• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Routing Optimization Algorithm for Software Defined Networking

    2022-11-09 08:16:04NancyAbbasElHefnawyOsamaAbdelRaoufandHebaAskr
    Computers Materials&Continua 2022年1期

    Nancy Abbas El-Hefnawy,Osama Abdel Raouf and Heba Askr

    1Department of Information Systems,Tanta University,Tanta,31511,Egypt

    2Department of Operations Research and Decision Support,Menoufia University,Shepen Alkom,Egypt

    3Department of Information Systems,University of Sadat City,AlSadat City,048,Egypt

    Abstract:Time and space complexity is the most critical problem of the current routing optimization algorithms for Software Defined Networking (SDN).To overcome this complexity,researchers use meta-heuristic techniques inside the routing optimization algorithms in the OpenFlow(OF)based large scale SDNs.This paper proposes a hybrid meta-heuristic algorithm to optimize the dynamic routing problem for the large scale SDNs.Due to the dynamic natureof SDNs,the proposed algorithmuses a mutationoperator to overcome the memory-based problem of the ant colony algorithm.Besides,it uses the box-covering method and the k-means clustering method to divide the SDN network to overcome the problem of time and space complexity.The results of the proposed algorithm compared with the results of other similar algorithms and it shows that the proposed algorithm can handle the dynamic network changing,reduce the network congestion,the delay and running times and the packet loss rates.

    Keywords: Dynamic routing optimization;Openflow;software defined networking

    1 Introduction

    Distributed routing algorithms are used in traditional networks and this cause problems in controlling and management of the network.SDN outperforms the traditional network architecture management in terms of cost.SDN separates the network control plane layer from the forwarding/data plane layer.SDN controllers have a full image of the network topology and make forwarding decisions based on flow tables using the OF protocol.SDNs controller have full image and control of the network topology and which improves the performance of routing processes [1].

    Time and space complexity is the most critical problem of the current SDN routing optimization algorithms.These algorithms use Dijkstra algorithm in exploring the shortest path.The complexity of the Dijkstra algorithm is that the number of nodes and edges of the network affect the efficiency of the algorithm [2].To overcome this complexity,researchers use meta-heuristic techniques inside the routing optimization algorithms in OF-based large scale SDNs.[3].

    Ant Colony Optimization (ACO) is the most famous meta-heuristic technique that outperforms other traditional routing techniques beside the ACO methodologies have the potential to conduct the flow-based routing strategy as same as SDNs [4].

    This paper proposes a hybrid meta-heuristic algorithm to optimize the dynamic routing problem for the large scale SDNs.it is called Hybrid Ant Colony Optimization (HACO) algorithm HACO uses two different methods for dividing the network into small subnets to overcome the problem of time and space complexity.These methods are box-covering and k-means clustering methods.Also,HACO uses a mutation operator to discover new areas in the search space and improve the solution.

    The structure of this paper as follows.Section 2 presents the goal of the research.Section 3 covers the related work efforts.Section 4 gives an overview of the SDN.Section 5 presents an overview of the network routing problem.Section 6 presents an overview of Ant Colony Optimization.Section 7 presents the proposed algorithm.Section 8 presents the performance evaluation of the proposed algorithm.Finally,the conclusion of the paper is presented in Section 9.

    2 Research Objective

    The main goal of this paper is to overcome the problem of time and space complexity of the dynamic routing problem inside SDNs using the proposed HACO algorithm.

    3 Related Works

    Dijkstra algorithm is one of the most famous shortest path algorithms applied in network routing.But the complexity of the Dijkstra algorithm affects the efficiency of the routing process.Literature [2] proposed a box-covering-based routing (BCR) algorithm for large scale SDNs trying to minimize the time and space complexity of the Dijkstra algorithm by reducing the number of nodes and edges in the network.In the BCR algorithm,Firstly,the whole network is divided into several subnets and each subnet is covered by a box of size (l).Secondly,each subnet is treated as a new node,and the shortest path between these new nodes is calculated by the Dijkstra algorithm.Thirdly,the shortest path between nodes inside each subnet is calculated also by the Dijkstra algorithm.Finally,the shortest path between subnets and the shortest paths inside those corresponding subnets are linked together and the path from the source node to the target node is found.

    Although the BCR algorithm in [2] reduces the network size and it still uses the Dijkstra algorithm in the routing process.This encourages researchers to use meta-heuristic techniques inside the routing optimization algorithms in the OpenFlow (OF) based large scale SDNs.

    4 SDN Architecture

    The SDN architecture is divided into three planes.At the very bottom is the data plane which comprises of hardware such as network switches.Above the data plane is the network control plane.The centralized controller could be as simple as a server machine attached to the network running on controller software [5].Residing above the control plane is the application plane.This plane comprises of individual applications which could be network monitoring utilities,voice over IP applications which has a particular set of requirements such as delay.Communication between the application and the control plane is by means of northbound application programming interface (API) such as the restful protocols.While the controller communicates with the data plane devices such as network switches using the southbound application programming interface commonly using the open flow protocol.This architecture is presented in Fig.1.

