• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model Identification and Control of Evapotranspiration for Irrigation Water Optimization

    2022-11-09 08:16:56WafaDifallahFatehBounaamaBelkacemDraouiKhelifaBenahmedandAbdelkaderLaaboudi
    Computers Materials&Continua 2022年1期

    Wafa Difallah,Fateh Bounaama,Belkacem Draoui,Khelifa Benahmed and Abdelkader Laaboudi

    1Department of Exact Sciences,Normal Higher School of Bechar,08000,Algeria

    2Laboratory of Energetic in Arid Zones,Faculty of Technology,Tahri Mohammed University of Bechar,08000,Algeria

    3Department of Mathematics and Computer Science,Faculty of Exact Sciences,Tahri Mohammed University of Bechar,08000,Algeria

    4Algerian Institute for Research in Agronomy,Experimental Station of Adrar,01000,Algeria

    Abstract: Water conservation starts from rationalizing irrigation,as it is the largest consumer of this vital source.Following the critical and urgent nature of this issue,several works have been proposed.The idea of most researchers is to develop irrigation management systems to meet the water needs of plants with optimal use of this resource.In fact,irrigation water requirement is only the amount of water that must be applied to compensate the evapotranspiration loss.Penman-Monteith equation is the most common formula to evaluate reference evapotranspiration,but it requires many factors that cannot be available in many cases.This leads to a trend towards behavior model estimation.System identification with control is one of the most promising applicationsin this axis.The idea behind this proposal depends on three stages:First,the estimation of reference evapotranspiration(ET0)by a linear ARX model,where temperature,relative humidity,insolation duration and wind speed are used as inputs,and ET0 estimated by Penman-Monteith equation as output.The results show that the values estimated by this method were in good agreement with the measured data.The second part of this paper is to manage the quantity of water.For this purpose,two controllers are used for testing,lead-lag and PID.To adjust the first controller and optimize the choice of its parameters,Nelder-Mead algorithm is used.In the last part,a comparative study is done between the two used controllers.

    Keywords: Evapotranspiration;water;identification;optimization;irrigation;control

    1 Introduction

    The importance of water resource does not need to be proved.At first sight water seems to be the most abundant resource on earth,but in fact freshwater represents only 1% of all terrestrial water,and the remaining 99% are not available for human use.Algeria,like all African countries is largely affected by this water shortage,knowing that most of the country is a desert (87%) where rainfall is almost rare,and between 15 and 20 billion m3of water should be provided annually,reserving 70% for agriculture to achieve satisfactory food security.It is a titanic challenge when we know that we mobilize barely 5 billion cubic meters of water per year.In addition,the pressure on these resources will continue to grow,under the effects of population growth,urbanization and pollution.

    The importance of water for plants is no longer to be demonstrated.Among all economic sectors,irrigation is the sector where water scarcity has the greatest impact.Currently it is the largest consumer;it is also the sector with the most adjustment possibilities.Although it is only a small part of the global water cycle,evapotranspiration (ET) ensures the transfer of water from the soil to the atmosphere and plays a crucial role in the terrestrial biosphere.For most landscapes,evapotranspiration is governed by the transpiration of plants that draw water from the soil with their roots and return it to the atmosphere through the stomata of their leaves [1].

    Measuring ET is a valuable information for estimating water availability,plant absorption,spatial distribution,and variation over time [2,3].It is also related to soil moisture and can serve as an indicator of water stress.From an agricultural point of view,its spatialized measurement is therefore an essential tool for the management of water resources and the optimization of irrigation on a territorial scale.

    This introduction explains the existence of several works to estimate this factor.Since 1950,several formulas have been developed: Thornthwaite (1944) [4],Turc (1962) [5],Blanney-Criddle(1950) [6] and Penman-Monteith-FAO (1998) [7].The use of these models requires the knowledge of certain climatic data such as,the maximum and minimum temperature of the air,the maximum and minimum relative humidity,which depends on the temperature,global solar radiation and wind speed [8].

    Several comparative studies have been conducted to determine the best method for calculating evapotranspiration [8-15].

    Generally,the Penman-Monteith method leads to a better approximation of evapotranspiration.However,the implementation of this method requires a high number of parameters that are not always available for a simple farmer.This criticism implies the need to find simple and less expensive models in terms of the number of parameters for estimating evapotranspiration.A method of calculating ET0 is proposed in [16].The principle of this method is very simple and evapotranspiration calculation is based only on temperature.Similarly,in [17],the ET0 is derived solely from the temperature by the Hargreaves method,due to the unavailability of other parameters.Therefore,it does not include the sensitivity of other parameters affecting ET0,as does the Penman-Monteith method.However,the Hargreaves method can be considered as a quality technique in the calculation of evapotranspiration if the required Penman-Monteith variables are not all available.

