• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-Stage Production Planning Under Stochastic Demand:Case Study of Fertilizer Manufacturing

    2022-11-09 08:15:42ChiaNanWangShaoDongSyuChienChangChouVietTinhNguyenandDangVanThuyCuc
    Computers Materials&Continua 2022年1期

    Chia-Nan Wang,Shao-Dong Syu,2,*,Chien-Chang Chou,Viet Tinh Nguyen and Dang Van Thuy Cuc

    1Department of Industrial Engineering and Management,National Kaohsiung University of Science and Technology,Kaohsiung,80778,Taiwan

    2Sunline NP Telecommunications Co.Ltd,Kaohsiung,80778,Taiwan

    3Department of Shipping Technology,National Kaohsiung University of Science and Technology,Kaohsiung,80778,Taiwan

    4Faculty of Commerce,Van Lang University,Ho Chi Minh City,70000,Vietnam

    5Faculty of Industrial Engineering and Management,International University,Ho Chi Minh City,70000,Vietnam

    Abstract:Agriculture is a key facilitator of economic prosperity and nourishes the huge global population.To achieve sustainable agriculture,several factors should be considered,such as increasing nutrient and water efficiency and/or improving soil health and quality.Using fertilizer is one of the fastest and easiest ways to improve the quality of nutrients inland and increase the effectiveness of crop yields.Fertilizer supplies most of the necessary nutrients for plants,and it is estimated that at least 30%-50%of crop yields is attributable to commercial fertilizer nutrient inputs.Fertilizer is always a major concern in achieving sustainable and efficient agriculture.Applying reasonable and customized fertilizers will require a significant increase in the number of formulae,involving increasing costs and the accurate forecasting of the right time to apply the suitable formulae.An alternative solution is given by two-stage production planning under stochastic demand,which divides a planning schedule into two stages.The primary stage has non-existing demand information,the inputs of which are the proportion of raw materials needed for producing fertilizer products,the cost for purchasing materials,and the production cost.The total quantity of purchased material and produced products to be used in the blending process must be defined to meet as small as possible a paid cost.At the second stage,demand appears under multiple scenarios and their respective possibilities.This stage will provide a solution for each occurring scenario to achieve the best profit.The two-stage approach is presented in this paper,the mathematical model of which is based on linear integer programming.Considering the diversity of fertilizer types,the mathematical model can advise manufacturers about which products will generate as much as profit as possible.Specifically,two objectives are taken into account.First,the paper’s thesis focuses on minimizing overall system costs,e.g.,including inventory cost,purchasing cost,unit cost,and ordering cost at Stage 1.Second,the thesis pays attention to maximizing total profit based on information from customer demand,as well as being informed regarding concerns about system cost at Stage 2.

    Keywords: Two-stage stochastic programming;demand uncertainty;planning;blending;fertilizer

    1 Introduction

    For over 40 years,the blending of solid granular materials in appropriate proportions with the purpose of producing a wide range of compound fertilizers has been well applied to fertilizer manufacturing.This process,technically called fertilizer blending (bulk blending),is one in which nutrients in a blend are mixed together physically.The three most important components needed to produce fertilizer are nitrogen (N),phosphorus (P),and potassium (K).In addition,filler material,which is added for chemical stabilization purposes and to prevent excessive fertilizer spreading causing soil “burning,” is needed.For example,the NPK formula “15-30-10” means that every 100 kilograms of this fertilizer contains 15 kg of nitrogen,30 kg of phosphorus,and 10 kg of potassium,with 45 kg of filler.

    Making an early production plan plays an important role in decreasing costs,procuring lower material costs,and meeting customer demands and requires lower bound quantities from governments with limited production capacity.

    Fig.1 shows the manufacturing planning period for the processes detailed in this paper.In the first period,Stage 1,the material purchasing price is cheap,and there is more time for manufacturing to produce products.However,the information on demand is unknown.After a certain time passes,Stage 2 begins,which is closer to the selling time,so there is more information on product demand,but the material price is more expensive than that in Stage 1.Stage 1 creates an opportunity to gain a lower cost for material and more time for producing products,but if the total quantity of purchasing material and product produced exceeded future demand,increased inventory cost will be incurred.The proposed solution,a two-stage stochastic process,uses the integer linear programming model in which the number of inputs and their quantity are treated as decision variables,and the demand is unclear information in the beginning.It is difficult to match the final demand of customers and a high inventory or holding cost is created because of excessive inventory created when demand was overestimated.However,underestimating demand leads to shortfalls and penalty costs.

