 Geometrical Configuration

    Figs.1a-1c depicts the top,bottom and side geometrical configuration of the proposed endfire antenna.The geometry of the proposed antenna is imprinted on 0.203 mm thick ROGERS RO4003 substrate having εr=3.38 and tanδ=0.0027.Grounded Co-Planar Waveguide (GCPW)technique is utilized to excite the antenna having partial ground plane as depicted in Fig.1.A hole is etched from substrate and CPW ground plane for the insertion of the screw of end launch connector used for testing purpose.The end launch connector has been used to demonstrate the concept due its better performance and ease of usage at 28 GHz mm-wave designs [23-27].

    Figure 1:Geometry of proposed end-fire antenna (a) top view (b) bottom view (c) side view

    2.2 Antenna Design

    The antenna design consists of three major steps as depicted in Fig.2a.In step-1,a T-shaped printed antenna is designed to resonate at 28 GHz,the resultant antenna shows impedance bandwidth ranging 27.8-28.4 GHz,as depicted in Fig.2.For the desired central frequency,the length of the T-shaped antenna could be estimated by using the relations provided in [28].Afterwards,the T-shaped antenna is modified by utilizing asymmetric CPW virtual ground.Due to the asymmetric geometrical structure,the antenna starts exhibiting an end-fire radiation pattern having a broad bandwidth of 26.9 to 31.1 GHz.Detailed numerical analysis is performed to get the wide bandwidth having maximum achievable gain.

    At last,in step-3,another rectangular strip is added to one end of a modified T-shaped radiator at an angle of θ=30°.The angle between two arms of the radiator was numerically investigated and an optimized value of θ=30°is chosen to get maximum bandwidth and gain in end-fire direction.In [26] researcher provides a detail discussion on theoretical and mathematical analysis on choosing the angle between two arms and its effect on various performance parameters.The resultant geometry is inspired by a single turn planar helical antenna without utilizing any vias.The resultant antenna shows a-10 dB impedance bandwidth of 26.15 to 29.8 GHz,as depicted in Fig.2a.It is worth noting that the dimension of the ground plane at the back of the substrate remains unchanged for all three steps.Tab.1 presents the various parameters of the optimized antenna.

    Figure 2:(a) Predicted |S11| comparison of various steps in evolution of the proposed antenna(b) Parametric analysis of the angle (θ) between two arms of the proposed antenna design

    Table 1:The optimized parameters of the final proposed design

    2.3 Parametric Analysis

    The angle (θ) between the arms of the helix,also known as pitch angle,is one of the key parameters in designing helix antennas.A parametric analysis of the pitch angle is performed to investigate its effects on the performance of the design.It is observed from Fig.2b,that when the pitch angle is shifted from 30°to 15°,the resonance of the antenna is shifted to higher frequencies.Contrary to this,when the angle is changed from 30°to 45°,the antenna shifts its resonance toward the lower side and a small decrement in bandwidth along with the impedance mismatch is also noted.Mismatch and frequency shift towards the lower side is also noted when pitch angle is further changed to 60°and 90°.Thus,it can be concluded from the analysis that for desired applications the optimized pitch angle is 30°,as depicted in Fig.2b.

    3 Results and Discussion

    3.1 Return Loss

    To validate the performance of the proposed broadband antenna a sample prototype is fabricated and tested,as shown in the inset of Fig.3.The s-parameters for the simulated and measured case of the proposed antenna are shown in Fig.3.The simulated-10 dB impedance bandwidth is observed to be 3.65 GHz ranging from 26.15 to 29.8 GHz while the measured bandwidth is observed to 3.89 GHz ranging 26.25-30.14 GHz,as depicted in Fig.3.It is worth noting that the operational bandwidth of the antenna covers the frequency band spectrum(26.5-29.5 GHz) allocated for 5G mm-wave applications.