    Generalized models based on the wavelet neural network (WNN) have been developed to estimate the reference evapotranspiration (ET0) corresponding to the Hargreaves (HG) method for different agro-ecological regions: semi-arid,arid,subhumid,and humid in India.The input and output of the WNN models are respectively the daily climatic data (minimum and maximum air temperature) and the evapotranspiration values (estimated by the FAO-56 method of Penman-Monteith) grouped over a period of five years [18].The three-temperature model (3 T model) is another proposal that could be used to estimate actual evapotranspiration (ET) and assess the quality of the environment [19].The main parameters included are the air temperature,the surface temperature of the soil and the reference soil temperature.

    In [20,21],a neural network model was developed to estimate reference evapotranspiration.This model guarantees a precision close to the formula of Penman Montheith,and with less parameters.For the same reason,the energy balance equation was used by Takakura et al.in [22]to measure evapotranspiration.Authors conclude that this method can be helpful to optimize the irrigation process.

    Several models have been proposed,in which the purpose was to obtain the value of ET at a lower cost in order to determine the irrigation water requirements.The methods used for this purpose are very varied,with the use of different parameters (temperature,solar radiation,etc.).

    In this paper,system identification with the autoregressive polynomial method with exogenous variables (ARX) is chosen to model the ET0,and the estimated results are compared to the measured values to test and validate the obtained model.In another step,lead lag and PID controllers are used to control the quantity of water for crops irrigation,and a comparative study is done.

    2 Materials and Methods of Modeling

    2.1 Description of Study Area

    The experiment was carried out in 2014,in the national institute of agronomic research(INRAA) in the south west of Algeria,exactly in the region of Adrar (27°49’North latitude and 00°18 East longitude (see Fig.1),with 276 m elevation above sea level).

    Figure 1:Location of the study area: INRAA [20]

    2.2 Plant Material

    In our study,we chose wheat crop,since Algeria is the third largest importer with 8.2 million tons after Egypt and Indonesia [23] (Fig.2),hence the need to encourage the production of this type of cereal.

    For the trials of the experimental station,it is a variety of durum wheat,commonly called“Shen-S”;it is semi-early and short-straw (85 cm),widely used under pivots.

    Figure 2:Imports of Wheat in Algeria 1993-2017 [24]

    2.3 Climatic Characteristics

    2.3.1 Temperature

    The temperature varies from 9°C in winter of 2014 to 44°C in summer (Fig.3).

    Figure 3:Evolution of the average temperature during the year

    2.3.2 Relative Humidity

    It is often less than 50%.It exceeds this value for four months of the year (January,February,November and December) (Fig.4).During some very short periods (rainy days),it can approach 100%.Dew is a very rare event.

    Figure 4:Evolution of the average relative humidity during the year

    2.3.3 Wind Speed

    It blows almost constantly,the dominant direction is Northeast.Towards the west,it often blows in violent sandstorms carrying out a double action: erosion and transport and sedimentation.Although the average speed seems low,the instantaneous speed can be very high and can reach 100 Km/h (Fig.5);it can cause significant damage to crops and protection systems(greenhouses,walls and windbreaks).

    Figure 5:Evolution of the average wind speed during the year

    2.3.4 Sunshine Duration

    The sunshine duration is often greater than 7 h a day.This indicates that the sky is clear most of the time (Fig.6).

    Figure 6:Evolution of the average sunshine duration during the year

    2.4 Data Collection

    The different climatic parameters are taken from the weather station located inside the experimental station (INRAA) of Adrar.These are temperature,relative humidity,wind speed,sunshine duration and evapotranspiration.

    To calculate the reference evapotranspiration,the Penman-Montheith formula (Eq.(1)) proposed by Allen et al.(1998) is applied with the climatic parameters of July:

    where Rnrefers to the net radiation at the crop surface [MJ m-2day-1],G refers to the soil heat flux density [MJ m-2day-1],T refers to the mean of daily air temperature at 2 m height [°C],u2designates the wind speed at 2 m height [m s-1],esrefers to the saturation vapour pressure [kPa],earefers to the actual vapor pressure [kPa],es-eadesignates the saturation vapor pressure deficit[kPa],Δrefers to the slope vapor pressure curve [kPa°C-1],γis the psychometric constant [kPa°C-1].

    PT100 Thermometer,Hygrometer,Wind vane and anemometer and Pyranometer are respectively used to sense temperature,relative humidity,wind speed and sunshine duration (see Fig.7).

    Figure 7:Different sensors used to collect data from the experimental site.(a-PT100 Thermometer,b-Hygrometer,c-Wind vane and anemometer,d-Pyranometer)

    The values of ET0 are generally high.They are closely related to all other meteorological factors (Fig.8).

