• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hierarchical Stream Clustering Based NEWS Summarization System

    2022-11-09 08:15:52ArunManickaRajaandSwamynathan
    Computers Materials&Continua 2022年1期

    M.Arun Manicka Raja and S.Swamynathan

    1Department of Computer Science and Engineering,RMK College of Engineering and Technology,Chennai,602106,India

    2Department of Information Science and Technology,College of Engineering Guindy,Anna University,Chennai,600025,India

    Abstract: News feed is one of the potential information providing sources which give updates on various topics of different domains.These updates on various topics need to be collected since the domain specific interested users are in need of important updates in their domains with organized data from various sources.In this paper,the news summarization system is proposed for the news data streams from RSS feeds and Google news.Since news stream analysis requires live content,the news data are continuously collected for our experimentation.The major contributions of this work involve domain corpus based news collection,news content extraction,hierarchical clustering of the news and summarization of news.Many of the existing news summarization systems lack in providing dynamic content with domain wise representation.This is alleviated in our proposed system by tagging the news feed with domain corpuses and organizing the news streams with the hierarchical structure with topic wise representation.Further,the news streams are summarized for the users with a novel summarization algorithm.The proposed summarization system generates topic wise summaries effectively for the user and no system in the literature has handled the news summarization by collecting the data dynamically and organizing the content hierarchically.The proposed system is compared with existing systems and achieves better results in generating news summaries.The Online news content editors are highly benefitted by this system for instantly getting the news summaries of their domain interest.

    Keywords: News feed;content similarity;parallel crawler;collaborative filtering;hierarchical clustering;news summarization

    1 Introduction

    Knowledge identification from online news articles have received keen attention among the news readers,especially from the Really Simple Syndication (RSS) feed-based news updates and Google news [1].The knowledge extracted from various news sources are mapped into many day-to-day applications.Various events are identified from news articles and the summaries are generated about a particular event with respect to different timelines [2].The news events are extracted by identifying the named entities present in the news content.The abstractive and extractive summaries are generated using summarization techniques such as abstractive and extractive summarizations [3].The semantic relevance is estimated using the wordnet and the hierarchical structure is represented for news articles [4].Single news article contains many keywords related to a particular topic.It is necessary to identify the domain of the keywords by tagging the keywords present in the news.Though the keywords are tagged in the news content,it is important to organize the content in a hierarchical structure for retrieving the similar news content for summarizing to the users.

    In this work,a news clustering based summarization system is proposed to cluster various category of news content from multiple news sources and to generate news summaries on user interested topic.The proposed system is distinctive in handling the news updates for effectively organizing the news content to retrieve it later.Further,the extractive summary of the specific topic is generated from the clustered news contents.The proposed system has been evaluated for news crawling,news content retrieval and news summarization.The evaluation results shown that the proposed system performs better in summarizing the news contents to the end users.

    The paper is organized as following sections.In Section 2,the related works of the clustering and news summarization mechanisms are discussed.In Section 3,the architecture of the news retrieval system is explained.In Section 4,the experimental results of the proposed system are discussed.In Section 5,the performance evaluation of the parallel crawler,hierarchical clustering and news summarization method are explained.In Section 6,the conclusion of the work is given.

    2 Related Works

    In recent years,there are lot of online recommendation systems available for assisting online shopping to various users depending upon their knowledge level.Here,we have discussed various methods related to the data collection,domain corpus,hierarchical clustering and summarization.RSS new feeds are the important sources of information from different online websites.The users are subscribing to only the required feed updates [5].In addition to the RSS feeds,Google news is providing news updates on various domains.In addition,the news contents are extracted for building corpuses which help domain oriented news analysis [6].Wordnet [7] is the prominently used Synset generator along with the tagger.The feed updates contain titles which has keywords that are used to identify the domains.They have used wordnet for tagging the keywords and identify the domain wise data.

    Multi granularity hierarchical representation [8] is the content representation of the data for easy access of the fine grain level data.The authors have employed this method for the systematic organization of the content and its retrieval.Further,RSS news feeds are represented in Extensible Mark-up Language (XML) formats [9].This method is effective if the similar news items are merged together to gather the news from various sources.The relatedness between the RSS elements is also identified to merge the contents effectively.The RSS news articles are collected from various sources.In many cases,the news articles are redundant [10] in content wise.These redundant articles may be eliminated and the distinctive news articles may be clustered for later access.News content clustering and recommendation requires the categorization of the users in the web and their web browsing behavior needs to be analysed.The authors [11] have used user behavior data along with collaborative filtering for recommending the specific user interested content.Latent semantic analysis use mapping of high dimensional and sparse words into a semantic space with the correlation among the words [12].Text analysis model [13] uses deep learning techniques for effective product recommendation to the users.