    Figure 1:SDN architecture

    OpenFlow is the core of the forwarding plane of network devices in SDNs [6].An OpenFlow Switch consists of one or more flow tables and a group table,which perform packet lookups and forwarding,and an OpenFlow channel to an external controller.The switch communicates with the controller and the controller manages the switch via the OpenFlow protocol [7].Using the OpenFlow protocol,the controller can add,update,and delete flow entries in flow tables.Each flow table in the switch contains a set of flow entries;each flow entry consists of match fields,counters,and a set of instructions to apply to matching packets [8].The processing of packets always starts at the first flow table.Then proceed with the highest-priority matching flow table and of the instructions of that flow entry is executed.Otherwise,the packet is dropped.The OF switch is illustrated in Fig.2.

    5 Network Routing

    Network routing is the process of selecting a path across one or more networks.Metrics are cost values used by routers to determine the best path to a destination network.The most common metric values are hop,bandwidth,delay,reliability,load,and cost [9].SDN routing example is shown in Fig.3.The SDN controller has full image and management over the SDN network [10].

    Routing algorithms are responsible for selecting the best path for the communication [11].Open Shortest Path First (OSPF) allows routers to dynamically update information about network topology.Dijkstra’s algorithm uses Shortest Path First (SPF) algorithm [12].It finds the path the shortest path between that node and every other node [13].

    Figure 2:OpenFlow switch components

    Figure 3:OpenFlow routing structure of SDN

    6 Ant Colony Optimization(ACO)

    ACO is a meta-heuristic algorithm where ants searching for food and depositing pheromone on the route.The quantity of pheromone on the route affects the behavior of ants;the path with the largest quantity of pheromone represents the shortest path [3].

    ACO starts with generating m random ants and evaluates the fitness of each ant according to an objective function then updates the pheromone concentration of every possible trail using Eq.(1).

    whereiandjare nodes,t is a particular iteration;τij(t)is the revised pheromone concentration related to the link?ijat iteration t,τij(t-1)is the pheromone concentration at the previous iteration(t-1);Δτijis the pheromone concentration change;andρis the pheromone evaporation(decay) coefficient with value ranging from 0 to 1 to avoid too strong influence of the old pheromone so that premature solution stagnation is incurred.The decay value equals the average of the windows’size of the network.Δτijis the sum of the contributions of all ants related to?ijat iteration t and can be calculated using Eq.(2).

    wheremis the number of ants and Δτkijis the pheromone concentrate laid on link?ijby antk.Δτkijcan be calculated by Eq.(3) withRbeing the pheromone reward factor andfitnesskbeing the value of the objective function for antk.

    Once the pheromone is updated,each ant must update its route respecting the pheromone concentration and also some heuristic preference consistent with the subsequent probability by Eq.(4).

    wherepij(k,t)is the probability that link?ijis chosen by antkat iteration t;τij(t)is the pheromone concentration related to link?ijat iteration t;ηijis the heuristic factor for preferring among available links and is an indicator of how good it’s for antkto pick link?ij;αandβare exponent parameters that specify the impact of trail and attractiveness,respectively,and take values greater than 0.

    7 Optimization of Dynamic Routing in SDN Using ACO

    The deployment phases of the SDN environment are presented in this section followed by presenting the proposed algorithm.

    SDN Deployment Phases:

    Fig.4 is illustrated SDN deployment phases as follow:

    Phase (1) SDN Simulation: SDN is simulated by Mininet with VMware Workstation in the Ryu controller.

    Phase (2) Network discovery and network dividing: SDN controller features a full image of the topology and it dynamically updates the topology after every data flow (Packet In).HACO divides the network using either the BCR or the k-means clustering algorithm.Both algorithms are introduced as follow:

    Box-Covering algorithm (BCR) in [2] divides the network into boxes or subnets.A box size is given in terms of the network distance,which corresponds to the number of edges on the shortest path between two nodes.The idea of the BCR algorithm is illustrated in Fig.5.To find the shortest path from node 1 to node 25,the network is split into six boxes.Each box is considered as one node and the dimension of the network is prominently decreased.If there is an edge between two nodes in two different boxes,then these two boxes are connected.The shortest path between node 1(box 1) and node 5 is found using the proposed HACO rather than using the Dijkstra.Then,the shortest path in each box is calculated then the shortest paths are linked together to get the globally shortest path (the red lines) from node 1 to node 25.