    Figure 3:Comparison of simulated and measured return loss of proposed antenna

    3.2 Current Distribution

    Fig.4 show the current distribution on the antenna.It can be noted that the stronger currents are present at the longer edge of the T-shaped radiator and extended radiator connected to it at the pitch angle.It can also be deduced from the parametric analysis presented in Fig.2 that with the smaller pitch angle (i.e.,15°) the currents in the arms of the vertex becomes more parallel and with opposing impact.For other values,the current has less coupling between the arms of the vertex,thus strong resonance is observed.

    3.3 Far Field Analysis

    Fig.5 presents the comparison among numerically predicted and measured radiation patterns of the proposed antenna.It can be seen from the Fig.5 that the antenna exhibits end-fire radiation pattern at 28 GHz with the main beam pointed toward θ=255°in principle E-Plane(Φ=0°) while the main beam is pointed toward θ=235°in principle H-plane (Φ=90°).The antenna has simulated peak gain of 5.92 dB.Fig.6 illustrates the comparison among simulated and measured peak gain along with numerically calculated radiation efficiency.The proposed broadband antenna exhibits a peak gain of 5.83 dB at 28 GHz while the radiation efficiency up to 85% is noted.

    Figure 4:Current distribution of the proposed antenna at 28 GHz

    Figure 5:Comparison of simulated and measured radiation pattern at 28 GHz (a) E-plane (b)H-plane

    3.4 Array Configuration

    The proposed design has further been analyzed for linear array configurations where higher gain will be desired.The linear array will be more suitable for applications with size constraints in one dimension.Linear array of 2 and 4 elements with in-phase feed and side-by-side arrangement as shown in Fig.7 has been investigated.The distance (d) is half wavelength from edge of the radiating element to the edge of the other adjacent radiating element.Center to center distance (d)is not considered due to the size of the connector.By controlling the phase delay in feeding the elements,the radiation beam can be tilted.MIMO (Multiple Input Multiple Output) configurations with side-by-side and orthogonal arrangements are suitable for diversity applications [29-32].As shown in Fig.8a gain of 8.23 dB and 11.10 dB has been noted for linear array of 2 and 4 elements,respectively.

    Figure 6:Comparison of simulated and measured peak gain of the proposed antenna along with its radiation efficiency

    Figure 7:Array configuration for (a) 2 elements array (b) 4 elements array

    Figure 8:Predicted radiation pattern at 28 GHz for (a) 2 elements array (b) 4 elements array

    3.5 Comparison with State of the Art Work

    Tab.2 summarizes the comparison of the proposed antenna with recently reported antennas exhibiting analogous features.It is evident from this comparison that the antenna proposed in this work outperforms the other similar antennas by demonstrating compact size with large fractional bandwidth and sufficient gain.In addition,the proposed design is via free,whereas the other designs incorporated vias which increases the structural complexity and thus limits the suitability of these design for future communication systems.

    Table 2:Comparison of proposed work with end-fire antennas

    4 Conclusion

    A planar single turn helix inspired antenna having a wideband operation with an end-fire radiation pattern is presented for 5G mm-wave applications.The antenna was extracted from a T-shaped shaped monopole antenna,where T-shaped is modified to asymmetric geometry to get a directional radiation pattern along with wideband.A prototype is fabricated for measurement results.The antenna has overall compact dimensions of 1.36λ0×0.9λ0×0.0189λ0.The antenna offers a wide measured impedance bandwidth ranging from 26.25-30.14 GHz along with measured gain up to 5.83 dB and measured radiation efficiency up to 85%.For applications with size constraints in one-dimension,linear array with 2 and 4 elements have been analyzed to demonstrate high gain.