    In addition,it is essential to summarize the categorized news contents to the respective users.Extractive summarization [14] is one of the summarization techniques.It captures the sentences from the documents and generates the summary from the captured contents.Contextual information is used with the captured contents to generate effective summaries.The social media contents are summarized [15] topic wise and given to the users.Further,some of the semantic based clustering [16] is helpful in generating summaries from non-conclusive short texts.External knowledge resources are used for establishing the semantic relations among the text contents.Multi-document summarization [17] system is used for generating summaries from multiple document collections.The best summary is generated by estimating the information distance among the document collections.Many works have been carried out in the literature for incorporating the credible features of few existing mechanisms for developing a system with better performance.Few such works are used in building prediction models [18] and creating fake news detection system [19].In some works,the deep learning-based algorithms are used as risk analysis models and building mechanisms for defensing from denial-of-service attacks [20,21].The comparison of various methodologies related to the proposed system has been tabulated in Tab.1.

    Table 1:Comparison of related works with merits and demerits of the methodologies

    This research paper work is motivated and inspired by the related works discussed in this section.Our proposed system provides an improvement to the news summarization methods for news data streams and content retrieval is simplified with hierarchical news content clustering and user collaborative filtering.The quality of summary generation has significantly improved.

    3 Collaborative Filtering Based NEWS Retrieval System

    Hierarchical clustering is applied in many of the content retrieval system.Since hierarchical structure provides topic wise categorical representation elegantly,it is widely encouraged in most of the content structuring works.The retrieval time is considerably less in hierarchical structured content retrieval system [22].It performs well in processing the user given query and recommend better results from the hierarchically arranged contents for summary generation.Hence,we have proposed hierarchically clustering based news summarization system for generating effective news summaries in less time.The flow chart of the proposed system is illustrated in Fig 1.

    Figure 1:Flow chart of the collaborative filtering based news retrieval system

    The architecture of the proposed system is shown in Fig 2.The feed collector helps to collect the news feeds from various news Uniform Resource Locator (URL).Further,the collected feeds are checked for the domain specification in the title content available in the feed and the domain of the feed is identified.Various domain corpuses along with wordnet are used for checking the domain of the feeds.Hierarchical clustering is used for clustering the news articles category wise.It performs the categorization of the news contents and organizes the content topic wise.The user queries are obtained and the summaries are given as a result to the users.The user queries are natural language-based keywords.The summarizer generates the summary both topic wise and magazine wise.In addition,the user given keyword specific news contents are also retrieved from the repository.

    Figure 2:Collaborative filtering based NEWS retrieval system

    4 Experimental Results and Discussion

    The significance of this research work focusses on collecting the news data dynamically and organizing the news data hierarchically.Further,the news contents are summarized effectively based on the user given query by processing with the collaborative filtering method.

    4.1 Dataset

    The dataset used in this work,is collected from the news sources using the news crawler program which we implemented in our system as part of news summarization system.The RSS feed news and news data streams are monitored and collected from google news [23].

    4.2 News Data Collection

    In this work,the news summaries are generated based on the user interest using the news updates received from numerous sources.To perform this,the first stage of work considered in this paper,is the data collection from various sources.The hierarchical structure is created for various domains.For example,Sports news are categorized with different types like cricket,football,basketball,etc.In addition,the region wise hierarchy is also represented to easily identify the location of the news such as country,state,district,city,etc.The consolidated summary of the news data collection is shown in Tab.2 wherein the news source and the topics and its news updates count are tabulated.The news content collection is observed for 1-day,1-week,1-month and 3-month period.The news articles collected during these periods is illustrated in Tab.3.

    Table 2:Summary of various news sources,news topics and news updates count

    Table 3:Weekly,monthly statistics of the news feed updates

    4.3 Domain Corpuses

    Around 97000 words are available in political domain corpus [24] and it has been applied in tagging the keywords from news updates.Healthcare domain consists of around 60000 words [25]and it has been incorporated to identify similar terms in the news contents.The business corpus contains around 600000 words [26] and it is used to know the business keywords present in it.Sports domain consists of keywords from various sports events.Around 32000 sports related words are available in sports corpus [27].Education domain contains the terms prominently used in education related activities.There are around 84000 words available in education domain [28].Electronics,nature,software and travel domain corpuses are taken from Wikipedia corpus collection [29].

    4.4 Hierarchical Clustering of News Articles

    Cosine similarity is determined to find the similar content existing in the news updates.Hierarchical clustering algorithm is used to detect the hierarchical structures among the news articles.The algorithm is shown as follows.