    Figure 4:SDN deployment phases

    Figure 5:An example to illustrate the Box-Covering algorithm

    K-means clustering is a type of unsupervised learning.The goal of this algorithm is to find groups in the data,with the number of groups represented by the variableK.The algorithm works iteratively to assign each data point to one ofKgroups based on the features that are provided.For large scale networking,K-Means is computationally faster than hierarchical clustering [14]and considers the best partitioning clustering algorithm according to the time complexity [15].The goal of the algorithm is to partition the n nodes into k sets (clusters) Si where,i=1,2...k so that the within-cluster sum of squares is minimized,defined as Eq.(5) [16].

    Figure 6:Pseudo code of k-means algorithm

    Phase (3) The Suggested Algorithm Implementation: Here the routing process is executed by the proposed algorithm.

    Phase (4) Forwarding: This phase responsible for forwarding the data through the path given form phase (3).If no matching happens,the controller is informed to take new action (drop the packet or install it in the pipeline tables).

    The Proposed Algorithm:

    HACO optimizes the routing in large scale SDN using four parallel optimization steps.

    In the first step,the SDN network is divided into boxes using BCR or k-means.This optimizes the search space and the packet time of exploring the best path.

    In the second step,assuming a zero-memory system within the network initiated for the first time.A broadcast is a way to explore all network nodes;this is often like ants’first time randomly distributed on all the available paths.An ant within the HACO algorithm decides the path to follow based on the pheromone trails on the path but,instead of covering the path where the pheromone trail is stronger just like the natural ant would do,it explores the path where the pheromone intensity does not exceed a predefined threshold.This avoids the congestion and maximizes the network throughput.

    In the third step,the packet matching time spent in each router is optimized by creating a new matching table within the OF pipeline with entries of the discovered best paths and giving the matching table the priority so that decreasing the time spent in the packet matching process and minimize both the total delay time and the packet loss rate.The probability of choosing a node is consistent with the roulette wheel statistical distribution [19] as given by Eq.(6):

    whereτij(t)is the concentration of pheromone between node i and node j for the (t)th iteration,ηj(t)is the value of the heuristic information in node j and supposed to equal 0.01,τik(t)is the concentration of pheromone between node i and node k where k is a value increasing from 1 to the number of successors of node i,ηk(t)is its current value of the heuristic function.

    The local pheromone level on all the paths discovered is decreased by an amount called the pheromone decay or the evaporation rateρa(bǔ)nd therefore the global pheromone level on the best path is updated and increased byαusing Eq.(7):

    In the fourth step,HACO uses a mutation operation to discover new paths.Mutation operation is mainly derived from the Genetic Algorithm (GA) but it can be applied to other meta-heuristic algorithms to increase the probability of exploring a better solution in the search space and improve the routing optimization process [20].The mutation operation randomly selects a path from the paths that have generated in step (3) and mutates this path by a mutation probability in Eq.(8):

    wherepmis the probability of mutation.For example,if thenumber_of_generated_paths=20 paths and themutaion_parameter=2,this means that 2 paths from 20 will be mutated.Pseudo code of HACO is described in Fig.7.

    8 Performance Evaluation

    The platform for implementing the proposed HACO algorithm on large-scale SDNs involves the following software tools and programming language: Ubuntu16.04,Mininet 2.2,Ryu 3.6,VMware Workstation Pro,the size l of each box is 1,clustering parameter k is 3,Iperf software was used in the SDN network flow,flow rate 2 Mb/s,bandwidth 5 Mb/s and Python 2.7.9.The hardware environment includes a PC that has an Intel i7 as a CPU,8 GB memory,and 1 GB hard disk.

    This platform is used to create SDN,and then the performance of the HACO algorithm is measured as follows:

    · Measuring the performance of HACO under dynamic changing of the topology.

    · Testing the HACO using k-means network delay and packet loss at different centroids.

    · Testing the proposed HACO total network delay and packet loss rates at different network sizes.

    Figure 7:Pseudo code of the proposed HACO

    · Comparing the performance of HACO against other routing algorithms in SDN and literature relevant algorithms consistent with the running time.

    · Comparing the performance of HACO against other routing algorithms in SDN and literature relevant algorithms consistent with the delay time.

    Measuring the performance of the HACO under dynamic changing of the network topology:

    At a predefined time-instance,a network device is added,and the network is reconfigured,and therefore the best paths are updated consistent with the least hop count and congestion [15].

    Testing the HACO using k-means network delay and packet loss at different centroids:

    For different network sizes,the k-means++ method is generating the initial centroids,then the HACO using k-means is implemented at different centroids to choose the best centroids which achieve the minimum network delay and packet loss rates.Figs.8 and 9 presents plots of the centroid’s movement against the network delay and packet loss in case of network size is 100 nodes.It is observed that the best centroid value which achieves the minimum network delay and packet loss is 3.

    Figure 8:Centroid movement against the network delay

    Figure 9:Centroid movement against packet loss rate (%)

    Testing the proposed HACO total network delay and packet loss rates at different network sizes:

    HACO is executed at different network sizes as shown in Tab.1.

