• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automatic Classification of Superimposed Modulations for 5G MIMO Two-Way Cognitive Relay Networks

    2022-11-09 08:17:02HaithemBenChikhaandAhmadAlmadhor
    Computers Materials&Continua 2022年1期

    Haithem Ben Chikha and Ahmad Almadhor

    Jouf University,College of Computer and Information Sciences,Computer Engineering and Networks Department,Sakaka,72388,Kingdom of Saudi Arabia

    Abstract: To promote reliable and secure communications in the cognitive radio network,the automatic modulation classification algorithms have been mainly proposed to estimate a single modulation.In this paper,we address the classification of superimposed modulations dedicated to 5G multipleinput multiple-output (MIMO) two-way cognitive relay network in realistic channels modeled with Nakagami-m distribution.Our purpose consists of classifying pairs of users modulations from superimposed signals.To achieve this goal,we apply the higher-order statistics in conjunction with the Multi-BoostAB classifier.We use several efficiency metrics including the true positive(TP) rate,false positive (FP) rate,precision,recall,F-Measure and receiver operating characteristic (ROC) area in order to evaluate the performance of the proposed algorithm in terms of correct superimposed modulations classification.Computer simulations prove that our proposal allows obtaining a good probability of classification for ten superimposed modulations at a low signal-to-noise ratio,including the worst case (i.e.,m=0.5),where the fading distribution follows a one-sided Gaussian distribution.We also carry out a comparative study between our proposal using MultiBoostAB classifier with the decision tree (J48) classifier.Simulation results show that the performance of MultiBoostAB on the superimposed modulations classifications outperforms the one of J48 classifier.In addition,we study the impact of the symbols number,path loss exponent and relay position on the performance of the proposed automatic classification superimposed modulations in terms of probability of correct classification.

    Keywords: Automatic classification;MIMO two-way cognitive relay network;Nakagami-m channels;superimposed modulations;5G

    1 Introduction

    Recently,a lot of attention has been paid to the two-way relaying (TWR) scheme,which consists of the exchange information between two users via a commonly shared relay in the absence of a direct link between them [1-6].The transmission process under a TWR channel(TWRC) is performed in two-time slots.In the first time slot,the two user nodes send signals to the relay node.In the second time slot,the relay node broadcasts the received signals to the users.In this context,the physical-layer network coding (PNC) introduced in [7],is proposed to allow the relay node to decode a linear function of the received signals,and thereafter to allow each user to decode the incoming message from the other user based on the self-message.The PNC can double the throughput of a TWRC compared to the conventional one-way relay channel by decreasing the time slots for the exchange of one packet from four to two [7,8].It can acheive 1/2 bit of the capacity using a single-input single-output (SISO) Gaussian TWRC and it is assymptotically optimal in the presence of high signal-to-noise ratio (SNR) levels [9].Note that concurrent transmissions based on PNC provide a high spectrum efficiency compared to the network coding and time-division solutions [10].Consequently,the TWR finds applications in a wide range of applications envisaged for 5th generation new radio (5G NR) wireless networks and beyond,including the streaming 4K video,on-line cloud sharing and machine-to-machine communications [11,12].For the purpose of obtaining a good performance when using PNC for these applications,various studies have been carried out with a specific focus on TWRC issues,including the design of symbol mapping [13,14],channel estimation [15,16] and phase synchronization or effect of time [17-20].For satellite communication applications,a satellite can serve as a relay to enable the simultaneous information exchange between two ground stations.In this context,it is necessary to design heterogeneous modulation PNC to allow the exchange unequal amount of data between the two ground stations and/or to exchange data in asymmetric channel conditions of the two ground station-satellite links.Hence,each station may vary the used modulation type and order.Thus,each station needs the knowledge of the modulation scheme employed by the other station in order to properly demodulate the incoming signal.To guarantee an accurate data reception at the stations,a correct detection of the stations modulations from the superimposed symbols is demanded.It is well-known that multiple-input multiple-output (MIMO)system can offer a considerable gain compared to SISO system,especially in environments presenting rich-scattering.In fact,it is a popular technique for increasing the spectral efficiency and the reliability of cellular networks.For that reason,deploying many antenna elements in MIMO systems is one of the most promising technologies in 5G NR systems that can enable beamforming and spatial multiplexing [21].In a MIMO receiver node,the space-time decoder or the spatial demultiplexer and the demodulator are used to recover the transmitted binary information.In fact,the receiver node is the entity that converts the received waves into a binary stream.Consequently,the estimation of the transmitted binary information necessitates a prior knowledge of the communication parameters,such as the number of the source antennas,coding,noise variance,channel matrix,and modulation.To design efficient cognitive radio,several algorithms dedicated to the estimation of the communication parameters have been proposed in the literature.The authors in [22-24],have proposed algorithms for estimating the number of the source antennas.On the other hand,many approaches have been proposed for the detection of the coding [25,26].Other algorithms dedicated to the channel matrix estimation are available in [27,28].The most widely existing modulation classification algorithms in the literature are proposed to estimate a single M-ary modulation [29-34].However,the superposition of two M-ary modulations leads to a significant augmentation of the resulting constellation size in addition to an unusual spatial arrangement [35,36].In fact,the superposition of two modulations with orders M1and M2leads to a modulation with an order upper bounded by M1×M2.Furthermore,the superimposed modulated useful information with the noise results in the dispersion of the constellation points from their appropriate positions.In [35,36],the authors have addressed the problem of modulation classification of superimposed modulations in two-way relaying MIMO systems with PNC under Rayleigh channels.In addition,the zero-forcing (ZF) precoding technique is applied at each source node before transmission.To the best of the authors’knowledge,there is no previous work,which focused on the problem of superimposed modulations classification for MIMO two-way cognitive relay (TWCR) network under realistic channel modeled by Nakagami-m.