    Algorithm 1: Hierarchical Clustering Algorithm Input Data: D={d1,d2,d3,...,dn} data set containing ‘n’news articles Result: hierarchy of clusters begin Initialize clusters Assign Ci=xi wherein xi represents data points and i=1 to n Create cluster for each news article loop for i ←1 to n do for j ← 1 to n do d(i,j) ←compute_similarity(xi,xj)calculate similarity measure identify appropriate cluster for each xi in C do αi=score(xi) //assigns similarity score value to alpha Clusterd=highest(αi) // similarity score makes cluster distance among clusters(Ci,Cj)←Cd(Cmin1,Cmin2)=minimum_dist (Ci,Cj) for all Ci,Cj in C remove Cmin1 and Cmin2 from C add {Cmin1,Cmin2} to C clusters=clusters + 1 assign data to closest clusters Ci or Cj remove from current clusters until all clusters generated return clusters end

    The domain of the cluster is also identified with the clustering process.The cluster formation from various news articles is tabulated in Tab.4.The top 3 clusters formed out of the news articles received in a particular interval is mentioned in Tab.5

    The clustered articles with its corresponding clusters and domain,is shown in Tab.6.It contains the cluster category,cluster topic,number of feeds and number of news articles.

    4.5 Collaborative Filtering Based NEWS Content Retrieval

    The collaborative filtering algorithm is used to filter the similar news content among the interested users.The similar news content is added to the recommendation set.The collaborative filtering based score is calculated for every similar news content and the news with maximum score is recommended to the user.The collaborative filtering algorithm is shown as follows.

    Table 4:Cluster formation from news articles

    Table 5:Top 3 cluster information

    Table 6:Cluster categories,Topics with its feeds and article statistics

    Algorithm 2: User based Collaborative Filtering Input: user set ‘S’,user query data ‘U’Output: Suggested results ‘R’R ←null foreach u in S do C(u) ←null,C represents collaborativeness neighbour(u) ←null,c ←n,wherein ‘n’represents‘news sequence’foreach v in S do if Sim (u,v) >=T,T represents filtering threshold neighbour(u) ←neighbour(u) U v if vi + 1 exists then C(u) ←C(u) U vi + 1 for nj in C(u)compute rj //computes the recommendation rj ←nj //mapping user to recommendation R ←R U rj return R //returns the recommended news to users

    The results of the collaborative filtering algorithm are shown in Tab.7.

    Table 7:Collaborative filtering accuracy using recommended articles

    4.6 News Content Summarization

    We have applied Extraction based summarization algorithm as a baseline method for performing document summarization using multiple document contents.Further,we have computed the probability distribution of the news for summary generation.The sentence with maximum score is taken for summary generation.The summarization steps are represented as follows.

    Step 1.Calculate the probability distribution of the words in the news content.Let wi be the words and p(wi) be the probability of the words,where i represents the words.Step 2.Calculate the average probability of words in the news content.weight(Sj)=∑wi∈Sj p(wi)|{wi ∈Sj}|,Sj—sentences Step 3.Choose the top score sentence that has the high probability word.Step 4.Update probability for word chosen pnew(wi)=pold(wi).pold(wi)Step 5.Generate summary based the probability estimation of words in the sentences

    The information about the user submitted query and the summary generation details from the news feeds is shown in Tab.8.

    Table 8:Statistics about Query vs. Summary

    Tab.9 shows the generated summary with the news feed count and article count for the user given query.The summaries generated for various user given queries are shown in Tab.10.

    Table 9:Query based summary with news feed and article count

    Table 10:Summary for the user given query

    The summary generated for the actual google news is shown in Tab.11.Here,the summary is generated from 2 different news article contents.

    5 Performance Evaluation

    5.1 News Crawler

    The news collection time for different number of URLs using various crawlers is tabulated in Tab.12.

    The news collector is compared with different news crawler and is shown in Fig.3.The news collector results indicate that the news collector is performing faster than other news collecting crawlers for any number of feed URLs.This is achieved with the parallel crawler which performs the news collection by sharing the URLs to multiple thread program to run parallelly.

    Table 11:Summarization results

    Table 12:News crawling time for different set of feed URLs using various crawlers

    5.2 News Retrieval Efficiency

    The similar relevant keywords of the user given input are generated and the retrieval performance is evaluated.The news retrieval performance for direct user queries and relevance keywords is shown in Figs.4 and 5 respectively.

    5.3 Query Evaluation

    The user queries are evaluated on pre-processed keyword indexing,non-pre-processed keyword indexing and non-indexing news contents.The query processing time is tabulated in Tab.13.The comparison of query processing time for different indexing based retrieval is shown in Fig.6.

    5.4 Evaluation of Summarization

    ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a set of metrics used for evaluating the summarization.It compares the summary against a set of references summary generated by human [33].This quantitative of overlapping words is measured using the precision.

    Figure 3:Comparison of different news crawlers

    Figure 4:News retrieval performance for direct user queries

    Figure 5:News retrieval performance for relevance keywords of user queries

    Table 13:Query processing time using various indexed news contents

    Figure 6:Query processing time for various indexing based retrieval

    The precision of the automatic summarization is shown in Tab.14.It means that the precision is 1.0 that is all the words in the reference summary is available in the automatic system summary.The precision calculated using the system summary is 0.88.