    Table 1:Network size against total delay and packet loss

    Fig.10 shows that the entire delay by box-covering or k-means is proportional to the network size but not in a linear behavior.This because of the stochastic nature of meta-heuristic algorithms.the entire delay by box-covering and k-means is approximately equal until 100 nodes.With the rapid growth of the numbers of nodes from 500 to 5000,the entire delay by k-means is worse than the entire delay using box-covering.

    Fig.11 shows acceptable packet loss rates by either box-covering or k-means which is smaller than the benchmark of 1% at 10 Mb/s dedicated for voice and video streaming.The packet loss rates by box-covering and k-means are approximately equal to 500 nodes.With the rapid growth of the numbers of nodes from 750 to 5000,the packet loss rate using k-means is worse than the packet loss rate using box-covering.

    Comparing the performance of HACO against other routing algorithms in SDN and literature relevant algorithms according to the running time:

    HACO is implemented at different network sizes against the running time and compared with both Dijkstra and BCR algorithm in [2] as indicated in Tab.2.

    Fig.12 indicates that the running time of Dijkstra,BCR,HACO using box-covering and HACO using k-means algorithms is approximately equal to 500 nodes.With the rapid growth of the numbers of nodes from 750 to 5000,the advantage of HACO using box-covering and mutation algorithm becomes increasingly obvious.

    Figure 10:Network size against total delay

    Figure 11:Network size against packet loss rate

    Table 2:Performance of HACO against other routing algorithms (Network size against running time)

    Figure 12:Performance of HACO against other routing algorithms (network size against running time)

    Comparing the performance of HACO against other routing algorithms in SDN and literature relevant algorithms according to the delay time:

    HACO is implemented at different network sizes against the total delay time and compared with Dijkstra and BCR algorithm in [2] as indicated in Tab.3.The comparison is made for only 10,50 and 100 nodes because these are the only network sizes used as the benchmark sizes for the literature relevant algorithms.

    Table 3:Performance of HACO against other routing algorithms (network size against delay time)

    The results shown in Fig.13 are analysed as follow:

    When the number of nodes is 10,the delay time by BCR algorithm is the worst and the delay time by HACO using box-covering is the best one.When the number of nodes is 50,the two delay times by BCR and Dijkstra are approximately the same but the delay time by HACO using box-covering is still the best one.When the number of nodes reaches 100,the delay time by Dijkstra algorithm becomes the worst and the delay time by HACO using box-covering is still the best one,consequently the proposed HACO using box-covering outperforms the other algorithms.

    Figure 13:Performance of HACO against other routing algorithms (network size against delay time)

    9 Conclusion and Points for Discussion

    This paper suggested Hybrid Ant Colony Optimization (HACO) algorithm for optimizing the routing problem inside SDNs.

    HACO using box-covering optimized the time and space complexity and the mutation gives a far better divergence and a far better chance for HACO for exploring less congested paths.A new table within the OF pipeline is created which contains all the explored paths.This optimizes the packet matching time and both the network delay and running times and maximizing the network throughput.

    By comparing with other routing algorithms,the results show that HACO using box-covering outperforms all other algorithms and achieves a significant reduction of the network delay,packet loss rates,and running times.

    It is recommended to use either HACO using box-covering or HACO using k-means when the network size is less than 50 nodes and to use HACO using box-covering when the network size exceeds 50 nodes.

    As a future point for research,the proposed HACO may be improved by optimizing the initial centroids or the box-size values.