    Funding Statement: The authors received no specific funding for this study.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    人妻一区二区av| 日韩一区二区视频免费看| 国产av不卡久久| 国产av码专区亚洲av| 高清在线视频一区二区三区| 国产精品久久久久久精品古装| 男人爽女人下面视频在线观看| 五月伊人婷婷丁香| 国产在线男女| 亚洲精品第二区| 在线观看三级黄色| 亚洲熟女精品中文字幕| 熟女av电影| 五月天丁香电影| 日韩强制内射视频| 寂寞人妻少妇视频99o| 精品视频人人做人人爽| 久久久久国产精品人妻一区二区| 日韩av免费高清视频| 亚洲精品亚洲一区二区| 亚洲性久久影院| av女优亚洲男人天堂| 美女国产视频在线观看| 亚洲一区二区三区欧美精品 | 日韩欧美 国产精品| 成人高潮视频无遮挡免费网站| 尾随美女入室| 狠狠精品人妻久久久久久综合| 成人免费观看视频高清| 亚洲国产精品国产精品| 狠狠精品人妻久久久久久综合| 亚洲四区av| 亚洲国产av新网站| 国产乱人视频| av天堂中文字幕网| 欧美激情国产日韩精品一区| 女的被弄到高潮叫床怎么办| 国产精品一区www在线观看| 丝袜美腿在线中文| 18禁裸乳无遮挡动漫免费视频 | 午夜激情久久久久久久| 久久热精品热| 精品国产一区二区三区久久久樱花 | 毛片女人毛片| 色哟哟·www| 精品人妻视频免费看| 三级男女做爰猛烈吃奶摸视频| 夜夜爽夜夜爽视频| 久久精品国产a三级三级三级| 丰满少妇做爰视频| 丰满人妻一区二区三区视频av| 国产爱豆传媒在线观看| 80岁老熟妇乱子伦牲交| 久热久热在线精品观看| 一本久久精品| 激情 狠狠 欧美| 国内揄拍国产精品人妻在线| 亚洲国产高清在线一区二区三| 亚洲国产日韩一区二区| 97在线人人人人妻| 秋霞在线观看毛片| 热99国产精品久久久久久7| 中国国产av一级| 日产精品乱码卡一卡2卡三| 色网站视频免费| 国产色爽女视频免费观看| 丝袜脚勾引网站| 大香蕉97超碰在线| av国产精品久久久久影院| 国产黄色免费在线视频| 欧美人与善性xxx| 99热这里只有是精品50| 特大巨黑吊av在线直播| 视频中文字幕在线观看| 一级毛片电影观看| 男女边吃奶边做爰视频| 99热国产这里只有精品6| 亚洲精品视频女| 永久网站在线| 国产精品.久久久| 赤兔流量卡办理| 成人一区二区视频在线观看| 观看免费一级毛片| 亚洲四区av| 日韩成人av中文字幕在线观看| 各种免费的搞黄视频| 中文欧美无线码| 在线看a的网站| 免费大片黄手机在线观看| 亚洲在线观看片| 免费看日本二区| 男人爽女人下面视频在线观看| 69av精品久久久久久| 欧美精品国产亚洲| 亚洲精品aⅴ在线观看| 免费看光身美女| 天天一区二区日本电影三级| 日韩国内少妇激情av| 精品少妇黑人巨大在线播放| 国产精品99久久久久久久久| 国产色爽女视频免费观看| 丝袜美腿在线中文| 男人舔奶头视频| 91久久精品电影网| 男人舔奶头视频| 成人毛片60女人毛片免费| 成人午夜精彩视频在线观看| 尤物成人国产欧美一区二区三区| 青春草国产在线视频| 青青草视频在线视频观看| 免费不卡的大黄色大毛片视频在线观看| 极品教师在线视频| 成年免费大片在线观看| 日本一二三区视频观看| 成人无遮挡网站| 久久99热这里只频精品6学生| 午夜激情久久久久久久| 国产一区亚洲一区在线观看| 大片电影免费在线观看免费| 亚洲一级一片aⅴ在线观看| 午夜福利在线在线| 