    Table 14:Precision of automatic summarization

    Further,we applied ROUGE specific metrics for effectively measuring the summary generation.The measures are ROUGE-N,ROUGE-S,ROUGE-L.These refers the size of the texts compared among the system summary and reference summary.ROUGE-1 refers the overlap of unigrams among the reference and system summaries.ROUGE-2 refers the overlap of bigrams among the reference and system summaries.ROUGE-1 and ROUGE-2 are the ROUGE-N type measures.It is referenced in the literature that ROUGE-1 and ROUOGE-L are appropriate for extractive summarization [34].

    We have observed from the summarization evaluation that the ROUGE-N and ROUGE-L measures indicated that 88.88% and 77.77% of the actual news content is covered by the news summary generated.Since ROUGE-L needs to measure the longest sentence covered in the summary,the received value is a good measure that it has generated a summary covering the required sentences.The summarization performance of the proposed system is compared with other methodologies used in the literature for the summarization of document contents.The comparison result has been ensured with the ROUGE-1 metric which is the appropriate measure for news text summarization.The comparative results are tabulated in Tab.15.It is observed from the result that the proposed system is highly useful for effectively summarizing the dynamically collected news data.

    Table 15:Comparison of summarization performance

    5.5 Computational Complexity

    The news data streams are received and the similarity needs to be estimated.The similarity computation involves the use of similarity matrix.It requires little large memory than other clustering algorithms since it needs to keep the data elements to store the matrix values.

    Space complexity=O(n2)

    Even hierarchical clustering takes more space,it is widely used in many of content organization systems.The hierarchical clustering algorithms satisfy reducibility property.The increased computational time required for generating the clusters help in providing the hierarchy of cluster set with exact and unique structure with this reducibility property.

    5.6 Scope and Application

    Mainly,in this work,the automatic news summarization system for the dynamic news articles with timeframes from google news.The scope of the proposed collaborative filtering based news retrieval system includes concise information from various news articles.It helps to eliminate the difficulty of going through huge news articles and provides 20% to 30%from the original news content.The scope is limited to generate the summary for the user interested keyword using the news articles in a time frame.This news retrieval system helps in a better way for the online news content editors who are in need of accessing the interested domain content immediately.

    6 Conclusion

    In this paper,the hierarchical clustering based news summarization system has been proposed to apply on RSS feed based news and google news.The news crawler used thread based news crawling to collect the news articles effectively with better collection efficiency which has been compared with various state of the art news crawlers.This work used various recent domain corpuses to tag and extract the topic wise news efficiently.The hierarchical clustering handled the news contents by estimating the similarity and produced the hierarchical clusters of the various domains appropriately.The evaluation of the automatic summary with the human generated summary models proved that it performed maximum for the hierarchically clustered news article contents.Hence,proposed news summarization system is suitable and useful for the content readers who are keen in knowing recent domain specific news with the generated summary from various news sources.