    Funding Statement: The authors received specific funding for this study.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    精品国产一区二区三区久久久樱花| 男女免费视频国产| 日韩制服丝袜自拍偷拍| 我要看黄色一级片免费的| 伦理电影免费视频| 菩萨蛮人人尽说江南好唐韦庄| 视频在线观看一区二区三区| 黄频高清免费视频| 亚洲第一青青草原| 女人高潮潮喷娇喘18禁视频| 亚洲三区欧美一区| 久久99热这里只频精品6学生| 最新在线观看一区二区三区 | 深夜精品福利| 97在线人人人人妻| 少妇粗大呻吟视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲人成电影观看| 欧美黑人欧美精品刺激| 日韩欧美一区视频在线观看| 侵犯人妻中文字幕一二三四区| 精品一区二区三区av网在线观看 | 久久久精品区二区三区| 亚洲精品国产av成人精品| 久久久久久久久免费视频了| 18禁裸乳无遮挡动漫免费视频| 又大又黄又爽视频免费| 亚洲熟女精品中文字幕| 亚洲人成电影观看| 国产精品久久久久久人妻精品电影 | 男女国产视频网站| 日韩一卡2卡3卡4卡2021年| 成人手机av| 女人久久www免费人成看片| 欧美黄色片欧美黄色片| 一区二区日韩欧美中文字幕| videos熟女内射| 成年av动漫网址| 黄网站色视频无遮挡免费观看| 亚洲欧美日韩另类电影网站| 国产精品久久久久久精品电影小说| 无限看片的www在线观看| 亚洲欧美日韩高清在线视频 | 免费少妇av软件| 少妇精品久久久久久久| 乱人伦中国视频| 一边摸一边做爽爽视频免费| 在线观看一区二区三区激情| 妹子高潮喷水视频| 亚洲中文字幕日韩| 欧美日韩视频高清一区二区三区二| 少妇的丰满在线观看| 亚洲国产欧美在线一区| 大码成人一级视频| 操美女的视频在线观看| 国产欧美日韩综合在线一区二区| 欧美日韩成人在线一区二区| 亚洲欧美一区二区三区黑人| 成人亚洲欧美一区二区av| 久久女婷五月综合色啪小说| 人人妻人人澡人人爽人人夜夜| 老司机影院毛片| 成人亚洲精品一区在线观看| 人妻一区二区av| 黄片小视频在线播放| 免费在线观看完整版高清| 国产成人一区二区在线| 国产午夜精品一二区理论片| 两个人免费观看高清视频| 两个人免费观看高清视频| 日韩 欧美 亚洲 中文字幕| 一区福利在线观看| 精品亚洲乱码少妇综合久久| 国产精品久久久久久精品电影小说| 亚洲精品国产av成人精品| 又黄又粗又硬又大视频| 99国产精品99久久久久| 一区二区三区四区激情视频| 亚洲精品国产色婷婷电影| √禁漫天堂资源中文www| 男女高潮啪啪啪动态图| 男女高潮啪啪啪动态图| 亚洲精品国产色婷婷电影| 高清av免费在线| 观看av在线不卡| 国产欧美日韩综合在线一区二区| 久久性视频一级片| 如日韩欧美国产精品一区二区三区| 1024视频免费在线观看| 麻豆av在线久日| 色94色欧美一区二区| 日韩电影二区| 精品人妻1区二区| 午夜免费成人在线视频| 蜜桃国产av成人99| 999精品在线视频| 精品国产超薄肉色丝袜足j| 韩国高清视频一区二区三区| 一二三四在线观看免费中文在| 丝袜脚勾引网站| 欧美性长视频在线观看| 精品卡一卡二卡四卡免费| 亚洲精品av麻豆狂野| 91精品伊人久久大香线蕉| 久久精品久久精品一区二区三区| 美女福利国产在线| av在线播放精品| 久久久久久久精品精品| 国产1区2区3区精品| 丰满迷人的少妇在线观看| 久久热在线av| 亚洲,一卡二卡三卡| 脱女人内裤的视频| 亚洲成人手机| 国产精品久久久久成人av| www日本在线高清视频| 老司机影院成人| 中文乱码字字幕精品一区二区三区| 亚洲精品国产av成人精品| 国产精品一区二区精品视频观看| 欧美日韩精品网址| 日韩中文字幕欧美一区二区 | 国产精品av久久久久免费| 99国产综合亚洲精品| 日本a在线网址| 在线看a的网站| 1024视频免费在线观看| 欧美人与性动交α欧美精品济南到| 日本一区二区免费在线视频| 国产一区二区在线观看av| 亚洲av成人精品一二三区| 日韩中文字幕视频在线看片| 亚洲欧洲精品一区二区精品久久久| 9色porny在线观看| 99久久综合免费| 在现免费观看毛片| 国产日韩欧美视频二区| 人人妻,人人澡人人爽秒播 | 成在线人永久免费视频| 中文字幕另类日韩欧美亚洲嫩草| 男的添女的下面高潮视频| 欧美日韩视频精品一区| 亚洲精品乱久久久久久| 大片电影免费在线观看免费| 精品一区在线观看国产| 手机成人av网站| 一二三四在线观看免费中文在| 欧美精品亚洲一区二区| 久久国产精品影院| 一级黄色大片毛片| 性色av一级| 国产又爽黄色视频| 蜜桃在线观看..