在线a可以看的网站| kizo精华| 国产淫语在线视频| 99久久精品一区二区三区| 亚洲国产精品成人久久小说| 日本猛色少妇xxxxx猛交久久| 日韩av免费高清视频| 久久人人爽人人爽人人片va| 97在线视频观看| 舔av片在线| 又大又黄又爽视频免费| 亚洲激情五月婷婷啪啪| 全区人妻精品视频| 寂寞人妻少妇视频99o| 久久久亚洲精品成人影院| 国产午夜精品一二区理论片| 新久久久久国产一级毛片| 又爽又黄a免费视频| 国产乱人偷精品视频| 秋霞伦理黄片| 国产探花极品一区二区| 国产一区二区三区综合在线观看 | 18+在线观看网站| 日本三级黄在线观看| 亚洲久久久久久中文字幕| 一级av片app| 午夜精品国产一区二区电影 | 大又大粗又爽又黄少妇毛片口| 日韩视频在线欧美| 久久精品国产a三级三级三级| 成人亚洲精品av一区二区| 麻豆乱淫一区二区| 日韩一区二区三区影片| 国产亚洲av片在线观看秒播厂| 大又大粗又爽又黄少妇毛片口| 欧美日韩综合久久久久久| 永久网站在线| 国产午夜精品久久久久久一区二区三区| 一区二区av电影网| 一本色道久久久久久精品综合| av一本久久久久| 一级片'在线观看视频| 国产欧美另类精品又又久久亚洲欧美| 国内揄拍国产精品人妻在线| 亚洲天堂av无毛| 日本wwww免费看| 91久久精品电影网| 麻豆久久精品国产亚洲av| 在线天堂最新版资源| av在线观看视频网站免费| 亚洲欧洲国产日韩| 国产国拍精品亚洲av在线观看| 久久久精品94久久精品| 王馨瑶露胸无遮挡在线观看| 国产视频内射| 亚洲欧美一区二区三区国产| 亚洲成人久久爱视频| 99久国产av精品国产电影| 午夜激情福利司机影院| 久久精品国产鲁丝片午夜精品| 午夜精品国产一区二区电影 | 国产美女午夜福利| av女优亚洲男人天堂| 午夜激情福利司机影院| 国产淫片久久久久久久久| 性色avwww在线观看| 国产免费一区二区三区四区乱码| 五月天丁香电影| 春色校园在线视频观看| 听说在线观看完整版免费高清| 一级片'在线观看视频| 久久久久久国产a免费观看| 国产视频首页在线观看| 黄色怎么调成土黄色| 一本久久精品| videossex国产| 亚洲自偷自拍三级| 婷婷色综合大香蕉| 精品久久久久久久久亚洲| 伦理电影大哥的女人| 小蜜桃在线观看免费完整版高清| 欧美丝袜亚洲另类| 乱系列少妇在线播放| 午夜爱爱视频在线播放| 乱系列少妇在线播放| 国产白丝娇喘喷水9色精品| 少妇高潮的动态图| 久久女婷五月综合色啪小说 | 国产有黄有色有爽视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品国产av蜜桃| 午夜精品国产一区二区电影 | 尾随美女入室| 十八禁网站网址无遮挡 | 精品久久久久久久久av| 男女边吃奶边做爰视频| 久久ye,这里只有精品| 青青草视频在线视频观看| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩卡通动漫| 69人妻影院| 国产精品久久久久久av不卡| 2021少妇久久久久久久久久久| 国产亚洲av嫩草精品影院| 国产人妻一区二区三区在| 亚洲精品成人av观看孕妇| 国产91av在线免费观看| 成人午夜精彩视频在线观看| 国产男女超爽视频在线观看| 蜜臀久久99精品久久宅男| 啦啦啦在线观看免费高清www| 六月丁香七月| av女优亚洲男人天堂| 亚洲av免费高清在线观看| 乱系列少妇在线播放| 国产人妻一区二区三区在| 性色av一级| 高清在线视频一区二区三区| 欧美老熟妇乱子伦牲交| 中文字幕人妻熟人妻熟丝袜美| 国产视频首页在线观看| 