    Funding Statement: The authors received no specific funding for this study.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    色哟哟·www| 深夜a级毛片| 亚洲成色77777| 国产在线视频一区二区| 亚洲最大成人中文| 国产av码专区亚洲av| 日韩伦理黄色片| 欧美国产精品一级二级三级 | 最近手机中文字幕大全| 欧美丝袜亚洲另类| 国产成人一区二区在线| 国产精品无大码| 国产高清国产精品国产三级 | 亚洲精品日韩在线中文字幕| 搡老乐熟女国产| 国产淫片久久久久久久久| 老女人水多毛片| 亚洲国产日韩一区二区| 99热国产这里只有精品6| 综合色丁香网| 在线亚洲精品国产二区图片欧美 | 久久这里有精品视频免费| 免费观看av网站的网址| 少妇丰满av| 日本爱情动作片www.在线观看| 99热全是精品| 国产精品99久久久久久久久| 自拍偷自拍亚洲精品老妇| 男女国产视频网站| 色视频www国产| 亚洲欧美成人精品一区二区| 国产午夜精品久久久久久一区二区三区| 国产在线一区二区三区精| 成人综合一区亚洲| 亚洲欧美精品自产自拍| 国产精品免费大片| 国产片特级美女逼逼视频| 99热这里只有是精品50| 交换朋友夫妻互换小说| 一级毛片电影观看| 久久精品国产亚洲网站| 麻豆成人av视频| freevideosex欧美| 欧美日韩视频高清一区二区三区二| 秋霞在线观看毛片| 人人妻人人爽人人添夜夜欢视频 | 国产成人91sexporn| 美女内射精品一级片tv| tube8黄色片| 熟女电影av网| 亚洲内射少妇av| 麻豆成人午夜福利视频| 成人一区二区视频在线观看| 久久热精品热| 在线观看国产h片| 亚洲人与动物交配视频| 日韩在线高清观看一区二区三区| 少妇人妻一区二区三区视频| 午夜免费鲁丝| 久久精品国产a三级三级三级| 伊人久久精品亚洲午夜| 亚洲欧洲国产日韩| 日韩免费高清中文字幕av| 国产高清三级在线| 午夜福利高清视频| 极品少妇高潮喷水抽搐| a级一级毛片免费在线观看| 97超碰精品成人国产| 欧美97在线视频| 在线观看人妻少妇| 亚洲不卡免费看| 国产精品久久久久久精品古装| 尤物成人国产欧美一区二区三区| 成人午夜精彩视频在线观看| 国产精品99久久久久久久久| 亚洲成人av在线免费| 国内少妇人妻偷人精品xxx网站| 最新中文字幕久久久久| 午夜激情久久久久久久| 少妇裸体淫交视频免费看高清| 亚洲精品国产av成人精品| 少妇人妻精品综合一区二区| 九九爱精品视频在线观看| 联通29元200g的流量卡| 亚洲国产日韩一区二区| 国内少妇人妻偷人精品xxx网站| 亚洲伊人久久精品综合| 少妇裸体淫交视频免费看高清| 熟女人妻精品中文字幕| 国产精品99久久久久久久久| 少妇人妻久久综合中文| 久久久久精品性色| 国产在线视频一区二区| 日韩三级伦理在线观看| 免费黄色在线免费观看| 欧美激情国产日韩精品一区| 久久99热这里只有精品18| 日韩欧美精品免费久久| 80岁老熟妇乱子伦牲交| 一区在线观看完整版| 久久 成人 亚洲| 国产深夜福利视频在线观看| 人妻夜夜爽99麻豆av| 日本猛色少妇xxxxx猛交久久| 狂野欧美激情性bbbbbb| 国产毛片在线视频| 色婷婷av一区二区三区视频| 熟女人妻精品中文字幕| 91狼人影院| 久久精品国产自在天天线| 美女内射精品一级片tv| 亚洲三级黄色毛片| 自拍偷自拍亚洲精品老妇| 国产高清有码在线观看视频| 亚洲第一av免费看| 少妇人妻一区二区三区视频| 亚洲精品国产av成人精品| 大又大粗又爽又黄少妇毛片口| 91午夜精品亚洲一区二区三区| 成人漫画全彩无遮挡| 91精品国产九色| 亚洲中文av在线| 久久久久久久久大av| 国产精品嫩草影院av在线观看| 在线观看免费视频网站a站| 亚洲精品乱码久久久久久按摩| 欧美一区二区亚洲| 久久久久久久亚洲中文字幕| freevideosex欧美| 最后的刺客免费高清国语| 夜夜爽夜夜爽视频| 婷婷色综合大香蕉| 五月天丁香电影| 小蜜桃在线观看免费完整版高清| 久久精品久久久久久噜噜老黄| 一区二区三区乱码不卡18| 中文字幕久久专区| 亚洲天堂av无毛| 久久午夜福利片| 国产免费又黄又爽又色| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 亚洲在久久综合| 久久精品国产自在天天线| 午夜福利视频精品| 