    Figure 8:ET0 estimated by Penman-Montheith formula

    3 Identification of Reference Evapotranspiration

    3.1 The Identification Process

    To identify a real dynamic system (called object) is to characterize another system (called model) from the experimental knowledge of the inputs-outputs of the object [25].The diagram below shows the inputs and outputs of the studied system (Fig.9).

    Figure 9:The input,output and disturbance signals of the studied system

    The identification process is shown in the diagram in Fig.11.

    Initially the system is analyzed to understand its behavior and obtain a set of information that can help in the construction of the model.Depending on the knowledge of the system,an experimental plan is defined taking into account constraints and limitations.The experiment must be put into practice in such a way that the acquired data are obtained by exciting the whole range of frequencies to cover the widest possible range of the situations of its operation.

    After collecting the data,following the analysis that has been done beforehand,a model structure is chosen (ARX,ARMAX,...etc.) [26].The purpose of the model is to represent reality as accurately as possible.In this work,AutoRegressive models with eXogenous variables (ARX)are chosen.A diagram of an ARX model structure and its equation is illustrated in Fig.10.The ARX model is a simple differential equation,which describes an input-output relationship.The input-output relationship is modeled by a B/A transfer function.

    Figure 10:ARX model

    Figure 11:System identification procedure

    The next step in the identification system procedure is to generate the model parameters.Matlab uses the least square algorithm to update the model parameters.In the presence of the model structure and the output data measured at the experimental site or generated from the process,the least squares algorithm estimates the parameters of the model.It must minimize the error between process or experimental outputs and outputs estimated by the model.If not,another model structure should be chosen [27].

    To conclude on the relevance of the model,validation tests are carried out: a new data set is used and the behavior of the model is compared to reality.

    3.2 Database Processing

    The data with a simple time equal to 0,01 s is separated into two subsets: 67% of the data is used for the estimation phase and 33% of the data is used for the validation phase.The large amount of data is used in the estimation phase to provide very satisfactory and adequate results.

    3.3 Choice of the Model Structure

    The ARX polynomial model chosen is written in the following form:

    e(t) is a white noise.

    3.4 Identification Principle of System Parameters

    The parameters are identified according to the following diagram,i.e.,by comparing the measured and calculated results and minimizing the errors between them with the Nelder-Mead optimization algorithm (Fig.12).

    Figure 12:General schema of parameters identification

    3.5 Results and Discussion

    Fig.13 represents system identification of evapotranspiration by the measurements collected at the experimental station.

    Figure 13:Diagram of the ET0 model identification

    The system studied is of the “multi-input,mono-output” type (Fig.14).

    Figure 14:ARX model of the studied system

    Model parameters estimated by hand tuning are presented in Tab.1 below.

    Table 1:Model Parameters

    After system execution,the following discrete linear model is obtained:

    In Polynomial Form

    In transfer function form

    Z: an operator.

    In state space form

    where the matrices a,b,c and d are:

    To test the validity of the system,we compare the output of the identified model (ET0est)to the evapotranspiration calculated with Penman-Montheith formula using the measurements collected on site (ET0mes).The comparison with estimation and validation data is presented respectively in Figs.15 and 16.As it is shown in the figures,there is a strong correlation between the computed evapotranspiration values and the values estimated by the identified ARX model.

    Figure 15:Evolution over time of ET0 estimation data

    Figure 16:Evolution over time of ET0 validation data

    4 Control System

    The second part in this paper is the control;an important step to determine the right amount of water for wheat irrigation.For this purpose,two most popular controllers are implemented:lead lag and PID,with ITAE (Integral Time Absolute Error index performance criterion) criterion optimized with Nelder-Mead algorithm,followed by a comparative study.

    The control system design is illustrated in Fig.17:

    Figure 17:Control system design with ITAE criterion

    The first chosen controller is lead lag compensator;widely used in linear and classical control system design [28,29] with the following general form:

    The results,after optimization of zeros,poles and gain are shown in Tab.2.

    Table 2:Lead-lag parameters

    The simulation of the controlled system in Fig.17 with lead-lag compensator demonstrates the feasibility of using this controller to define the needed water for crops irrigation (etolg).The latter will compensate the lack caused by evapotranspiration as shown in Fig.18.This result illustrates that the evapotranspiration generated by lead-lag (etolg) is close to the desired evapotranspiration (etoref) as is indicated in Figs.19 and 20.

    Figure 18:Comparison between desired and simulated evapotranspiration (etoref-etolg)

    The second chosen controller is the PID,well known with three terms controller.Each term constitutes a controller type in itself: proportional,integral,and derivative controller which depend respectively on the current error,the accumulation of past error,and the prediction of future error [30].The PID is the collection of these three controllers,knowing that is possible to have two terms controller such as P,PI and PD controllers.