丰满乱子伦码专区| 亚洲av一区综合| 男女边吃奶边做爰视频| 日韩强制内射视频| 国产综合精华液| 日本一二三区视频观看| 午夜爱爱视频在线播放| 欧美高清性xxxxhd video| 国产色婷婷99| 亚洲国产精品999| av在线亚洲专区| 国产精品国产av在线观看| 国产午夜精品一二区理论片| 人人妻人人爽人人添夜夜欢视频 | 亚洲在线观看片| 成人欧美大片| 国产精品99久久久久久久久| 欧美xxⅹ黑人| 国产白丝娇喘喷水9色精品| 一个人看视频在线观看www免费| 久久久久久久久久人人人人人人| freevideosex欧美| 黄片wwwwww| 午夜激情久久久久久久| 国产综合精华液| 久久久精品94久久精品| 欧美另类一区| 狂野欧美激情性xxxx在线观看| 69人妻影院| 亚洲欧美日韩另类电影网站 | 人体艺术视频欧美日本| 人妻夜夜爽99麻豆av| 婷婷色综合大香蕉| 五月玫瑰六月丁香| 国产精品久久久久久av不卡| 听说在线观看完整版免费高清| 午夜福利视频1000在线观看| 成人亚洲精品av一区二区| 午夜视频国产福利| 少妇高潮的动态图| 日韩av在线免费看完整版不卡| 免费电影在线观看免费观看| 精品久久国产蜜桃| 亚洲国产欧美人成| 能在线免费看毛片的网站| 国产69精品久久久久777片| 18禁裸乳无遮挡免费网站照片| 国产老妇伦熟女老妇高清| 91精品国产九色| 成人美女网站在线观看视频| 伦精品一区二区三区| 午夜福利在线观看免费完整高清在| 国产黄频视频在线观看| 亚洲国产精品专区欧美| 亚洲av电影在线观看一区二区三区 | 免费观看无遮挡的男女| 日韩一本色道免费dvd| 日韩伦理黄色片| 久久久久久久午夜电影| 精品久久久久久久末码| 麻豆成人午夜福利视频| 欧美极品一区二区三区四区| 人妻 亚洲 视频| 日韩国内少妇激情av| 国产熟女欧美一区二区| 国产黄频视频在线观看| 精品午夜福利在线看| 最近中文字幕高清免费大全6| 国产精品一二三区在线看| 在线免费十八禁| 午夜免费鲁丝| 国内精品宾馆在线| 亚洲人成网站高清观看| 日本免费在线观看一区| 国产成人91sexporn| 一个人观看的视频www高清免费观看| 极品教师在线视频| 精品少妇黑人巨大在线播放| 亚洲第一区二区三区不卡| 91久久精品电影网| 美女国产视频在线观看| 欧美成人a在线观看| 亚洲美女搞黄在线观看| 特级一级黄色大片| 亚洲天堂国产精品一区在线| 大香蕉久久网| av.在线天堂| 最近最新中文字幕免费大全7| 亚洲aⅴ乱码一区二区在线播放| 少妇人妻精品综合一区二区| 成人美女网站在线观看视频| 亚洲欧美一区二区三区黑人 | 成人免费观看视频高清| 免费高清在线观看视频在线观看| 中文精品一卡2卡3卡4更新| 99久久精品国产国产毛片| 国产精品伦人一区二区| 人人妻人人看人人澡| 永久网站在线| 日韩大片免费观看网站| 日韩免费高清中文字幕av| 国产91av在线免费观看| 日日摸夜夜添夜夜添av毛片| 在线看a的网站| 国产成人免费观看mmmm| 久久6这里有精品| 日韩一区二区三区影片| 国产伦精品一区二区三区四那| 成年女人看的毛片在线观看| 久久99热这里只有精品18| 亚洲,一卡二卡三卡| 麻豆乱淫一区二区| 午夜免费男女啪啪视频观看| 亚洲成色77777| 少妇人妻一区二区三区视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 丰满乱子伦码专区| 熟女人妻精品中文字幕| 日韩欧美一区视频在线观看 | 亚洲一级一片aⅴ在线观看| 观看美女的网站| 久久久久国产精品人妻一区二区| 