男人狂女人下面高潮的视频| 中文字幕亚洲精品专区| 99热这里只有是精品50| 日本黄色日本黄色录像| 国产精品一区二区性色av| 免费播放大片免费观看视频在线观看| 国产亚洲午夜精品一区二区久久| 亚洲四区av| 久久久久久久国产电影| 国产在线男女| 99精国产麻豆久久婷婷| 国产精品福利在线免费观看| 国产亚洲欧美精品永久| 欧美成人一区二区免费高清观看| 免费看日本二区| 欧美日本视频| 高清午夜精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 亚洲熟女精品中文字幕| 国产精品免费大片| 美女高潮的动态| 岛国毛片在线播放| 日韩三级伦理在线观看| 妹子高潮喷水视频| 在线看a的网站| 国产精品女同一区二区软件| 欧美成人午夜免费资源| 欧美亚洲 丝袜 人妻 在线| 91久久精品国产一区二区成人| 国产爽快片一区二区三区| 精品一品国产午夜福利视频| 在线播放无遮挡| 成人免费观看视频高清| 日本黄大片高清| av在线观看视频网站免费| 欧美bdsm另类| 日韩成人av中文字幕在线观看| 水蜜桃什么品种好| 小蜜桃在线观看免费完整版高清| 欧美xxⅹ黑人| 日本vs欧美在线观看视频 | 一二三四中文在线观看免费高清| 国产乱来视频区| 成年女人在线观看亚洲视频| 久久人妻熟女aⅴ| 欧美亚洲 丝袜 人妻 在线| 观看av在线不卡| 国产综合精华液| 成年免费大片在线观看| 在线观看免费视频网站a站| 亚洲欧美一区二区三区黑人 | 亚洲成人av在线免费| 日产精品乱码卡一卡2卡三| 精品午夜福利在线看| 亚洲,一卡二卡三卡| 国产乱来视频区| 国产成人午夜福利电影在线观看| 夫妻性生交免费视频一级片| 日本与韩国留学比较| 国产欧美另类精品又又久久亚洲欧美| 美女福利国产在线 | 国产一区二区三区综合在线观看 | 久久久久久久精品精品| a级毛色黄片| 国产成人精品一,二区| 免费观看在线日韩| 色婷婷av一区二区三区视频| 婷婷色av中文字幕| 91午夜精品亚洲一区二区三区| 亚洲成人手机| 精品亚洲成a人片在线观看 | 欧美成人午夜免费资源| 欧美一级a爱片免费观看看| 麻豆成人av视频| 亚洲精品自拍成人| 九九久久精品国产亚洲av麻豆| 伦理电影免费视频| 在线免费观看不下载黄p国产| 国产成人a区在线观看| 亚洲欧美一区二区三区黑人 | 中文天堂在线官网| 亚洲av福利一区| 热99国产精品久久久久久7| 国产色爽女视频免费观看| 天堂中文最新版在线下载| 18禁裸乳无遮挡动漫免费视频| 中文字幕精品免费在线观看视频 | 亚洲av欧美aⅴ国产| 国产精品一及| 国产精品久久久久久精品古装| 三级国产精品欧美在线观看| 性色avwww在线观看| 人妻一区二区av| 精品午夜福利在线看| 在线亚洲精品国产二区图片欧美 | 国产高清不卡午夜福利| 国产精品爽爽va在线观看网站| 在线观看人妻少妇| 久久99热这里只有精品18| 国产精品国产三级国产专区5o| 欧美三级亚洲精品| 成人无遮挡网站| 在线精品无人区一区二区三 | 在线精品无人区一区二区三 | 欧美激情极品国产一区二区三区 | 欧美最新免费一区二区三区| 精品少妇久久久久久888优播| 久久精品熟女亚洲av麻豆精品| 免费播放大片免费观看视频在线观看| 国产一级毛片在线| 日产精品乱码卡一卡2卡三| 我要看黄色一级片免费的| 内射极品少妇av片p| 国产亚洲91精品色在线| 亚洲人成网站在线播| 婷婷色麻豆天堂久久| 亚洲欧美清纯卡通| .国产精品久久| 一级毛片久久久久久久久女| 亚洲欧美成人精品一区二区| 欧美另类一区| 午夜免费观看性视频| 色吧在线观看| 亚洲国产精品国产精品| 视频区图区小说| 国产69精品久久久久777片| 午夜福利网站1000一区二区三区| 日韩免费高清中文字幕av| 看免费成人av毛片| 午夜免费鲁丝| 欧美+日韩+精品| 国产男女内射视频| 黄色欧美视频在线观看| 各种免费的搞黄视频| 99热这里只有精品一区| 五月伊人婷婷丁香| 免费看日本二区| 午夜日本视频在线| 最近2019中文字幕mv第一页| 最近中文字幕2019免费版| 午夜免费观看性视频| 日本黄大片高清| 十分钟在线观看高清视频www | 欧美精品国产亚洲| 久久精品国产亚洲网站| 女性生殖器流出的白浆| av又黄又爽大尺度在线免费看| 狂野欧美激情性bbbbbb| 国产精品不卡视频一区二区| 亚洲av日韩在线播放| 一边亲一边摸免费视频| 亚洲欧美清纯卡通| 国产精品麻豆人妻色哟哟久久| 亚洲一区二区三区欧美精品| 丰满迷人的少妇在线观看| 