    In this paper,we propose an algorithm dedicated to the classification of the superimposed users modulations for MIMO TWCR network under Nakagami-m channels.Here,we use a ZF processing at the relay node.The purpose is to classify pairs of users modulations for given superimposed constellations in the case of the presence of Nakagami-m fading.At the relay node,we extract the higher-order statistics (HOSs) of the equalized superimposed symbols as an input to the MultiBoostAB classifier.To evaluate the performance of this latter classifier in terms of modulation classification,several efficiency metrics,such as the true positive rate,falsepositive rate,precision,recall,F-Measure and receiver operating characteristic (ROC) area are used.Simulation results illustrate that the proposed algorithm can achieve a good classification probability of modulations pair even in the worst case of Nakagami-m (i.e.,m=0.5) at a low signal-to-noise ratio (SNR).

    The rest of this paper is organized as follows: In Section 2,we model the considered MIMO TWCR network.In Section 3,we describe the proposed modulation classification algorithm.Our main results are illustrated in Section 4.Section 5 gives the conclusion of the paper.

    Mathematical Notations:E[.] stands for expectation.(·)-1and(·)Hdenote the inverse and the conjugate transpose operations,respectively.CL×Crepresents the set ofL×Cmatrices over complex field.

    2 Considered MIMO TWCR Network

    A MIMO TWCR network is considered as shown in Fig.1,where two users denoted as U1and U2and equipped with NU1and NU2antennas,respectively,exchange information through a common relay (R) equipped with NRantennas.

    For simplicity,an equal NUnumber of antennas is assumed at all nodes (i.e.,NU=NU1=NU2=NR).Here,we consider that there is no direct link between U1and U2due to the presence of a heavy shadowing.In our transmission model,the message exchange takes place in two time slots.In the first time slot,a multiple access (MAC) phase,in which both users U1and U2,simultaneously send their signals to R,is performed.Here,we consider that U1and U2use two modulations with orders M1and M2.Their superposition leads to a modulation with an order upper bounded by M1×M2.We consider ten combinations of modulation pairs reported in Tab.1.

    Table 1:Considered combinations of modulation pairs

    For example,in Fig.2,we show the constellation of the superposition of a 4PSK and a 16QAM that contains 64 different points.

    AtR,the superimposed modulated useful information is affected by the noise and results a dispersion of the constellation points from their appropriate positions.Hence,at time instantt,we assume that the received signalis given by

    wherePU1RandPU2Rare the signal powers atRfrom the usersU1andU2,respectively.HUiR∈CNR×NUirepresents the channel matrix betweenUiandR.It is given by

    HUiRare modeled with Nakagami-mifading,i=1,2.Here,the factormirepresents the Nakagami-mseverity parameter of theUi-Rchannel.As the value ofmiincreases,the fading severity decreases.The case ofmi=1 corresponds to the Rayleigh fading.x1,tand x2,tare the modulated data vectors atU1andU2,respectively.Finally,nR,tis a circularly complex Gaussian noise of varianceσ2n.The SNR average of therth relay antenna from thejth antenna of userUiis expressed as

    wherei∈{1,2},r∈{1,...,NR}and

    In the second time slot,a linear processing is performed on the received signal at the relay nodeR.In fact,a ZF processing is applied to the superimposed signals to eliminate the interpair and the inter-user interferences.The linear processing matrix,denoted by PL∈C2NU×NR,is given by

    Here,we suppose that the relay nodeRhas a perfect knowledge of HU1Rand HU2Rsince the estimation of the backward channels can be performed based on pilot signaling [37].Therefore,the transformed signal is written as

    In this work,we consider the distances between nodes.Given the fact thatdSDdenotes the Euclidean distance between a source,denoted bySand a destination,denoted byD,the path loss betweenSandDis defined in [38] as

    where?represents a constant depending on both the environment and the carrier wavelength,andηdenotes the path-loss exponent and usually varies between two and six.Here,we consider that the two usersU1andU2have the same transmission powerPU=PU1=PU2.To ensure a fair comparison with one-hop transmission,consider thatPUU′=PU1U2=PU2U1to be the power of the received signal at the end-node of theU1U2link (i.e.,direct link).Hence,the power of the received signal atRfrom the userUi,denoted byPUiR,can be written as

    wheredU1U2denotes the distance between the user nodesU1andU2,whiledUiRrepresents the distance between the userUi,i=1,2 and the relayrepresents theUi-Rpower gain with respect toPUU′.This latter quotient is denoted byGUiR,i=1,2.The average SNRs of theUi-Rlink is written based on the normalized fading coefficients as

    The quotientPUU′/σn2represents the reference SNR and we denote it by.