日韩视频在线欧美| 日本黄大片高清| 久久精品国产自在天天线| av又黄又爽大尺度在线免费看| 天天躁日日操中文字幕| 国产精品伦人一区二区| 丝袜喷水一区| 亚洲成色77777| 白带黄色成豆腐渣| 黄片wwwwww| 国产高清有码在线观看视频| 欧美3d第一页| 免费av观看视频| 国产永久视频网站| 啦啦啦在线观看免费高清www| 精品久久久久久久末码| 女人被狂操c到高潮| 久久久精品免费免费高清| 最近中文字幕2019免费版| 久久久久久久久大av| 丝袜美腿在线中文| 国产爽快片一区二区三区| 日日摸夜夜添夜夜添av毛片| 成人毛片a级毛片在线播放| 亚洲欧洲国产日韩| 69人妻影院| 亚洲精品成人av观看孕妇| 青春草视频在线免费观看| 国产高清不卡午夜福利| 五月伊人婷婷丁香| 成人漫画全彩无遮挡| 水蜜桃什么品种好| 免费少妇av软件| 欧美区成人在线视频| av在线观看视频网站免费| 综合色av麻豆| 好男人在线观看高清免费视频| 青春草视频在线免费观看| 制服丝袜香蕉在线| 一级毛片电影观看| 久久精品夜色国产| av在线亚洲专区| 国产精品秋霞免费鲁丝片| 欧美xxxx黑人xx丫x性爽| 91精品国产九色| 人妻制服诱惑在线中文字幕| 日日啪夜夜撸| 夫妻午夜视频| 亚洲精品成人av观看孕妇| 成年人午夜在线观看视频| 国产色婷婷99| 精品熟女少妇av免费看| 七月丁香在线播放| 国产在视频线精品| av黄色大香蕉| 我的老师免费观看完整版| 日本色播在线视频| 久久久久久国产a免费观看| 国产精品国产三级国产专区5o| 亚洲国产精品999| 日韩欧美精品v在线| 一级毛片久久久久久久久女| 在线亚洲精品国产二区图片欧美 | 51国产日韩欧美| 亚洲国产精品999| 国产精品福利在线免费观看| 欧美性猛交╳xxx乱大交人| 少妇 在线观看| 国产毛片在线视频| 97人妻精品一区二区三区麻豆| 精品少妇久久久久久888优播| 午夜激情福利司机影院| 观看免费一级毛片| 国产高清不卡午夜福利| 亚洲av成人精品一二三区| 18禁在线无遮挡免费观看视频| 成年av动漫网址| 熟女电影av网| 亚洲国产欧美人成| 啦啦啦啦在线视频资源| 亚洲色图av天堂| 黑人高潮一二区| 亚洲精品第二区| 色5月婷婷丁香| 日韩伦理黄色片| 国产亚洲av嫩草精品影院| 免费看光身美女| 欧美少妇被猛烈插入视频| 男人狂女人下面高潮的视频| 欧美精品人与动牲交sv欧美| 国国产精品蜜臀av免费| 狂野欧美激情性bbbbbb| 日本熟妇午夜| 各种免费的搞黄视频| 啦啦啦啦在线视频资源| 国产免费福利视频在线观看| 免费观看性生交大片5| 成人一区二区视频在线观看| 久久精品国产自在天天线| 国产精品嫩草影院av在线观看| 伦精品一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 超碰97精品在线观看| 高清午夜精品一区二区三区| 秋霞在线观看毛片| 成人二区视频| 一级毛片黄色毛片免费观看视频| 美女xxoo啪啪120秒动态图| 中文字幕免费在线视频6| 午夜福利在线观看免费完整高清在| 国产视频首页在线观看| 久久久久久久国产电影| 国产成人精品久久久久久| 18禁在线播放成人免费| 九九爱精品视频在线观看| 1000部很黄的大片| 一级毛片久久久久久久久女| 极品少妇高潮喷水抽搐| 91午夜精品亚洲一区二区三区| 91在线精品国自产拍蜜月| 又黄又爽又刺激的免费视频.