亚洲人成网站在线播| 永久免费av网站大全| 中国国产av一级| 极品教师在线视频| 国产精品久久久久久久电影| 91久久精品国产一区二区三区| 亚洲人成网站在线播| 午夜福利高清视频| 日韩成人av中文字幕在线观看| 少妇精品久久久久久久| 91午夜精品亚洲一区二区三区| 国产精品一区二区在线不卡| 女的被弄到高潮叫床怎么办| 亚洲av二区三区四区| 高清av免费在线| 国产亚洲一区二区精品| 大陆偷拍与自拍| 久久久国产一区二区| 香蕉精品网在线| 身体一侧抽搐| 一区二区三区免费毛片| 黄色日韩在线| 久久午夜福利片| 久久久久久久久久久免费av| 久久99热这里只频精品6学生| 91精品一卡2卡3卡4卡| 麻豆国产97在线/欧美| 国产成人精品一,二区| 丰满人妻一区二区三区视频av| 亚洲美女搞黄在线观看| 日韩中字成人| 纯流量卡能插随身wifi吗| 亚洲熟女精品中文字幕| 国产精品久久久久久久久免| 免费观看在线日韩| 久久综合国产亚洲精品| 一级av片app| 波野结衣二区三区在线| 舔av片在线| 尤物成人国产欧美一区二区三区| 这个男人来自地球电影免费观看 | 成人一区二区视频在线观看| 91aial.com中文字幕在线观看| 麻豆成人午夜福利视频| 免费看不卡的av| 亚洲伊人久久精品综合| 99热这里只有是精品在线观看| 国产白丝娇喘喷水9色精品| 一级a做视频免费观看| 黄色视频在线播放观看不卡| 91狼人影院| 亚洲av男天堂| 超碰97精品在线观看| 日本-黄色视频高清免费观看| 搡老乐熟女国产| 男女无遮挡免费网站观看| 国产精品秋霞免费鲁丝片| 黄色视频在线播放观看不卡| 久久久久国产网址| 色吧在线观看| 韩国高清视频一区二区三区| 成人亚洲欧美一区二区av| 国产亚洲午夜精品一区二区久久| 国产色爽女视频免费观看| 中文欧美无线码| 日本av手机在线免费观看| 观看免费一级毛片| 国产精品无大码| 国产精品一区www在线观看| 女人久久www免费人成看片| 精品久久国产蜜桃| 国产大屁股一区二区在线视频| 国产一区二区三区av在线| 春色校园在线视频观看| 国产精品人妻久久久久久| 精品一区二区免费观看| 国产黄色视频一区二区在线观看| 黄色一级大片看看| 欧美精品国产亚洲| 亚洲欧美一区二区三区国产| 成人亚洲精品一区在线观看 | 少妇的逼好多水| 嘟嘟电影网在线观看| 99视频精品全部免费 在线| 国产精品三级大全| 精品99又大又爽又粗少妇毛片| 亚洲精品久久久久久婷婷小说| 能在线免费看毛片的网站| 久久久久久久久久成人| 国产精品人妻久久久影院| 欧美3d第一页| 国产男女超爽视频在线观看| 激情五月婷婷亚洲| 97在线人人人人妻| 一区在线观看完整版| 色婷婷久久久亚洲欧美| 国产精品99久久久久久久久| 日韩av免费高清视频| 久久精品国产亚洲av天美| 婷婷色综合大香蕉| 免费看日本二区| 欧美日韩在线观看h| 韩国av在线不卡| 日日啪夜夜撸| 狂野欧美激情性bbbbbb| 成人毛片a级毛片在线播放| 亚洲欧美清纯卡通| 最近中文字幕2019免费版| 最近中文字幕高清免费大全6| 99热这里只有是精品50| 精华霜和精华液先用哪个| 97精品久久久久久久久久精品| 国产免费一级a男人的天堂| 男人和女人高潮做爰伦理| 午夜福利在线观看免费完整高清在| 能在线免费看毛片的网站| 夫妻性生交免费视频一级片| 美女内射精品一级片tv| 国产精品一区二区在线观看99| 国产成人a∨麻豆精品| 欧美激情极品国产一区二区三区 | 99久久精品国产国产毛片| 国产在线免费精品| 亚洲av电影在线观看一区二区三区| 国产免费又黄又爽又色| 国产精品一及| 亚洲精品中文字幕在线视频 | 天堂中文最新版在线下载| 国产综合精华液| 日韩电影二区| 一级毛片 在线播放| 欧美3d第一页| 你懂的网址亚洲精品在线观看| 卡戴珊不雅视频在线播放| 久久毛片免费看一区二区三区| 91精品一卡2卡3卡4卡| 青春草亚洲视频在线观看| 亚洲人成网站在线观看播放| 91久久精品国产一区二区三区| 国产午夜精品一二区理论片| 日韩av免费高清视频| 99热这里只有是精品50| 久久99热这里只有精品18| 亚洲精品中文字幕在线视频 | 三级国产精品欧美在线观看| 日日摸夜夜添夜夜爱| 亚洲av成人精品一区久久| 欧美日韩精品成人综合77777| 国产美女午夜福利| av.