    Figure 1:Planning period

    In this research,the assigning of products for the production model is based on the percentage of components as developed based on the previous work of Benhamou et al.[1].This approach has been upgraded by taking the profit from each product into account.The main objective of this paper is,for fertilizer manufacturing,to determine a solution for the best amount of purchased material due to the different price ranges in each stage,the total quantity of one-time ordering,the total products that will be produced by each blending machine,and the setting level for each machine.

    2 Literature Review

    Customer demand at the beginning is normally difficult to predict.Multiple optimization models have been developed over time to solve the production planning problem under changing demands [2-11].Gupta et al.[12] suggest that demand is one of the main sources of unpredictability in any supply chain.If a supply chain fails to recognize demand fluctuations and incorporate them into planning processes,it will suffer low customer satisfaction or excessively high inventory level [13].Uncertain demand can be modelled using probability distribution[14-18].Gao et al.[19] approach the changing-demand planning problem with a stochastic dynamic programming model that allows delay-in-payment contracts.Huang et al.[20] propose a joint sourcing strategy framework to deal with random demand surges.The objective of the proposed framework is to minimize long-term cost while maintaining a certain target service level.Peidro et al.[21] approach a supply-chain planning problem under uncertain demand with a fuzzy mathematical programming model approach.

    Weskamp et al.[22] suggest that unknown variables command attention,and propose a twostage method.At the primary stage,the focus is on decision variables for establishing production without full information,which holds for all scenarios because restructuring this activity is costly due to the high fixed cost.In the second stage,the random probability of events exists,so then the number of materials for producing products is considered the decision variable used to minimize the total cost for manufacturing,inventory,and penalty.According to Benhamou et al.[1],a varying type of fertilizer exists to meet with customer demand.The increase in the number of fertilizer formulae leads to an increase in inventory,transportation,and production.They thus propose the reverse blending method,in which inputs are existing materials where most of the fertilizer formulas are shared like N,P,and K.Their objective is to maximize mass customization and minimize the total quantity of inputs.Emirhüseyino?glu et al.[23] put forward that precipitation is a major uncertain factor that affects nutrient loss.They predicted nutrient reduction under stochastic precipitation rates.

    Swaminathan et al.[24] present a stochastic programming model used to investigate the optimal configuration of semi-finished products and inventory levels for a multi-period planning horizon for one manufacturer.The determination of optimal differentiation points is additionally studied by Hsu et al.[25],who suggest a dynamic programming model for multiple products and unsure demand.However,their research does not consider more complex cost types,such as trans-shipment costs,and focuses only on design decisions.Liu et al.[26] introduced a twostage mathematical optimization model to the supply-chain problem under uncertain demand.In the first stage,the production quantity of each facility of the manufacturing network and the production quantity to be transported between the network facilities are calculated.After the uncertain demand is realized and observed,the inventory size and flow of product shipped to customers are calculated in the second stage.The proposed model was implemented to solve a planning problem for a light-emitting-diode manufacturing company to demonstrate the model’s feasibility.Shi et al.[27] approach the production planning problem of a multi-product closedloop system with uncertain demand and return with a mathematical programming model.The proposed model was applied to a real-world case study to illustrate its feasibility.

    In this paper,the supply-chain planning problem under volatile demand is approached with a two-stage mathematical model with constraints on changing material price.The objectives of the proposed model are to minimize material overstock and maximize profit.

    3 Mathematical Model

    An appropriate production plan in two time periods is advanced in this paper.The outcome of the model will advise the user regarding the quantity that should be ordered at Stages 1 and 2 for each material and which blending machine is used at which level.

    3.1 Assumptions

    The mathematical model was developed based on the following assumptions.

    The price of buying raw materials and ordering costs in Stage 1 is always cheaper than purchasing in Stage 2.

    The length of the planning schedule in Stage 1 is 3 months,and that in Stage 2 is 5 months based on the company’s experience.

    All blending machines have the same properties of all setting levels.

    · The higher the setting level,the better the output and the higher the cost.