    In the second time slot,Rbroadcasts the superimposed signal to the users with an additional overhead containing the estimated users modulations.A mandatory condition to obtain the correct information at bothU1andU2is the appropriate detection of the modulations used byU1andU2.Thus,Rshould perfectly detect the users modulations from the equalized signal zR.

    In this context,we propose an algorithm for classifying superimposed modulations.It is mainly composed of two subsystems.The first subsystem allows to extract the higher-order statistics (HOSs) features from the equalized signal zR,while the second subsystem allows detecting the users modulations pair based on the extracted features and the MultiBoostAB classifier.

    In the following,we describe the proposed modulation classification algorithm.

    3 Proposed Superimposed Modulations Classification Algorithm

    The proposed superimposed modulations classification algorithm is divided into two main steps.The first one consists of extracting a set of appropriate features,while the second one concerns the classification based on supervised machine learning techniques.In the following,we explain these two steps.

    3.1 Extraction of Discriminating Features

    The higher-order statistics (HOSs) composed by the higher-order moments (HOMs) and the higher-order cumulants (HOCs) have shown in several recent existing works in literature their ability to classify modulations for MIMO systems [39].In fact,each modulation scheme can be characterized by a set of HOMs and HOCs.The use of HOSs up to order eight allow the correct classification of various modulation types [40].

    Thejth-order HOM of the equalized sequence at theathantennais given by [41]

    An estimation of the HOMs can be expressed as

    Thejth-order HOC of the z(Ra)signal can be expressed as

    Thejth-order HOC may be written as a function of lower and equal ordered HOMs as follows

    where Ψ runs through the list of all partitions of {1,...,j},φruns through the list of all blocks of the partition Ψ andδis the elements number of the partition Ψ.We raise each HOC to the power 2/jsince the magnitude of HOCs increases with their order [42].

    The process of classification of modulations pair for the received signal yR,tis illustrated in Fig.3.A training phase is firstly launched to build a model using the MultiBoosting through the use of a learning database (LDB).Then,the test phase is done to classify the modulations pair of yR,tbased on the model that is already built with the LDB.In the following,we describe the MultiBoosting classifier.

    3.2 MultiBoostAB

    In this work,we use the MultiBoosting (MultiBoostAB) classifier,which is a combination of the Boosting and the Wagging techniques [43].We present in the Algorithm 1 the pseudocode of MultiBoostAB classifier.

    The idea is to harness the benefits provided by both techniques.In fact,this classifier takes advantage of Wagging’s superior variance reduction in addition to the AdaBoost’s high bias and variance reduction.Here,we employ the C4.5 (J48) [44] as a base learning algorithm since with this latter MultiBoost classifier provides a good prediction comparing to the AdaBoost classifier.To prove the effectiveness of MultiBoostAB operating with J48 classifier in superimposed modulation classification,we carry out a comparative study with the J48 classifier alone that outperforms the performance of multilayer perceptron classifier trained with resilient backpropagation training algorithm [45].

    Algorithm 1: MultiBoostAB algorithmimages/BZ_1765_265_498_1091_2310.png

    3.3 Metrics Used for Performance Evaluation of Classifiers

    In this study,we compare between classifiers using true positive (TP) rate,false positive(FP) rate,precision,recall and F-Measure metrics.The precision,recall and F-measure are given respectively as

    4 Simulation Results

    Simulation experiments are conducted to demonstrate the advantages of the proposed automatic classification modulation algorithm.Here,we apply our proposal to classify ten combinations of modulation pairs,i.e.,M={(16QAM,16QAM),(16QAM,64QAM),(16QAM,2PSK),(16QAM,4PSK),(64QAM,64QAM),(64QAM,2PSK),(64QAM,4PSK),(2PSK,2PSK),(2PSK,4PSK),(4PSK,4PSK)}.

    For each pair inM,we construct a training set with 200 superimposed signals,where the user messages x1,tand x2,tofU1andU2,respectively,are created in a random manner.For each signal,the number of symbolsNis fixed to 10000 symbols.Here,the all channels are subject to Nakagamimfading.1000 Monte Carlo trials are generated as a test set for each superimposed pair inM.Thus,the test set contains 10000 Monte Carlo trials results (i.e.,Numtotal=10×1000).We consider a free-space path loss model withη=2 and the number of antennas at each node is fixed toNU=4.In the training and test phases,the set of features is building using the HOSs(HOCs and HOMs) of z(a)R.Finally,we use MultiBoostAB with J48 as a base classifier,where the number of training subsetNTSis equal to 10 [46].This latter setting shows that the MultiBoostAB classifier provides a good compromise between the probability of modulation classification and the speed of the training phase.

    In this work,the probability of the correct classification is computed by

    whereNψmis the number of trials for which the pair modulationsψm∈Mis perfectly classified.For each test trial,a collaboration between allNRantennas is made in order to take the decision.Indeed,the pair of modulations having the majority of votes represents the estimated modulations pair.