    These terms represent the tuning parameters of the general PID controller given by:

    Figure 19:Evolution of QW signal control generated by Lead-lag

    Figure 20:Difference between desired and simulated evapotranspiration (etoref-etolg)

    With filtered derivative term:

    In this system,hand-tuning method is used and the adjusted parameters are given in Tab.3.

    Table 3:PID parameters

    After replacing led-lag by PID controller in the system,it can be say that there is a good agreement between desired evapotranspiration and the quantity of water generated by PID.This is obviously confirmed in Figs.21-23 where the error signal is almost null.

    Figure 21:Comparison between desired and simulated evapotranspiration (etoref-etopid)

    Figure 22:Evolution of QW signal control generated by PID

    Figure 23:Difference between desired and simulated evapotranspiration (etoref-etopid)

    As is shown in Fig.17,after system identification,the controllers are tested with the use of a saturation block to guarantee that the system respects the physical conditions,and the results are shown in Fig.24 below.

    Figure 24:Comparative analysis of evapotranspiration evolution using PID and lead-lag controllers

    Fig.24 shows the comparative analysis of evapotranspiration variation using PID and lead-lag controllers.The two different controllers are implemented using MATLAB software.According to the simulation results,PID controller shows relatively better results than the lead lag controller.

    Generally,the control system with the both controllers: PID and lead lag show encouraging results for the application of the estimated ET0 in real time to optimize the irrigation water use.

    5 Conclusion

    To identify a physical system is to characterize another system (called a model),based on the experimental knowledge of the inputs and outputs so as to obtain an identity of the behavior.

    First,it is a question of collecting data,then choosing a structure of the model,an adjustment criterion and in the end retaining the best model.It is likely that the first model obtained does not achieve the desired level of precision,it will then be necessary to go back and review the different stages of the procedure.

    In this study,a behavior model of reference evapotranspiration is identified using the ARX polynomial method.

    This model is very close to the real system of Penman Montheith (97.9%),it is a great support for farmers to meet the water needs of crops with a few parameters.

    As a second step,the obtained model is adjusted by a controller.For this purpose,two types of controllers are used and a comparative study is done to define which one provides the best results.

    In this application,and as is well known in control system engineering,the PID controller remains the best,even though the results of the lead lag controller are also good and sometimes identical to the PID results as shown in Fig.24.

    In future studies,the aim will be to invest both controllers to obtain a more accurate system based on taking benefits of the two controllers and thus ensure a precise determination of plants water needs.