    3.2 Model Development

    3.2.1 Annotations

    The annotations of the model are defined as follows:

    · m: index of material m=1...M

    · p: index of output products p=1...P

    · r: index of price ranges r=1...R

    · e: index of scenarios e=1...E

    · j: index of ordering time j=1...J

    · b: index of blending machine b=1...B

    · i: index of setting i of blending machine i=1...I

    3.2.2 Parameters

    The parameters of the model are defined as follows:

    ·Dpe: Demand of product p under scenarios e

    ·: Demand max of product p in all scenarios

    · BigM: very large number

    ·αmp: number of material m for one product p

    ·sp: selling price for one product p

    ·O1mr: the offer price of material m at price r in stage 1

    ·O2mr: the offer price of material m at price r in stage 2

    ·LBmr: The lower bound for purchasing the material m at price r

    ·UBmr: The upper bound for purchasing the material m at price r in

    ·πe: The probability associating to scenario e

    ·R1: Fixed cost for one time ordering in stage 1

    ·R2: Fixed cost for one time ordering in stage 2

    ·wi: Fixed cost for using blending machine at setting i

    ·HCp: Holding cost of product p

    ·tpi: time required for manufacturing one product p at setting i

    ·H1b: number of available hours of blending machine b at stage 1

    ·H2b: number of available hours of blending machine b at stage 2

    3.2.3 Decision Variables

    The decision variables of the model are defined as follows:

    ·X1mrj: number of material m purchased at thejthtime order at price range r in stage 1

    ·X2mrje: number of material m purchased at thejthtime order at price range r under scenarios

    e in stage 2

    ·Y1pbi: number of product p manufactured in blending machine b at setting i at stage 1

    ·Y2pbie: number of product p manufactured in blending machine b at setting i under scenario e in stage 2

    ·Z1bi=Binary variable.Z1l=1 if blending machine b at setting i is used in stage 1,otherwiseZ1bi=0

    ·Z2bie=Binary variable.Z2bie=1 if blending machine b at setting i is used under scenarios e in stage 2,otherwiseZ2bie=0

    3.2.4 Auxiliary Variables

    The auxiliary variables of the model are defined as follows:

    ·V1mrj=Binary variable.V1mrj=1 if material m is purchased at thejthtime order at price range r in stage 1,otherwiseV1mrj=0

    ·V2mrje=Binary variable.V2mrje=1 if material m is purchased at thejthtime order at price range r under scenarios e in stage 2,otherwiseV2mrje=0

    ·Ipe: Income from selling product p under scenarios e.

    3.3 Optimization Model

    3.3.1 Model’s Objectives

    The mathematical model has two objectives:

    · Objective 1: Minimize total cost:

    · Objective 2: Maximize profit

    3.3.2 Model’s Constrains

    The constrains of the mathematical model are given below:

    Constraint (1)-(2) shows that the purchased material at each time ordering is either zero or one at the one price range.

    IfV1mrjorV2mrje=1 then material m was purchased at price range r in the ordering time j at stage 1 or stage 2.

    Constraint (3)-(8) states that each price range has its own lower bound and upper bound for the total quantity of one-time purchasing.At every ordering time belongs to price range r,the total number of purchasing must beyond lower bound and upper bound.

    Range for purchasing material m at price range r

    Constraint (9) focuses on total quantity purchasing material in both stages which must be smaller than the maximum usage of them in all scenarios du to prevent the unnecessary redundant.

    Constraint (10)-(11) presents the number of needed material m for producing product p at stage 1 or stage 2 must be smaller than the total available of material m at that stage.

    With ?m=1...M,e=1...E

    Constraint (12)-(13) ensures that at stage 1 and stage 2 the total time producing of all products on blending machine b must be smaller than the number of available hours of that blending machine.

    Constraint (14)-(15) guarantee during production time at each stage,every blending machine will fix at only one setting level due to the high cost of changeover:

    Constraint (16) defines the total income is the min of total producing product and demand from customers.If products were produced less than the demand,income will be from the total product selling.Otherwise,products were produced more than the needed,total income will come from the total demand.

    Constraint (17)-(20) are binary constraints.

    4 Case Study

    4.1 Data Collection

    The company begins making production plans for the Fall selling season at the beginning of January annually.Stage 1 is defined as the period from the first day of January to the first day of April;Stage 2 is defined as the period between April and September.The initial manufacturing parameters are shown in Tabs.1-3:

    Table 1:Total production time

    Table 2:The blending fertilizer’s composition and relative percentage

    The quotations of 2 stages are shown in Tab.4.Ordering costs at stage 1 and stage 2 are 120$ and 150$ per order,respectively.Tab.5 enumerates the holding costs of all materials while Tab.6 describe the demands under three different scenarios.