    4.1 Accuracy of the MultiBoostAB Classifier

    We firstly evaluate the performance of the MultiBoostAB classifier using a 10-fold crossvalidation [47] on the training set described above.Tab.2 displays the detailed accuracy by superimposed modulations.By analyzing the average of the TP rate,FP rate,precision,recall,F-Measure and receiver operating characteristic (ROC) area,it is clearly shown that the Multi-BoostAB offers a good classification performance.In fact,the values of TP rate,precision,recall,F-Measure and ROC area are very close to 1 and the value of the FP rate is very close to 0.Therefore,the MultiBoostAB classifier is efficient to automatically classify superimposed modulations.

    4.2 Impact of the Nakagami-m Fading Parameter

    Fig.4 shows the impact of the channel fading severity on theP,forManddU1R=dU2R=0.5.It is apparent that the probability of the classification decreases when decreasing fading parametermsince the fading becomes more and more severe.We also observe that the proposed algorithm has the ability to classify superimposed modulations at low SNR even in the case where the fading severity parameter is set to 0.5 (i.e.,worst-case).By comparing the performance of the MultiBoostAB with J48 classifier alone,it is clearly shown that the MultiBoostAB classifier offers a gain compared to J48 classifier in terms of superimposed modulations classification.For example,at 95% of superimposed modulations classification,the MultiBoostAB classifier provides a SNR gain of about 0.5 dB compared to J48 for the case wherem=0.5.Consequently,the MultiBoostAB classifier is more appropriate in superimposed modulations classification.

    Table 2:Detailed accuracy by superimposed modulations for the MultiBoostAB classifeir with NU=4,N=10000,η=2,dU1R=dU2R=0.5,m=0.5 and =5 dB

    Table 2:Detailed accuracy by superimposed modulations for the MultiBoostAB classifeir with NU=4,N=10000,η=2,dU1R=dU2R=0.5,m=0.5 and =5 dB

    Mi TP rate FP rate Precision Recall F-measure ROC area(16QAM,16QAM) 0.976 0.001 0.994 0.976 0.985 0.999(16QAM,64QAM) 0.979 0.003 0.97 0.979 0.974 0.999(16QAM,2PSK) 0.999 0.001 0.994 0.999 0.996 1(16QAM,4PSK) 0.995 0 0.996 0.995 0.996 0.999(64QAM,64QAM) 0.991 0.002 0.984 0.991 0.988 1(64QAM,2PSK) 0.994 0 0.997 0.994 0.996 1(64QAM,4PSK) 0.996 0 0.996 0.996 0.996 0.998(2PSK 2PSK) 1 0 0.999 1 0.999 1(2PSK,4PSK) 0.998 0 0.999 0.998 0.998 0.999(4PSK,4PSK) 1 0 0.999 1 0.999 1 Average 0.993 0.001 0.993 0.993 0.993 0.999

    4.3 Impact of the Symbols Number

    Fig.5 presents the average probability of correct classification,P,as a function of,for many values of symbols numberNusing MultiBoostAB classifier.The increase ofNleads to an improvement inPsince the HOMs estimation accuracy calculated in (8) increases when increasingN.

    4.4 Impact of the Relay Position

    As seen in Eq.(6),we can incorporate different relay positions,where all distances involved in the calculation of the power gain are relative to the distance between the two usersU1andU2.In fact,we assume thatdU1R+dU2R=1.

    Fig.6 illustrates the average probability of correct classification of the proposed algorithm,P,as a function ofat different relay positions forM.It is clearly shown that,when the relay is located exactly in the middle (i.e.,dU1R=dU1R=0.5),the best performance is obtained.For example,a good performance (P~=100%) is reached atdU1R=0.5,while only 97% is achieved atdU1R=0.1 for=5 dB.It can be also shown from this Figure that the proposed algorithm achieves an excellent performance (P~=100%) at all relay positions and for a low SNR (=8 dB).

    4.5 Impact of the Path Loss Exponent

    Fig.7 presents the average probability of correct classification of the proposed algorithm,P,as a function of,for various values ofη,usingManddU1R=dU2R=0.5.The increase ofηleads to a considerable improvements inP.Here,the gain is obtained thanks to the increase of theatRwhen increasingηfor the same referenceas seen in Eq.(6).

    4.6 Impact of the Antenna Number

    Fig.8 shows the average probability of correct classification of the proposed algorithm,P,as a function of,forNU=NU1=NU2=NR={4,8},usingManddU1R=dU2R=0.5.One can see thatPis significantly increased when settingNUto 8.In fact,a good performance is achieved at=1 dB forNU=8,whereas the same performance is obtained at=5 dB forNU=4.

    5 Conclusion and Future Work

    We have proposed an automatic classification algorithm of superimposed modulations designed for MIMO TWCR network over Nakagami-mchannels.At the relay node,we have extracted a set of HOSs from the superimposed received symbols as features extraction.Then,we have employed the MultiBoostAB classifier.Simulations were performed to show the performance of the proposed classification modulation algorithm based on several metrics.We have demonstrated that our proposal has the ability to provide good performances at a low SNR in the case where the fading severity parameter is set to 0.5 (i.e.,worst-case).We have also carried out a comparative study between our proposal using MultiBoostAB classifier with J48 classifier.Through simulation results,we have clearly showed that the performance of MultiBoostAB on the superimposed modulations classifications outperforms the one of J48 classifier.Finally,we have studied the impact of the symbols number,path loss exponent and relay position on the performance of the proposed automatic classification superimposed modulations in terms of probability of correct classification.