    Funding Statement: The authors received no specific funding for this study.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲精品久久久久久婷婷小说| 国产伦人伦偷精品视频| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩视频高清一区二区三区二| av不卡在线播放| 欧美成人精品欧美一级黄| 国产精品国产av在线观看| 午夜福利在线免费观看网站| 最黄视频免费看| 2018国产大陆天天弄谢| 在线 av 中文字幕| 欧美97在线视频| 成年美女黄网站色视频大全免费| 精品欧美一区二区三区在线| 不卡av一区二区三区| 久久久久久久国产电影| 午夜福利免费观看在线| 亚洲欧美成人综合另类久久久| 一级毛片女人18水好多 | 亚洲欧美成人综合另类久久久| 久久精品久久精品一区二区三区| 另类精品久久| 日韩,欧美,国产一区二区三区| 制服诱惑二区| 久久午夜综合久久蜜桃| 国产精品免费视频内射| 国产欧美日韩一区二区三 | 99香蕉大伊视频| 精品一区在线观看国产| 丰满饥渴人妻一区二区三| 蜜桃在线观看..| 男女边摸边吃奶| 国产精品三级大全| 九色亚洲精品在线播放| 免费在线观看完整版高清| 中国美女看黄片| 欧美另类一区| 国产精品国产三级国产专区5o| 热99久久久久精品小说推荐| 国产成人影院久久av| 精品一区在线观看国产| 久久国产精品影院| 高清视频免费观看一区二区| 99香蕉大伊视频| 一区二区三区四区激情视频| 肉色欧美久久久久久久蜜桃| 女性生殖器流出的白浆| 亚洲国产av影院在线观看| 国产av国产精品国产| 丝袜在线中文字幕| www.av在线官网国产| 一本一本久久a久久精品综合妖精| 欧美精品一区二区大全| 国产高清videossex| 国产精品免费视频内射| 在线精品无人区一区二区三| 国产欧美日韩综合在线一区二区| 女人爽到高潮嗷嗷叫在线视频| videos熟女内射| 精品国产一区二区三区久久久樱花| 久久久精品国产亚洲av高清涩受| 婷婷色综合www| av在线老鸭窝| 一级片免费观看大全| 一边亲一边摸免费视频| 久久久久国产精品人妻一区二区| 精品少妇黑人巨大在线播放| 视频区图区小说| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产av蜜桃| 亚洲精品一二三| 汤姆久久久久久久影院中文字幕| 亚洲色图综合在线观看| 新久久久久国产一级毛片| 色网站视频免费| 欧美xxⅹ黑人| 大片电影免费在线观看免费| 午夜两性在线视频| 亚洲成av片中文字幕在线观看| 亚洲色图 男人天堂 中文字幕| 国产成人av激情在线播放| 国产精品香港三级国产av潘金莲 | 热re99久久精品国产66热6| 人妻一区二区av| 一边亲一边摸免费视频| 性色av一级| 99国产精品免费福利视频| 欧美日韩视频精品一区| 国产免费一区二区三区四区乱码| 国产精品人妻久久久影院| 亚洲国产欧美网| 久久久久久人人人人人| 90打野战视频偷拍视频| 亚洲精品久久午夜乱码| videos熟女内射| 国产成人精品久久久久久| 国产亚洲欧美精品永久| 亚洲自偷自拍图片 自拍| 涩涩av久久男人的天堂| 精品第一国产精品| 久久久久久久大尺度免费视频| 精品人妻熟女毛片av久久网站| 最黄视频免费看| 大片免费播放器 马上看| 精品久久久久久,| 国产成人精品无人区| www.精华液| 亚洲人成网站在线播放欧美日韩| 美女高潮到喷水免费观看| 亚洲人成伊人成综合网2020| 手机成人av网站| 久久天堂一区二区三区四区| 一进一出抽搐动态| 曰老女人黄片| 免费高清视频大片| 99久久精品国产亚洲精品| 又黄又粗又硬又大视频| 免费电影在线观看免费观看| 国内精品久久久久久久电影| 免费在线观看视频国产中文字幕亚洲| 欧美黑人精品巨大| 麻豆国产av国片精品| 中文字幕高清在线视频| 亚洲真实伦在线观看| 日本a在线网址| √禁漫天堂资源中文www| 亚洲 欧美 日韩 在线 免费| 美女高潮到喷水免费观看| 欧美丝袜亚洲另类 | 天堂影院成人在线观看| 少妇粗大呻吟视频| 国产精品日韩av在线免费观看| 日韩一卡2卡3卡4卡2021年| 女人爽到高潮嗷嗷叫在线视频| 99re在线观看精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品乱码一区二三区的特点| 波多野结衣高清作品| 可以在线观看的亚洲视频| 在线观看舔阴道视频| 在线观看一区二区三区| 国产极品粉嫩免费观看在线| 天天一区二区日本电影三级| 18禁国产床啪视频网站| 午夜老司机福利片| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区三| 久久久国产成人免费| 欧美日本视频| 亚洲,欧美精品.