| 十八禁网站网址无遮挡| 黄色一级大片看看| 黄频高清免费视频| videosex国产| 国产福利在线免费观看视频| 视频在线观看一区二区三区| 性高湖久久久久久久久免费观看| 一区二区日韩欧美中文字幕| 欧美在线黄色| 人妻 亚洲 视频| 美国免费a级毛片| 无限看片的www在线观看| 女性被躁到高潮视频| 精品高清国产在线一区| 国产日韩一区二区三区精品不卡| 夫妻午夜视频| 久久久久国产一级毛片高清牌| 一边亲一边摸免费视频| 2018国产大陆天天弄谢| 亚洲欧洲精品一区二区精品久久久| 美女午夜性视频免费| 成人黄色视频免费在线看| 一二三四社区在线视频社区8| 一本综合久久免费| 国产精品人妻久久久影院| 亚洲一区二区三区欧美精品| 人人妻人人澡人人爽人人夜夜| 亚洲av日韩精品久久久久久密 | 在线 av 中文字幕| 精品少妇内射三级| 亚洲国产精品一区三区| 久久 成人 亚洲| 国精品久久久久久国模美| 国产99久久九九免费精品| 欧美日韩视频高清一区二区三区二| 国产精品人妻久久久影院| 亚洲免费av在线视频| 久久精品亚洲av国产电影网| 大陆偷拍与自拍| 亚洲人成77777在线视频| 亚洲男人天堂网一区| 成人午夜精彩视频在线观看| 精品人妻一区二区三区麻豆| 男人添女人高潮全过程视频| 少妇精品久久久久久久| 久久精品国产a三级三级三级| 久久久国产欧美日韩av| 黄色 视频免费看| 丰满饥渴人妻一区二区三| 午夜福利影视在线免费观看| 9色porny在线观看| 久久久精品国产亚洲av高清涩受| 国产精品一国产av| 精品国产乱码久久久久久男人| 日韩av在线免费看完整版不卡| 国产有黄有色有爽视频| 你懂的网址亚洲精品在线观看| 深夜精品福利| videos熟女内射| 新久久久久国产一级毛片| 成年人午夜在线观看视频| 99国产精品一区二区三区| 免费看av在线观看网站| 国产精品一二三区在线看| 亚洲欧美激情在线| 午夜激情av网站| 一区二区三区乱码不卡18| 欧美久久黑人一区二区| 国语对白做爰xxxⅹ性视频网站| 咕卡用的链子| 国语对白做爰xxxⅹ性视频网站| 日韩免费高清中文字幕av| 婷婷色综合www| 美女福利国产在线| 亚洲熟女毛片儿| 少妇 在线观看| 美女国产高潮福利片在线看| 无限看片的www在线观看| 老司机深夜福利视频在线观看 | 午夜福利在线免费观看网站| 男女床上黄色一级片免费看| 欧美人与善性xxx| 80岁老熟妇乱子伦牲交| 国产精品香港三级国产av潘金莲 | 国产一区二区三区综合在线观看| 波多野结衣av一区二区av| 久久精品国产a三级三级三级| 少妇粗大呻吟视频| 三上悠亚av全集在线观看| 国产午夜精品一二区理论片| 国产精品国产av在线观看| 精品一区二区三卡| 久久久国产欧美日韩av| 久久精品国产a三级三级三级| 午夜福利,免费看| 久久av网站| 捣出白浆h1v1| 欧美激情极品国产一区二区三区| 日本黄色日本黄色录像| 日本五十路高清| 国产精品麻豆人妻色哟哟久久| 日本黄色日本黄色录像| 色94色欧美一区二区| 久久人妻熟女aⅴ| 男女免费视频国产| 国产精品一区二区在线观看99| 十八禁人妻一区二区| 观看av在线不卡| 精品久久久久久电影网| 欧美人与性动交α欧美精品济南到| 女警被强在线播放| 成人影院久久| a 毛片基地| 涩涩av久久男人的天堂| 日韩电影二区| 国产伦人伦偷精品视频| 国产精品久久久久久人妻精品电影 | 99热全是精品| 纯流量卡能插随身wifi吗| 丝袜脚勾引网站| 黄色 视频免费看| 免费日韩欧美在线观看| 亚洲欧美中文字幕日韩二区| 超碰97精品在线观看| 老司机在亚洲福利影院| 久久久久国产精品人妻一区二区| 水蜜桃什么品种好| 另类精品久久| 欧美亚洲日本最大视频资源| 婷婷成人精品国产| 欧美亚洲日本最大视频资源| 妹子高潮喷水视频| 午夜视频精品福利| 亚洲国产成人一精品久久久| 久热爱精品视频在线9| 99久久人妻综合| 国产淫语在线视频| 高清视频免费观看一区二区| 亚洲中文av在线| 成人免费观看视频高清| 亚洲中文av在线| 国产一区二区激情短视频 | 日韩大码丰满熟妇| 成人亚洲欧美一区二区av| 国产av精品麻豆| 久久99一区二区三区| 亚洲一码二码三码区别大吗| 伊人亚洲综合成人网| 男女边摸边吃奶| 男的添女的下面高潮视频| 成年人黄色毛片网站| √禁漫天堂资源中文www| 黑人欧美特级aaaaaa片| 大片免费播放器 马上看| 欧美国产精品va在线观看不卡| 国产精品国产三级国产专区5o| 一区二区日韩欧美中文字幕| 啦啦啦 在线观看视频| 波野结衣二区三区在线| 在线看a的网站| 婷婷色麻豆天堂久久| www.