| 在线观看av片永久免费下载| 超碰av人人做人人爽久久| 伊人久久国产一区二区| 亚洲激情五月婷婷啪啪| 卡戴珊不雅视频在线播放| 联通29元200g的流量卡| 日本色播在线视频| 亚洲av免费高清在线观看| 欧美人与善性xxx| 亚州av有码| 免费看日本二区| 亚洲经典国产精华液单| 国产精品三级大全| 蜜桃久久精品国产亚洲av| 国产爱豆传媒在线观看| 久久97久久精品| 联通29元200g的流量卡| 国产一区二区在线观看日韩| 国产精品久久久久久精品电影小说 | 我要看日韩黄色一级片| 午夜精品国产一区二区电影 | 男女下面进入的视频免费午夜| 亚洲av一区综合| av线在线观看网站| 黄片无遮挡物在线观看| 免费大片18禁| 亚洲av不卡在线观看| 成人毛片a级毛片在线播放| 久久97久久精品| 亚洲欧美成人精品一区二区| 亚洲国产欧美在线一区| 国产精品久久久久久精品古装| 日韩欧美 国产精品| 欧美xxxx黑人xx丫x性爽| 国产伦在线观看视频一区| 午夜激情久久久久久久| 国产大屁股一区二区在线视频| 少妇被粗大猛烈的视频| 亚洲国产精品成人久久小说| 欧美最新免费一区二区三区| 欧美性感艳星| 青春草视频在线免费观看| 亚洲伊人久久精品综合| 男人狂女人下面高潮的视频| 91午夜精品亚洲一区二区三区| 高清欧美精品videossex| 九草在线视频观看| 婷婷色综合www| 国产成人freesex在线| av一本久久久久| 国产免费又黄又爽又色| 精品久久久久久电影网| 欧美日韩亚洲高清精品| 男人舔奶头视频| 亚洲精品日本国产第一区| 成人免费观看视频高清| 视频中文字幕在线观看| 人人妻人人看人人澡| 国产男女内射视频| 日本一本二区三区精品| 久久久成人免费电影| 精品人妻熟女av久视频| 人体艺术视频欧美日本| 日本爱情动作片www.在线观看| 国产精品国产av在线观看| 国产欧美另类精品又又久久亚洲欧美| 超碰97精品在线观看| 国产爱豆传媒在线观看| 亚洲av免费高清在线观看| 精品国产一区二区三区久久久樱花 | 亚洲成人一二三区av| 国内少妇人妻偷人精品xxx网站| 亚洲va在线va天堂va国产| 黄色一级大片看看| 亚洲av电影在线观看一区二区三区 | 高清视频免费观看一区二区| 夫妻午夜视频| 大又大粗又爽又黄少妇毛片口| 久久久久久伊人网av| 久久久久久久国产电影| 日韩欧美精品v在线| 国产中年淑女户外野战色| 国产女主播在线喷水免费视频网站| 欧美成人一区二区免费高清观看| 久久鲁丝午夜福利片| 偷拍熟女少妇极品色| 国产精品国产av在线观看| 九色成人免费人妻av| 亚洲人成网站高清观看| 免费av毛片视频| 精品人妻一区二区三区麻豆| 久久久久久伊人网av| 亚洲美女搞黄在线观看| 男女下面进入的视频免费午夜| 一级黄片播放器| 国内精品美女久久久久久| 亚洲国产最新在线播放| 成人亚洲精品一区在线观看 | 国产永久视频网站| 国产老妇伦熟女老妇高清| 免费观看av网站的网址| videossex国产| 波野结衣二区三区在线| 亚洲aⅴ乱码一区二区在线播放| 一个人看视频在线观看www免费| 99九九线精品视频在线观看视频| 久热这里只有精品99| 久久99热这里只有精品18| 国产爽快片一区二区三区| 国产一区二区在线观看日韩| 国产v大片淫在线免费观看| 只有这里有精品99| 韩国av在线不卡| 男人舔奶头视频| 97精品久久久久久久久久精品| 亚洲av日韩在线播放| 日本欧美国产在线视频| 1000部很黄的大片| 99久久精品国产国产毛片| 寂寞人妻少妇视频99o| 国产老妇伦熟女老妇高清| 边亲边吃奶的免费视频| 免费黄色在线免费观看| 国产精品国产三级专区第一集| 日本黄色片子视频| 97人妻精品一区二区三区麻豆| 晚上一个人看的免费电影| 日韩制服骚丝袜av| av在线老鸭窝| 国产成人福利小说|