| 精品欧美国产一区二区三| 在线观看舔阴道视频| 亚洲精品久久成人aⅴ小说| 91国产中文字幕| 真人做人爱边吃奶动态| 美女免费视频网站| 亚洲成av人片免费观看| 亚洲va日本ⅴa欧美va伊人久久| 黄色女人牲交| e午夜精品久久久久久久| 成年版毛片免费区| 成人免费观看视频高清| 天堂影院成人在线观看| 自线自在国产av| av视频在线观看入口| 成人18禁高潮啪啪吃奶动态图| 国产高清视频在线播放一区| av超薄肉色丝袜交足视频| 高潮久久久久久久久久久不卡| 人人妻人人澡欧美一区二区| 黄片大片在线免费观看| 91九色精品人成在线观看| avwww免费| 午夜免费成人在线视频| 丝袜人妻中文字幕| 久久久久免费精品人妻一区二区 | 女人被狂操c到高潮| 少妇 在线观看| 国产亚洲欧美在线一区二区| 欧美日韩亚洲国产一区二区在线观看| 一进一出抽搐gif免费好疼| 一夜夜www| 久久热在线av| 啦啦啦免费观看视频1| 91国产中文字幕| 搡老熟女国产l中国老女人| 一区二区日韩欧美中文字幕| 亚洲成a人片在线一区二区| 777久久人妻少妇嫩草av网站| 国产黄a三级三级三级人| 精品久久蜜臀av无| 国内少妇人妻偷人精品xxx网站 | 国产精品一区二区三区四区久久 | 精品电影一区二区在线| 俺也久久电影网| netflix在线观看网站| 草草在线视频免费看| 日本一区二区免费在线视频| 国产亚洲精品久久久久久毛片| 女性生殖器流出的白浆| 午夜久久久久精精品| 国产精品影院久久| 丝袜人妻中文字幕| 亚洲一区中文字幕在线| 亚洲精品国产精品久久久不卡| 一卡2卡三卡四卡精品乱码亚洲| 妹子高潮喷水视频| 91av网站免费观看| 九色国产91popny在线| 久久人人精品亚洲av| 国产成人影院久久av| 欧美日本视频| 19禁男女啪啪无遮挡网站| 人妻久久中文字幕网| 身体一侧抽搐| 欧美成人一区二区免费高清观看 | 日韩大尺度精品在线看网址| 国产精品久久久久久精品电影 | 午夜福利一区二区在线看| 女警被强在线播放| 在线观看www视频免费| 日韩欧美免费精品| 看片在线看免费视频| 久久国产精品男人的天堂亚洲| 精品欧美国产一区二区三| 国产精品乱码一区二三区的特点| 国产三级黄色录像| 日本一本二区三区精品| 国产三级在线视频| 亚洲成av人片免费观看| 亚洲专区国产一区二区| 欧美成人性av电影在线观看| 波多野结衣巨乳人妻| 黄色女人牲交| 成熟少妇高潮喷水视频| 亚洲精品一区av在线观看| 桃红色精品国产亚洲av| 免费无遮挡裸体视频| 成人亚洲精品一区在线观看| 中文字幕最新亚洲高清| 日韩精品免费视频一区二区三区| 午夜激情福利司机影院| 夜夜看夜夜爽夜夜摸| 午夜亚洲福利在线播放| 99久久99久久久精品蜜桃| 丰满的人妻完整版| 国产精品亚洲av一区麻豆| 麻豆久久精品国产亚洲av| 成人午夜高清在线视频 | 99国产精品一区二区蜜桃av| 国产亚洲精品一区二区www| 国产成年人精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 自线自在国产av| 国产成人影院久久av| 搞女人的毛片| 99国产综合亚洲精品| 国产成人av激情在线播放| avwww免费| av片东京热男人的天堂| 久久久久久免费高清国产稀缺| 精品免费久久久久久久清纯| 亚洲一区二区三区不卡视频| 成人亚洲精品一区在线观看| 成人欧美大片| 国产私拍福利视频在线观看| 亚洲欧美精品综合久久99| 伊人久久大香线蕉亚洲五| 一区二区三区精品91| 色老头精品视频在线观看| 免费高清在线观看日韩| 久久国产亚洲av麻豆专区| 国产高清激情床上av| 亚洲成a人片在线一区二区| 免费在线观看影片大全网站| 日本 欧美在线| 香蕉久久夜色| 国产一区二区三区在线臀色熟女| 一区二区三区国产精品乱码| 啦啦啦 在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 人人妻人人澡欧美一区二区| 免费在线观看亚洲国产| 亚洲 国产 在线| 午夜福利视频1000在线观看| 国产视频一区二区在线看| 免费女性裸体啪啪无遮挡网站| 国产精品野战在线观看| 日韩三级视频一区二区三区| 欧美一级a爱片免费观看看 | 久久久久九九精品影院| 变态另类成人亚洲欧美熟女| 亚洲五月天丁香| 国产亚洲精品一区二区www| 女生性感内裤真人,穿戴方法视频| 一本精品99久久精品77| 欧美午夜高清在线| 亚洲第一电影网av| 一a级毛片在线观看| av片东京热男人的天堂| 