    In the future work,we will investigate the use of deep learning based neural networks in order to further improve the probability of the correct classification of superimposed modulations at low SNR values.

    Funding Statement: This work was supported by Jouf University.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present.

    欧美最黄视频在线播放免费 | 最新在线观看一区二区三区| 久久久久久久精品吃奶| 国产精品日韩av在线免费观看 | 男男h啪啪无遮挡| 亚洲色图 男人天堂 中文字幕| 一区二区日韩欧美中文字幕| 麻豆久久精品国产亚洲av | 午夜影院日韩av| 12—13女人毛片做爰片一| 侵犯人妻中文字幕一二三四区| 国产在线精品亚洲第一网站| 久久久久国产一级毛片高清牌| 日本撒尿小便嘘嘘汇集6| 视频在线观看一区二区三区| 免费搜索国产男女视频| 91成年电影在线观看| 不卡av一区二区三区| 精品久久蜜臀av无| 无遮挡黄片免费观看| 色婷婷久久久亚洲欧美| 99香蕉大伊视频| 男女做爰动态图高潮gif福利片 | 免费在线观看亚洲国产| 久久久久久久精品吃奶| 黑丝袜美女国产一区| 女性生殖器流出的白浆| 欧美激情 高清一区二区三区| 精品一品国产午夜福利视频| 丁香欧美五月| 日韩欧美国产一区二区入口| 激情在线观看视频在线高清| 精品久久蜜臀av无| 自拍欧美九色日韩亚洲蝌蚪91| 18美女黄网站色大片免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 操美女的视频在线观看| 国产成人精品无人区| 久久中文字幕人妻熟女| 日韩欧美三级三区| 搡老岳熟女国产| 亚洲精品在线美女| 香蕉久久夜色| 美女扒开内裤让男人捅视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成人精品在线电影| 国产三级在线视频| 日韩免费av在线播放| 夜夜看夜夜爽夜夜摸 | 最好的美女福利视频网| 亚洲精品一区av在线观看| 日本五十路高清| 国产精品影院久久| 亚洲精品在线美女| 久久精品亚洲熟妇少妇任你| 91精品国产国语对白视频| 脱女人内裤的视频| 在线观看免费高清a一片| 人人妻人人添人人爽欧美一区卜| 91麻豆av在线| 如日韩欧美国产精品一区二区三区| 精品免费久久久久久久清纯| 久久久精品欧美日韩精品| 嫩草影院精品99| 99国产综合亚洲精品| 叶爱在线成人免费视频播放| 久久中文字幕一级| 狠狠狠狠99中文字幕| 交换朋友夫妻互换小说| 国产精品日韩av在线免费观看 | 啦啦啦 在线观看视频| 国产一区二区三区视频了| 搡老熟女国产l中国老女人| 精品午夜福利视频在线观看一区| 51午夜福利影视在线观看| 午夜福利欧美成人| 亚洲一区中文字幕在线| 最近最新中文字幕大全电影3 | svipshipincom国产片| 久久久久精品国产欧美久久久| 伦理电影免费视频| 成人18禁高潮啪啪吃奶动态图| √禁漫天堂资源中文www| 精品久久久久久成人av| 多毛熟女@视频| 成人影院久久| 一级片'在线观看视频| 免费在线观看黄色视频的| 天天添夜夜摸| 亚洲狠狠婷婷综合久久图片| 宅男免费午夜| 日本欧美视频一区| 日韩精品青青久久久久久| 国产无遮挡羞羞视频在线观看| av免费在线观看网站| 在线十欧美十亚洲十日本专区| 国产成人精品久久二区二区免费| 免费在线观看日本一区| xxx96com| 午夜久久久在线观看| 成人国语在线视频| 人人妻人人澡人人看| 国产麻豆69| 久久久精品欧美日韩精品| 狠狠狠狠99中文字幕| av福利片在线| 久久影院123| 人人澡人人妻人| 免费观看精品视频网站| 男男h啪啪无遮挡| 午夜福利影视在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品成人av观看孕妇| 久久精品91蜜桃| 欧美一区二区精品小视频在线| 涩涩av久久男人的天堂| 久久人人97超碰香蕉20202| 亚洲av五月六月丁香网| 日韩免费高清中文字幕av| 美女福利国产在线| 脱女人内裤的视频| 亚洲情色 制服丝袜| 日韩欧美在线二视频| 可以免费在线观看a视频的电影网站| 亚洲人成电影免费在线| 欧美成狂野欧美在线观看| 久久久久九九精品影院| 午夜福利在线观看吧| 亚洲黑人精品在线| 国产精品久久视频播放| 