熟女人妻精品国产| 曰老女人黄片| 国产高清视频在线播放一区 | 91老司机精品| 欧美少妇被猛烈插入视频| 中文字幕最新亚洲高清| 欧美精品亚洲一区二区| 老汉色∧v一级毛片| 成年av动漫网址| 老熟女久久久| 赤兔流量卡办理| 久久久久久久国产电影| 另类精品久久| 在线天堂中文资源库| 天堂中文最新版在线下载| 后天国语完整版免费观看| 99热网站在线观看| 久久ye,这里只有精品| 中文字幕制服av| 侵犯人妻中文字幕一二三四区| 91字幕亚洲| 国产不卡av网站在线观看| www.999成人在线观看| 人体艺术视频欧美日本| 亚洲人成电影观看| 国产精品人妻久久久影院| 真人做人爱边吃奶动态| 亚洲伊人色综图| 在线观看免费视频网站a站| 国产男女超爽视频在线观看| 18在线观看网站| 日韩av不卡免费在线播放| 男女边吃奶边做爰视频| 久久久久久久久免费视频了| 亚洲欧美一区二区三区久久| 妹子高潮喷水视频| 亚洲第一青青草原| 国产成人精品无人区| 中文字幕最新亚洲高清| 亚洲av综合色区一区| 成人免费观看视频高清| 18禁裸乳无遮挡动漫免费视频| 色视频在线一区二区三区| 韩国精品一区二区三区| 你懂的网址亚洲精品在线观看| 国产精品人妻久久久影院| 久久精品亚洲熟妇少妇任你| av线在线观看网站| 欧美激情高清一区二区三区| 一区二区三区精品91| 18禁裸乳无遮挡动漫免费视频| 精品一区二区三区av网在线观看 | 免费人妻精品一区二区三区视频| 极品人妻少妇av视频| 欧美日韩国产mv在线观看视频| 韩国高清视频一区二区三区| 国产免费又黄又爽又色| 大香蕉久久网| 国产成人精品久久二区二区91| 七月丁香在线播放| 午夜福利视频精品| 亚洲av片天天在线观看| 一级毛片我不卡| 9191精品国产免费久久| 午夜免费成人在线视频| 国产精品二区激情视频| 久久精品国产亚洲av高清一级| 免费在线观看黄色视频的| 午夜91福利影院| 亚洲熟女毛片儿| 男女午夜视频在线观看| 熟女av电影| 肉色欧美久久久久久久蜜桃| 2018国产大陆天天弄谢| xxxhd国产人妻xxx| 久热爱精品视频在线9| 丁香六月天网| cao死你这个sao货| 视频区图区小说| 欧美国产精品一级二级三级| 久久 成人 亚洲| 新久久久久国产一级毛片| 国产三级黄色录像| 交换朋友夫妻互换小说| 极品人妻少妇av视频| 亚洲精品日本国产第一区| 97精品久久久久久久久久精品| 成年动漫av网址| 亚洲国产精品一区二区三区在线| 成年人黄色毛片网站| 欧美另类一区| 一级毛片我不卡| 国产高清视频在线播放一区 | 美女主播在线视频| 中文精品一卡2卡3卡4更新| 日韩 亚洲 欧美在线| 女人高潮潮喷娇喘18禁视频| 国产一区二区激情短视频 | 777久久人妻少妇嫩草av网站| 晚上一个人看的免费电影| 日韩视频在线欧美| 亚洲一区二区三区欧美精品| 少妇人妻 视频| 色视频在线一区二区三区| 99热全是精品| 国产在线免费精品| 这个男人来自地球电影免费观看| 中文精品一卡2卡3卡4更新| 美女福利国产在线| 国产精品久久久久久精品电影小说| 国产不卡av网站在线观看| 视频区欧美日本亚洲| 亚洲av电影在线观看一区二区三区| 校园人妻丝袜中文字幕| 午夜91福利影院| 欧美日韩亚洲高清精品| 热99久久久久精品小说推荐| 国产黄色免费在线视频| 好男人视频免费观看在线| 久久毛片免费看一区二区三区| 国产成人av教育| 下体分泌物呈黄色| 伊人久久大香线蕉亚洲五| 大型av网站在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 国产有黄有色有爽视频| 中国国产av一级| 久久人人爽人人片av| 免费少妇av软件| 久久久国产精品麻豆| 免费久久久久久久精品成人欧美视频| 午夜91福利影院| 妹子高潮喷水视频| 亚洲,欧美精品.| 国产成人欧美在线观看 | 精品少妇一区二区三区视频日本电影| 午夜视频精品福利| 精品人妻1区二区| 人人妻人人爽人人添夜夜欢视频| 亚洲一区二区三区欧美精品| 国产男人的电影天堂91| 国产精品熟女久久久久浪| 2021少妇久久久久久久久久久| 十八禁人妻一区二区| 国产精品亚洲av一区麻豆| av国产精品久久久久影院| 男人舔女人的私密视频| a级片在线免费高清观看视频| 国产有黄有色有爽视频| 爱豆传媒免费全集在线观看| 日韩免费高清中文字幕av| 亚洲专区中文字幕在线| 国产野战对白在线观看| 久久狼人影院| 电影成人av| www.