女人高潮潮喷娇喘18禁视频| 久久久国产成人免费| 午夜两性在线视频| 黄片大片在线免费观看| 日韩中文字幕欧美一区二区| 黄片大片在线免费观看| 一区二区三区激情视频| 嫁个100分男人电影在线观看| 午夜激情av网站| 免费女性裸体啪啪无遮挡网站| 亚洲av片天天在线观看| 免费高清在线观看日韩| 成人精品一区二区免费| 午夜福利免费观看在线| 看黄色毛片网站| 岛国视频午夜一区免费看| 欧美国产日韩亚洲一区| 国产又爽黄色视频| 色综合欧美亚洲国产小说| 99国产极品粉嫩在线观看| 久99久视频精品免费| 在线观看www视频免费| 麻豆av在线久日| 美女国产高潮福利片在线看| 国产精品久久久久久人妻精品电影| 欧美绝顶高潮抽搐喷水| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕av电影在线播放| 亚洲久久久国产精品| 国产人伦9x9x在线观看| 国产91精品成人一区二区三区| 日本在线视频免费播放| av欧美777| 精品午夜福利视频在线观看一区| 黄色 视频免费看| 大香蕉久久成人网| 亚洲精品中文字幕在线视频| 一本一本综合久久| 亚洲中文字幕日韩| tocl精华| 精品电影一区二区在线| 青草久久国产| 亚洲三区欧美一区| 久久九九热精品免费| 亚洲熟女毛片儿| 1024视频免费在线观看| 夜夜看夜夜爽夜夜摸| 又大又爽又粗| 亚洲熟女毛片儿| 日韩高清综合在线| 久久精品91蜜桃| 日韩高清综合在线| 精品国产超薄肉色丝袜足j| a在线观看视频网站| 亚洲专区国产一区二区| 嫁个100分男人电影在线观看| 亚洲五月色婷婷综合| 啪啪无遮挡十八禁网站| 亚洲精品一卡2卡三卡4卡5卡| 日韩av在线大香蕉| 欧美不卡视频在线免费观看 | 99热这里只有精品一区 | 国产精品一区二区精品视频观看| 亚洲精品久久国产高清桃花| 中文亚洲av片在线观看爽| 十八禁人妻一区二区| 午夜两性在线视频| 1024手机看黄色片| 黄网站色视频无遮挡免费观看| 99riav亚洲国产免费| 精品不卡国产一区二区三区| 91国产中文字幕| 久久精品91蜜桃| 禁无遮挡网站| 国产精品综合久久久久久久免费| 人人妻人人澡人人看| 91字幕亚洲| 非洲黑人性xxxx精品又粗又长| 999久久久精品免费观看国产| 91国产中文字幕| 亚洲精品国产区一区二| 一进一出抽搐动态| 久久人人精品亚洲av| 欧美中文日本在线观看视频| 国产又色又爽无遮挡免费看| 久久伊人香网站| 日韩精品免费视频一区二区三区| 天堂影院成人在线观看| 亚洲熟妇中文字幕五十中出| 一区二区三区国产精品乱码| 精品国产乱码久久久久久男人| 成人永久免费在线观看视频| 人成视频在线观看免费观看| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 亚洲中文字幕日韩| av福利片在线| 国产三级在线视频| 一卡2卡三卡四卡精品乱码亚洲| 午夜a级毛片| 国产av一区在线观看免费| 久久精品国产清高在天天线| 欧美一级a爱片免费观看看 | 日本撒尿小便嘘嘘汇集6| 人人妻人人澡欧美一区二区| 午夜福利成人在线免费观看| 一进一出好大好爽视频| 午夜免费鲁丝| 国产精品爽爽va在线观看网站 | 在线天堂中文资源库| 一级毛片精品| 国产精品av久久久久免费| 香蕉久久夜色| 久久亚洲真实| 黄网站色视频无遮挡免费观看| 亚洲色图 男人天堂 中文字幕| 亚洲成人久久性| 中文字幕精品亚洲无线码一区 | 国产欧美日韩一区二区精品| 嫩草影视91久久| x7x7x7水蜜桃| 日韩 欧美 亚洲 中文字幕| 99热这里只有精品一区 | 999久久久精品免费观看国产| 久久香蕉激情| 亚洲精品一区av在线观看| 老司机午夜福利在线观看视频| 男女午夜视频在线观看| 俺也久久电影网| 麻豆成人av在线观看| 叶爱在线成人免费视频播放| 看黄色毛片网站| 国产91精品成人一区二区三区| 亚洲精品国产一区二区精华液| 搡老岳熟女国产| 97超级碰碰碰精品色视频在线观看| 亚洲成人久久性| a在线观看视频网站| 欧美性长视频在线观看| a级毛片a级免费在线| 50天的宝宝边吃奶边哭怎么回事| 草草在线视频免费看| 中出人妻视频一区二区| 嫩草影视91久久| 1024手机看黄色片| 亚洲人成网站高清观看| 久久婷婷人人爽人人干人人爱| 两个人看的免费小视频| 露出奶头的视频| 熟妇人妻久久中文字幕3abv| 视频在线观看一区二区三区| 午夜视频精品福利| 夜夜夜夜夜久久久久| 久久狼人影院| 91老司机精品| 精品久久久久久久毛片微露脸| 无限看片的www在线观看| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久久久毛片| 