国产成人精品久久二区二区91| 欧美日韩亚洲综合一区二区三区_| 长腿黑丝高跟| 亚洲熟妇中文字幕五十中出 | 久9热在线精品视频| 嫁个100分男人电影在线观看| 国产熟女午夜一区二区三区| 大香蕉久久成人网| 欧美日韩福利视频一区二区| 精品国产一区二区久久| 欧美日韩亚洲国产一区二区在线观看| www国产在线视频色| 搡老乐熟女国产| 99国产精品99久久久久| a级毛片黄视频| 夜夜看夜夜爽夜夜摸 | 长腿黑丝高跟| 亚洲精品一二三| 一进一出好大好爽视频| 日韩成人在线观看一区二区三区| 精品国产一区二区三区四区第35| 岛国视频午夜一区免费看| 久久人妻熟女aⅴ| www.www免费av| 日本一区二区免费在线视频| 性欧美人与动物交配| 91大片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 午夜激情av网站| 亚洲欧美日韩另类电影网站| 欧美日韩av久久| 热re99久久精品国产66热6| 自线自在国产av| 丁香欧美五月| 一区二区日韩欧美中文字幕| 长腿黑丝高跟| 久久精品国产亚洲av高清一级| 久久精品成人免费网站| 国产精品美女特级片免费视频播放器 | 黄色a级毛片大全视频| 欧美日韩国产mv在线观看视频| 曰老女人黄片| 午夜视频精品福利| 一区二区三区国产精品乱码| 久久精品亚洲熟妇少妇任你| 久久青草综合色| 午夜久久久在线观看| 伦理电影免费视频| 久久久久久亚洲精品国产蜜桃av| 脱女人内裤的视频| 国产激情久久老熟女| 国产成人免费无遮挡视频| 国产精品 欧美亚洲| 亚洲精品国产一区二区精华液| 国产人伦9x9x在线观看| 9191精品国产免费久久| 水蜜桃什么品种好| 日韩免费av在线播放| 男女下面进入的视频免费午夜 | 99香蕉大伊视频| 日本三级黄在线观看| 一区二区三区国产精品乱码| 亚洲专区字幕在线| 丰满饥渴人妻一区二区三| 无遮挡黄片免费观看| 欧美激情极品国产一区二区三区| 久久天躁狠狠躁夜夜2o2o| 桃色一区二区三区在线观看| 我的亚洲天堂| 男男h啪啪无遮挡| 国产亚洲精品久久久久久毛片| 亚洲成av片中文字幕在线观看| 久久国产精品男人的天堂亚洲| 日韩欧美一区视频在线观看| 宅男免费午夜| 黄色视频不卡| 久久中文字幕人妻熟女| av网站免费在线观看视频| 国产av又大| 两人在一起打扑克的视频| 美女扒开内裤让男人捅视频| 精品国产乱子伦一区二区三区| 亚洲午夜理论影院| 欧美国产精品va在线观看不卡| 亚洲 欧美 日韩 在线 免费| 18禁观看日本| 精品国产美女av久久久久小说| 黄色视频不卡| 亚洲黑人精品在线| www国产在线视频色| 50天的宝宝边吃奶边哭怎么回事| 亚洲自偷自拍图片 自拍| 老汉色∧v一级毛片| 精品国产一区二区三区四区第35| 国产一区二区激情短视频| 嫁个100分男人电影在线观看| 免费久久久久久久精品成人欧美视频| 国产aⅴ精品一区二区三区波| 久久青草综合色| 亚洲一区二区三区不卡视频| 国产99白浆流出| 国产高清激情床上av| 国产精品av久久久久免费| 又大又爽又粗| 日本一区二区免费在线视频| 日韩欧美在线二视频| 精品久久久精品久久久| 色哟哟哟哟哟哟| 他把我摸到了高潮在线观看| 男女之事视频高清在线观看| 一进一出抽搐动态| 久久人妻av系列| 欧美乱码精品一区二区三区| 日本免费一区二区三区高清不卡 | 人人妻,人人澡人人爽秒播| 国产主播在线观看一区二区| 美女午夜性视频免费| 国产一卡二卡三卡精品| 久久天堂一区二区三区四区| 18禁国产床啪视频网站| 免费观看人在逋| 国内毛片毛片毛片毛片毛片| 午夜精品在线福利| 91国产中文字幕| av福利片在线| 国产精品一区二区在线不卡| 黑人巨大精品欧美一区二区mp4| 精品久久久久久,| 十八禁网站免费在线| 大型av网站在线播放| 亚洲免费av在线视频| 色综合婷婷激情| 免费在线观看影片大全网站| 欧美午夜高清在线| 老鸭窝网址在线观看| 亚洲一区高清亚洲精品| 精品高清国产在线一区| 88av欧美| 成人三级黄色视频| 精品久久久久久成人av| 免费av中文字幕在线| 精品久久久精品久久久| 91字幕亚洲| 99热只有精品国产| 中文欧美无线码| 成人手机av| 国产av一区在线观看免费| 在线播放国产精品三级| 女性被躁到高潮视频| 97人妻天天添夜夜摸| 亚洲 国产 在线| 免费看a级黄色片| 两个人免费观看高清视频| 精品乱码久久久久久99久播| 国产91精品成人一区二区三区| 国产精品 国内视频| 中出人妻视频一区二区| 咕卡用的链子| 久久久久久人人人人人| 一二三四社区在线视频社区8| 国产色视频综合| 欧洲精品卡2卡3卡4卡5卡区| 欧美激情久久久久久爽电影 | 女警被强在线播放| 