    Table 3:Producing rate and cost per hours respective to each setting level

    Table 4:Price quotation of raw material in stage 1 and stage 2

    4.2 Results

    The quantity of materials that should be purchased in Stage 1 is proposed in Tab.7.The detailed Stage 1 production plan is presented in Tab.8.

    In this paper,only the results corresponding to Scenario 1,which has the highest probability of occurrence,are presented.Tabs.9 and 10 describe the optimal Scenario 1 production plan.

    Table 5:Fertilizer holding cost at stage 1

    Table 6:Demand under different scenarios

    Table 7:Purchased quantity of raw material at stage 1

    Table 8:Setting level and produce product quantity at stage 1

    Decision makers can use the results to make optimal procurement decisions.The case studied thus demonstrates the feasibility and applicability of the proposed model to real-world problems.

    Table 9:Purchased quantity of raw material at stage 2 under scenario 1

    Table 10:Setting level and produce product quantity at stage 2 under scenario 1

    5 Conclusions

    In this paper,a blending method and mathematical linear integer model approach are presented that comprise a decision-support tool for identifying the optimal purchased raw material and allocating the appropriate capacity for manufacturing purposes in each stage of the entire planning period for a fertilizer manufacturing planning problem.The proposed two-stage stochastic mixed-integer program was formulated to quantify total cost and managerial decision support regarding setting the levels of machines,production,and inventory.While previous research on blending fertilizer only focuses on maximizing the production of products,attention was not paid to the material or production costs.In the present study,the decision was made based on all of the costs that will affect profit.The proposed model can be improved in future research by considering other complications in the planning process such as adding output-dependent cost and price,or applying the model with rolling planning horizons.