欧美人与性动交α欧美精品济南到| 神马国产精品三级电影在线观看 | 亚洲午夜精品一区,二区,三区| 国产成人影院久久av| ponron亚洲| 欧美中文日本在线观看视频| 1024香蕉在线观看| 男男h啪啪无遮挡| 久久人妻福利社区极品人妻图片| 国产精品一区二区精品视频观看| 麻豆国产av国片精品| 男女午夜视频在线观看| 国产精品永久免费网站| 久久香蕉国产精品| 国产精品乱码一区二三区的特点| 黄片大片在线免费观看| 99国产极品粉嫩在线观看| 亚洲精品国产一区二区精华液| 亚洲av美国av| 韩国av一区二区三区四区| 夜夜爽天天搞| 成人av一区二区三区在线看| 性欧美人与动物交配| 国产蜜桃级精品一区二区三区| 啦啦啦韩国在线观看视频| 国产精品av久久久久免费| 国产精品1区2区在线观看.| 好男人在线观看高清免费视频 | 国产精品永久免费网站| 国产三级黄色录像| 激情在线观看视频在线高清| 好男人在线观看高清免费视频 | 一本精品99久久精品77| 淫秽高清视频在线观看| 国产乱人伦免费视频| 麻豆成人午夜福利视频| 丁香欧美五月| 国产成人av激情在线播放| av在线天堂中文字幕| 亚洲专区国产一区二区| 国产成人一区二区三区免费视频网站| 日韩精品免费视频一区二区三区| 精品国内亚洲2022精品成人| 亚洲欧美一区二区三区黑人| 在线观看www视频免费| av片东京热男人的天堂| 91麻豆精品激情在线观看国产| 热re99久久国产66热| 亚洲一码二码三码区别大吗| 免费在线观看影片大全网站| 亚洲欧美精品综合久久99| 亚洲精品色激情综合| 国产亚洲精品av在线| 最近最新免费中文字幕在线| 成人国产一区最新在线观看| www.精华液| 国产精品九九99| www日本在线高清视频| 久久午夜亚洲精品久久| 国产在线观看jvid| 91老司机精品| 精品免费久久久久久久清纯| 日韩精品中文字幕看吧| 1024手机看黄色片| 美女午夜性视频免费| 人人澡人人妻人| 中文字幕另类日韩欧美亚洲嫩草| 夜夜看夜夜爽夜夜摸| 成年免费大片在线观看| 久久亚洲精品不卡| 日日爽夜夜爽网站| 男女视频在线观看网站免费 | 国产亚洲欧美在线一区二区| 亚洲色图av天堂| 一级作爱视频免费观看| av欧美777| 精品久久久久久久人妻蜜臀av| 色播亚洲综合网| 精品电影一区二区在线| svipshipincom国产片| videosex国产| 女同久久另类99精品国产91| 日本撒尿小便嘘嘘汇集6| 亚洲激情在线av| 久久精品国产综合久久久| 亚洲精品久久国产高清桃花| 男女午夜视频在线观看| 男女那种视频在线观看| 精品免费久久久久久久清纯| 悠悠久久av| 欧美日韩亚洲国产一区二区在线观看| 久久香蕉国产精品| 亚洲精品一卡2卡三卡4卡5卡| 国产成人一区二区三区免费视频网站| 国产精品久久久久久精品电影 | 欧美成人一区二区免费高清观看 | 欧美一区二区精品小视频在线| 99热这里只有精品一区 | 精品人妻1区二区| 91大片在线观看| 国产亚洲精品久久久久5区| 亚洲一区二区三区色噜噜| 精品欧美一区二区三区在线| 国产午夜精品久久久久久| 777久久人妻少妇嫩草av网站| 中文字幕精品亚洲无线码一区 | 成人亚洲精品av一区二区| 国产三级黄色录像| 麻豆成人av在线观看| 十分钟在线观看高清视频www| 日本精品一区二区三区蜜桃| 欧美精品啪啪一区二区三区| 操出白浆在线播放| 免费av毛片视频| 久久久久免费精品人妻一区二区 | 一二三四在线观看免费中文在| 日韩一卡2卡3卡4卡2021年| 在线免费观看的www视频| 天天一区二区日本电影三级| 操出白浆在线播放| 香蕉av资源在线| 老司机深夜福利视频在线观看| 一级作爱视频免费观看| 国产免费av片在线观看野外av| 香蕉久久夜色| 欧美人与性动交α欧美精品济南到| 一区二区日韩欧美中文字幕| 欧美乱码精品一区二区三区| 好男人在线观看高清免费视频 | 日日爽夜夜爽网站| 视频在线观看一区二区三区| 精品久久久久久,| 一级毛片精品| 日韩高清综合在线| 精华霜和精华液先用哪个| 精品久久久久久久人妻蜜臀av| 俺也久久电影网| 精品国产一区二区三区四区第35| 热re99久久国产66热| 桃红色精品国产亚洲av| 精品国产一区二区三区四区第35| 久久久久久久久中文| 青草久久国产| 亚洲精品久久成人aⅴ小说| 久久久久免费精品人妻一区二区 | 国产精品亚洲一级av第二区| 老司机午夜福利在线观看视频| 成人免费观看视频高清| 一区二区三区激情视频| 欧美日韩亚洲国产一区二区在线观看| 精品久久久久久久毛片微露脸| 亚洲中文字幕一区二区三区有码在线看 | 97碰自拍视频| 九色国产91popny在线| 免费人成视频x8x8入口观看| 国产亚洲精品第一综合不卡|