国产精品一区二区在线不卡| 在线国产一区二区在线| 一本大道久久a久久精品| av中文乱码字幕在线| 啦啦啦免费观看视频1| 亚洲中文av在线| 99香蕉大伊视频| 最新美女视频免费是黄的| 757午夜福利合集在线观看| 波多野结衣高清无吗| 美女高潮到喷水免费观看| 国产精品成人在线| 久久影院123| 美国免费a级毛片| 丝袜在线中文字幕| 久久中文看片网| 中亚洲国语对白在线视频| 可以免费在线观看a视频的电影网站| 中文字幕高清在线视频| 亚洲精品国产区一区二| 一进一出好大好爽视频| 国产成人影院久久av| 欧洲精品卡2卡3卡4卡5卡区| 丝袜美足系列| 老汉色∧v一级毛片| 免费在线观看完整版高清| 精品福利永久在线观看| 操美女的视频在线观看| 看黄色毛片网站| 亚洲欧美激情在线| 宅男免费午夜| 桃红色精品国产亚洲av| av天堂久久9| 国产亚洲精品久久久久久毛片| 亚洲第一青青草原| 欧美日韩视频精品一区| 窝窝影院91人妻| 国产亚洲av高清不卡| 日本 av在线| www.www免费av| 精品第一国产精品| 国产亚洲精品久久久久久毛片| 日韩 欧美 亚洲 中文字幕| 欧美激情极品国产一区二区三区| 一级片免费观看大全| 成人三级做爰电影| 成年版毛片免费区| 婷婷六月久久综合丁香| 一级片免费观看大全| 黑人猛操日本美女一级片| 亚洲国产精品合色在线| 国产一区在线观看成人免费| 精品免费久久久久久久清纯| 亚洲精品国产一区二区精华液| www日本在线高清视频| 一a级毛片在线观看| а√天堂www在线а√下载| 亚洲第一欧美日韩一区二区三区| 欧美日韩精品网址| 欧美黑人精品巨大| 嫁个100分男人电影在线观看| 一级毛片精品| 新久久久久国产一级毛片| 免费观看人在逋| 老司机福利观看| 99精品在免费线老司机午夜| ponron亚洲| 丰满的人妻完整版| 日日干狠狠操夜夜爽| 97碰自拍视频| 久久久精品国产亚洲av高清涩受| 人人妻人人添人人爽欧美一区卜| 麻豆久久精品国产亚洲av | 男人操女人黄网站| 夜夜躁狠狠躁天天躁| 老司机亚洲免费影院| 波多野结衣av一区二区av| 欧美激情高清一区二区三区| 国产极品粉嫩免费观看在线| 亚洲午夜理论影院| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全免费视频| 狂野欧美激情性xxxx| 久久精品亚洲熟妇少妇任你| 午夜福利欧美成人| 久久久久国内视频| 午夜免费鲁丝| 12—13女人毛片做爰片一| 色综合站精品国产| 三级毛片av免费| 国产伦一二天堂av在线观看| 波多野结衣av一区二区av| 日韩人妻精品一区2区三区| 9色porny在线观看| 午夜视频精品福利| 国产精品自产拍在线观看55亚洲| 可以免费在线观看a视频的电影网站| 又紧又爽又黄一区二区| 日韩欧美三级三区| 国产欧美日韩综合在线一区二区| netflix在线观看网站| 日韩精品免费视频一区二区三区| 成年人黄色毛片网站| 美国免费a级毛片| 丁香欧美五月| 亚洲av第一区精品v没综合| 精品日产1卡2卡| 777久久人妻少妇嫩草av网站| 丰满的人妻完整版| 一区二区三区精品91| 怎么达到女性高潮| 12—13女人毛片做爰片一| 亚洲性夜色夜夜综合| 国产单亲对白刺激| 色婷婷久久久亚洲欧美| 国产主播在线观看一区二区| 在线观看午夜福利视频| 亚洲在线自拍视频| 午夜视频精品福利| 成人亚洲精品一区在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美人与性动交α欧美软件| 在线观看免费视频网站a站| 国产色视频综合| 高潮久久久久久久久久久不卡| 国产高清视频在线播放一区| 琪琪午夜伦伦电影理论片6080| 性少妇av在线| 色老头精品视频在线观看| 黄色女人牲交| 十八禁人妻一区二区| 亚洲精品久久午夜乱码| 黑人巨大精品欧美一区二区蜜桃| 精品国产乱码久久久久久男人| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美精品综合一区二区三区| 人人妻人人爽人人添夜夜欢视频| 国产成人一区二区三区免费视频网站| 亚洲va日本ⅴa欧美va伊人久久| 男人舔女人下体高潮全视频| 99热国产这里只有精品6| 老司机亚洲免费影院| 国产一卡二卡三卡精品| 日本撒尿小便嘘嘘汇集6| 精品国产超薄肉色丝袜足j| 亚洲aⅴ乱码一区二区在线播放 | 两性夫妻黄色片| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美一区视频在线观看| 交换朋友夫妻互换小说| 精品国产乱子伦一区二区三区| 在线视频色国产色| 久久天躁狠狠躁夜夜2o2o| 中文字幕最新亚洲高清| 亚洲精品一区av在线观看| 