在线天堂| 亚洲va在线va天堂va国产| 色综合色国产| 欧美日韩视频高清一区二区三区二| 人人妻人人看人人澡| 亚洲精品国产色婷婷电影| 欧美高清成人免费视频www| 22中文网久久字幕| 美女cb高潮喷水在线观看| 日韩,欧美,国产一区二区三区| 久久综合国产亚洲精品| 在线精品无人区一区二区三 | 免费人成在线观看视频色| 亚洲伊人久久精品综合| 晚上一个人看的免费电影| 亚洲天堂av无毛| 国产视频内射| 久久精品人妻少妇| 丝袜脚勾引网站| 免费观看av网站的网址| 插阴视频在线观看视频| 国产av码专区亚洲av| 丰满少妇做爰视频| 国产精品一区二区在线观看99| 国模一区二区三区四区视频| 亚洲中文av在线| 免费观看性生交大片5| 久久久久久久久久成人| 久久99热这里只频精品6学生| 欧美老熟妇乱子伦牲交| 噜噜噜噜噜久久久久久91| 在线播放无遮挡| 777米奇影视久久| 亚洲国产成人一精品久久久| 黄片无遮挡物在线观看| 免费观看的影片在线观看| 亚洲成人av在线免费| 六月丁香七月| 国产成人精品福利久久| 国产精品精品国产色婷婷| 97超碰精品成人国产| 美女xxoo啪啪120秒动态图| 80岁老熟妇乱子伦牲交| 亚洲自偷自拍三级| 中文在线观看免费www的网站| 日本wwww免费看| 中文字幕亚洲精品专区| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 精品熟女少妇av免费看| 欧美成人一区二区免费高清观看| 岛国毛片在线播放| 少妇猛男粗大的猛烈进出视频| 日韩国内少妇激情av| 超碰av人人做人人爽久久| 久久毛片免费看一区二区三区| 一级a做视频免费观看| 日韩电影二区| 国产一区亚洲一区在线观看| 国产亚洲av片在线观看秒播厂| 黑人高潮一二区| 久久国产精品男人的天堂亚洲 | 精品久久久精品久久久| 国产成人精品福利久久| 激情五月婷婷亚洲| 一个人免费看片子| 久久99蜜桃精品久久| 成年免费大片在线观看| 边亲边吃奶的免费视频| 亚洲国产色片| 永久免费av网站大全| 春色校园在线视频观看| 插逼视频在线观看| 啦啦啦视频在线资源免费观看| 人妻制服诱惑在线中文字幕| 亚洲欧美日韩卡通动漫| 最近中文字幕2019免费版| 色婷婷久久久亚洲欧美| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品电影小说 | 在线播放无遮挡| 色哟哟·www| 午夜视频国产福利| 狂野欧美激情性xxxx在线观看| 国产在线男女| 久久久久人妻精品一区果冻| 麻豆成人av视频| 嫩草影院入口| 在线天堂最新版资源| 老司机影院成人| 中文字幕av成人在线电影| 欧美丝袜亚洲另类| 日本与韩国留学比较| 亚洲欧美日韩另类电影网站 | 久久 成人 亚洲| 欧美最新免费一区二区三区| 欧美成人a在线观看| 国产av码专区亚洲av| 国产亚洲精品久久久com| 亚洲精品视频女| 久热久热在线精品观看| 十分钟在线观看高清视频www | 蜜桃亚洲精品一区二区三区| 国产精品成人在线| 性色av一级| 黄片wwwwww| 老女人水多毛片| 男女边吃奶边做爰视频| 免费看不卡的av| 观看美女的网站| 精品酒店卫生间| 最后的刺客免费高清国语| 制服丝袜香蕉在线| 水蜜桃什么品种好| 亚洲精品日韩av片在线观看| 丝瓜视频免费看黄片| 国产精品一及| 成人综合一区亚洲| 丰满迷人的少妇在线观看| 国产黄片美女视频| 日本一二三区视频观看| 精品人妻偷拍中文字幕| 99热这里只有是精品在线观看| 少妇人妻 视频| 久久久久久久亚洲中文字幕| 黑人猛操日本美女一级片| 亚洲精品一二三| 亚洲精品久久午夜乱码| 国产高清不卡午夜福利| 国产精品久久久久久精品电影小说 | av免费在线看不卡| 国产av一区二区精品久久 | 如何舔出高潮| 亚洲伊人久久精品综合| 男女无遮挡免费网站观看| 搡老乐熟女国产| www.av在线官网国产| 日韩欧美精品免费久久| 久久久久久九九精品二区国产| 麻豆精品久久久久久蜜桃| 亚洲美女视频黄频| 在线观看免费视频网站a站| 久久精品久久精品一区二区三区| av福利片在线观看| 中文乱码字字幕精品一区二区三区| 男人舔奶头视频| 国产乱来视频区| 视频区图区小说| 精品久久久噜噜| 丰满乱子伦码专区| 尾随美女入室| 一区二区三区四区激情视频| av天堂中文字幕网| 精品一区二区三区视频在线| 在线观看免费日韩欧美大片 | 91精品一卡2卡3卡4卡| 国产黄片视频在线免费观看| 国产av精品麻豆| 国产精品99久久99久久久不卡 | 午夜福利视频精品| 久久久久久九九精品二区国产| 亚洲av不卡在线观看| 亚洲综合色惰| 午夜免费男女啪啪视频观看| 久久午夜福利片| 2022亚洲国产成人精品|