熟女人妻精品国产| 亚洲欧美激情在线| 色94色欧美一区二区| 亚洲av男天堂| www.熟女人妻精品国产| 国产精品一二三区在线看| 成人午夜精彩视频在线观看| 99热国产这里只有精品6| 大片免费播放器 马上看| 久久久久久久大尺度免费视频| 久久久国产精品麻豆| 丰满迷人的少妇在线观看| 久热爱精品视频在线9| 丝袜在线中文字幕| 建设人人有责人人尽责人人享有的| 一二三四在线观看免费中文在| 婷婷色综合大香蕉| 亚洲中文av在线| 亚洲欧美成人综合另类久久久| 色综合欧美亚洲国产小说| 中文字幕高清在线视频| 在线观看www视频免费| 老汉色av国产亚洲站长工具| √禁漫天堂资源中文www| 国产成人a∨麻豆精品| 亚洲精品国产区一区二| a级片在线免费高清观看视频| 1024视频免费在线观看| 丰满少妇做爰视频| 纯流量卡能插随身wifi吗| 精品一区二区三卡| 1024视频免费在线观看| 99九九在线精品视频| www.自偷自拍.com| 99精国产麻豆久久婷婷| 久久这里只有精品19| 国产无遮挡羞羞视频在线观看| 国产精品久久久人人做人人爽| 男女边摸边吃奶| 色视频在线一区二区三区| 精品一区二区三卡| 伊人亚洲综合成人网| 国产精品一区二区免费欧美 | 久久99精品国语久久久| 中文精品一卡2卡3卡4更新| 亚洲精品第二区| 亚洲视频免费观看视频| 爱豆传媒免费全集在线观看| 亚洲午夜精品一区,二区,三区| 热99久久久久精品小说推荐| 别揉我奶头~嗯~啊~动态视频 | 国产有黄有色有爽视频| 亚洲免费av在线视频| 欧美国产精品va在线观看不卡| 黄色视频不卡| 国产成人91sexporn| svipshipincom国产片| 热99国产精品久久久久久7| 国产有黄有色有爽视频| 91老司机精品| 国产午夜精品一二区理论片| 一级,二级,三级黄色视频| 国产高清国产精品国产三级| 国产精品免费视频内射| 亚洲国产毛片av蜜桃av| 国产熟女午夜一区二区三区| 黄色毛片三级朝国网站| 老熟女久久久| 久久人妻熟女aⅴ| 一本大道久久a久久精品| 亚洲人成网站在线观看播放| 18在线观看网站| 精品一区在线观看国产| 亚洲精品国产区一区二| 中文字幕人妻丝袜一区二区| 久久精品久久久久久噜噜老黄| 妹子高潮喷水视频| 少妇裸体淫交视频免费看高清 | 国产精品久久久av美女十八| 成年人免费黄色播放视频| 在线看a的网站| 99国产精品一区二区三区| 国产免费福利视频在线观看| 亚洲中文字幕日韩| av福利片在线| 久久久国产欧美日韩av| 男女边吃奶边做爰视频| 欧美av亚洲av综合av国产av| 久久性视频一级片| 久久综合国产亚洲精品| 亚洲欧美清纯卡通| 国产精品二区激情视频| 亚洲国产中文字幕在线视频| 久久久久久久大尺度免费视频| 日韩欧美一区视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 2021少妇久久久久久久久久久| 久久av网站| 精品一区在线观看国产| 精品国产一区二区三区四区第35| 国产精品人妻久久久影院| 男女午夜视频在线观看| 免费不卡黄色视频| 老熟女久久久| 国产黄频视频在线观看| 建设人人有责人人尽责人人享有的| 电影成人av| 美女国产高潮福利片在线看| 久久99一区二区三区| 在线 av 中文字幕| 国产免费福利视频在线观看| 午夜福利影视在线免费观看| 亚洲成av片中文字幕在线观看| svipshipincom国产片| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看| 波野结衣二区三区在线| 9191精品国产免费久久| videosex国产| 91精品国产国语对白视频| 亚洲第一青青草原| 亚洲天堂av无毛| 午夜两性在线视频| 亚洲,欧美精品.| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久精品电影小说| 色94色欧美一区二区| 欧美少妇被猛烈插入视频| 巨乳人妻的诱惑在线观看| 免费观看a级毛片全部| 国产亚洲一区二区精品| 久久99一区二区三区| 成人国产一区最新在线观看 | 老汉色∧v一级毛片| bbb黄色大片| 久久久欧美国产精品| 91麻豆av在线| 人妻一区二区av| 老司机影院成人| 国产av精品麻豆| 超碰97精品在线观看| av网站在线播放免费| 亚洲成人国产一区在线观看 | 久9热在线精品视频| 亚洲精品av麻豆狂野| 国产精品免费视频内射|