男人的好看免费观看在线视频 | 亚洲色图综合在线观看| 人成视频在线观看免费观看| 丝袜人妻中文字幕| 亚洲av成人一区二区三| 国产精品国产av在线观看| 精品久久久久久电影网| 757午夜福利合集在线观看| 日本欧美视频一区| 在线看a的网站| 久久久久精品国产欧美久久久| 老汉色∧v一级毛片| 女性生殖器流出的白浆| 中文字幕最新亚洲高清| 亚洲精品国产区一区二| 视频区欧美日本亚洲| 可以免费在线观看a视频的电影网站| 女性被躁到高潮视频| 亚洲性夜色夜夜综合| 婷婷丁香在线五月| 少妇 在线观看| 视频区欧美日本亚洲| 女人被狂操c到高潮| 99久久久亚洲精品蜜臀av| 免费观看人在逋| 一级毛片精品| 国产精品香港三级国产av潘金莲| 国产国语露脸激情在线看| 一级黄色大片毛片| 亚洲av第一区精品v没综合| 男男h啪啪无遮挡| 一边摸一边抽搐一进一小说| 日韩精品青青久久久久久| 日韩人妻精品一区2区三区| 一级毛片精品| 1024香蕉在线观看| 成人国语在线视频| 亚洲精品在线美女| 在线看a的网站| 成人精品一区二区免费| 亚洲片人在线观看| 极品人妻少妇av视频| 亚洲三区欧美一区| 亚洲av第一区精品v没综合| 亚洲色图综合在线观看| 日韩欧美一区二区三区在线观看| 国产区一区二久久| 亚洲一区二区三区色噜噜 | 日本免费a在线| 午夜日韩欧美国产| 亚洲男人天堂网一区| 可以免费在线观看a视频的电影网站| 色哟哟哟哟哟哟| 久久久精品欧美日韩精品| 性欧美人与动物交配| 午夜福利影视在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 天堂中文最新版在线下载| 国产精品久久电影中文字幕| 在线观看66精品国产| 欧美黑人欧美精品刺激| 中文字幕人妻熟女乱码| 91九色精品人成在线观看| 日韩 欧美 亚洲 中文字幕| 母亲3免费完整高清在线观看| √禁漫天堂资源中文www| 欧美黄色片欧美黄色片| 午夜精品国产一区二区电影| 欧美日韩亚洲综合一区二区三区_| 在线播放国产精品三级| 涩涩av久久男人的天堂| 免费看十八禁软件| 午夜日韩欧美国产| 一进一出好大好爽视频| 很黄的视频免费| 少妇粗大呻吟视频| 满18在线观看网站| 免费在线观看日本一区| 日韩精品免费视频一区二区三区| 国产欧美日韩一区二区精品| www日本在线高清视频| 91精品三级在线观看| 法律面前人人平等表现在哪些方面| 男人舔女人下体高潮全视频| 精品久久蜜臀av无| 男女午夜视频在线观看| 一进一出抽搐动态| 午夜视频精品福利| 男人的好看免费观看在线视频 | 免费在线观看日本一区| 88av欧美| 两个人看的免费小视频| 午夜免费观看网址| 日本三级黄在线观看| 国产不卡一卡二| 中文字幕色久视频| 久久久国产欧美日韩av| 日本vs欧美在线观看视频| 国产深夜福利视频在线观看| 久9热在线精品视频| 999久久久精品免费观看国产| 视频在线观看一区二区三区| 又黄又爽又免费观看的视频| 大陆偷拍与自拍| 国产激情欧美一区二区| 88av欧美| 91老司机精品| 宅男免费午夜| 日韩欧美在线二视频| 天天影视国产精品| x7x7x7水蜜桃| 久久久久久免费高清国产稀缺| 中文字幕人妻丝袜制服| 国产成人免费无遮挡视频| 十八禁网站免费在线| 两个人看的免费小视频| 在线永久观看黄色视频| 99久久综合精品五月天人人| 亚洲少妇的诱惑av| 精品无人区乱码1区二区| 亚洲 国产 在线| 国产欧美日韩综合在线一区二区| 12—13女人毛片做爰片一| 波多野结衣一区麻豆| 亚洲精品中文字幕在线视频| 中文欧美无线码| 热re99久久精品国产66热6| 青草久久国产| 亚洲精品在线美女| 国产色视频综合| 999久久久精品免费观看国产| 亚洲人成电影观看| 国产视频一区二区在线看| 老鸭窝网址在线观看| 美女国产高潮福利片在线看| 69av精品久久久久久| 欧美国产精品va在线观看不卡| 日本a在线网址| 热99国产精品久久久久久7| 亚洲av第一区精品v没综合| 老司机亚洲免费影院| 日韩成人在线观看一区二区三区| 精品一区二区三区四区五区乱码| 精品一区二区三卡| 最近最新中文字幕大全电影3 | 国产麻豆69| 99re在线观看精品视频| 国产精品一区二区免费欧美| 一个人免费在线观看的高清视频| 色老头精品视频在线观看| 午夜免费激情av| 日韩免费av在线播放| 国产单亲对白刺激| 午夜a级毛片| 国产精品久久电影中文字幕| 天天躁夜夜躁狠狠躁躁| 午夜免费激情av| 亚洲av五月六月丁香网| 国产精品九九99| 级片在线观看| 搡老岳熟女国产| 99久久国产精品久久久| 亚洲精品在线美女| 一个人观看的视频www高清免费观看 | 国产成人精品久久二区二区免费| 久久精品aⅴ一区二区三区四区|