    Funding Statement: The authors received no specific funding for this study.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    国产片特级美女逼逼视频| 超碰97精品在线观看| 国产成人欧美| 久久久欧美国产精品| 中文字幕人妻丝袜制服| 午夜老司机福利片| 国产精品一区二区在线不卡| 亚洲国产精品成人久久小说| 午夜福利视频在线观看免费| 女性生殖器流出的白浆| 国产一区二区三区av在线| 夫妻午夜视频| 曰老女人黄片| 久久国产精品男人的天堂亚洲| 大香蕉久久网| 操出白浆在线播放| 两个人看的免费小视频| 男人爽女人下面视频在线观看| 精品亚洲成国产av| 黄色视频不卡| 日韩伦理黄色片| 黄色怎么调成土黄色| 亚洲精品成人av观看孕妇| 成年动漫av网址| 你懂的网址亚洲精品在线观看| 亚洲国产av影院在线观看| 啦啦啦中文免费视频观看日本| 久久精品久久久久久久性| 欧美变态另类bdsm刘玥| 电影成人av| 国产男人的电影天堂91| 亚洲精品日本国产第一区| 午夜福利视频在线观看免费| 在线观看一区二区三区激情| 欧美日韩一区二区视频在线观看视频在线| 一本—道久久a久久精品蜜桃钙片| 好男人视频免费观看在线| 久久久久久人人人人人| 大香蕉久久网| 菩萨蛮人人尽说江南好唐韦庄| 亚洲色图综合在线观看| 国产欧美日韩一区二区三区在线| 国产成人一区二区在线| 日韩,欧美,国产一区二区三区| 9热在线视频观看99| 最近中文字幕高清免费大全6| 亚洲免费av在线视频| 国产伦人伦偷精品视频| 又大又爽又粗| 精品久久久久久电影网| 国产亚洲午夜精品一区二区久久| 高清不卡的av网站| 老司机影院成人| 亚洲成人一二三区av| 一个人免费看片子| 国产伦理片在线播放av一区| 人体艺术视频欧美日本| 国产精品偷伦视频观看了| 亚洲av成人精品一二三区| 久久久精品94久久精品| 亚洲精品日本国产第一区| 欧美97在线视频| 欧美在线一区亚洲| 欧美少妇被猛烈插入视频| 久热爱精品视频在线9| 欧美黑人精品巨大| 欧美精品人与动牲交sv欧美| 伦理电影免费视频| 日韩一区二区三区影片| 自线自在国产av| 91成人精品电影| 亚洲欧美成人精品一区二区| 成年人免费黄色播放视频| 成年人免费黄色播放视频| 国产欧美日韩综合在线一区二区| 99精品久久久久人妻精品| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕最新亚洲高清| 丝袜美足系列| 最近2019中文字幕mv第一页| 日韩制服丝袜自拍偷拍| 欧美激情 高清一区二区三区| 51午夜福利影视在线观看| 日本av免费视频播放| 青青草视频在线视频观看| 另类精品久久| 日韩精品免费视频一区二区三区| 国产av一区二区精品久久| 多毛熟女@视频| 自拍欧美九色日韩亚洲蝌蚪91| 黑人欧美特级aaaaaa片| 一本久久精品| 999精品在线视频| 在线观看免费视频网站a站| 大香蕉久久网| 亚洲av国产av综合av卡| 最近最新中文字幕免费大全7| 亚洲精品久久午夜乱码| 国产精品久久久久久精品电影小说| 中文字幕亚洲精品专区| 考比视频在线观看| 精品免费久久久久久久清纯 | 久久精品久久久久久噜噜老黄| 中文字幕高清在线视频| 日日啪夜夜爽| 日韩人妻精品一区2区三区| 国产视频首页在线观看| 女的被弄到高潮叫床怎么办| 最近中文字幕2019免费版| 各种免费的搞黄视频| av女优亚洲男人天堂| 久久久精品免费免费高清| 婷婷色麻豆天堂久久| 欧美日韩视频高清一区二区三区二| 欧美日韩亚洲高清精品| 在线天堂最新版资源| 啦啦啦在线观看免费高清www| 9热在线视频观看99| 亚洲第一青青草原| 极品人妻少妇av视频| 欧美人与性动交α欧美软件| 考比视频在线观看| 99热国产这里只有精品6| 99久久99久久久精品蜜桃| 国产成人系列免费观看| 亚洲人成电影观看| 大片免费播放器 马上看| 少妇精品久久久久久久| 母亲3免费完整高清在线观看| 欧美精品av麻豆av| 纯流量卡能插随身wifi吗| 国产精品av久久久久免费| 亚洲国产欧美在线一区| 国产精品国产三级国产专区5o| 老汉色av国产亚洲站长工具| 亚洲免费av在线视频| 欧美日韩精品网址| 精品酒店卫生间| 最近最新中文字幕免费大全7| 97人妻天天添夜夜摸| 免费在线观看完整版高清| 日韩伦理黄色片| 高清欧美精品videossex| 一区二区日韩欧美中文字幕| 亚洲天堂av无毛| 99九九在线精品视频| 国产色婷婷99| 如日韩欧美国产精品一区二区三区| 国产1区2区3区精品| 久久久国产欧美日韩av| 亚洲精品,欧美精品| 久久人人爽av亚洲精品天堂| 新久久久久国产一级毛片| 成人毛片60女人毛片免费| 国产视频首页在线观看| 97在线人人人人妻| 亚洲精品久久久久久婷婷小说| 丁香六月欧美| 日韩一区二区视频免费看| 亚洲熟女精品中文字幕| 国产精品久久久久成人av| 国产av一区二区精品久久| 别揉我奶头~嗯~啊~动态视频 | 久久人人爽av亚洲精品天堂| 午夜福利视频在线观看免费| 青草久久国产| 亚洲欧美清纯卡通| 尾随美女入室| 99精品久久久久人妻精品| 亚洲欧美清纯卡通| 亚洲在久久综合| 国产精品亚洲av一区麻豆 | 免费观看a级毛片全部| 美国免费a级毛片| 久久毛片免费看一区二区三区| 免费观看a级毛片全部| 国产在视频线精品| 人人妻人人爽人人添夜夜欢视频| 久久久久国产一级毛片高清牌| 国产乱来视频区| 日韩熟女老妇一区二区性免费视频| 国产男人的电影天堂91| 三上悠亚av全集在线观看| 男女之事视频高清在线观看 | 午夜91福利影院| 男女无遮挡免费网站观看| 亚洲天堂av无毛| 99久国产av精品国产电影| a级片在线免费高清观看视频| bbb黄色大片| 下体分泌物呈黄色| 夫妻性生交免费视频一级片| 成人影院久久| 嫩草影视91久久| 亚洲av欧美aⅴ国产| 久久久久久久精品精品| 日韩一区二区视频免费看| 国产欧美日韩综合在线一区二区| 免费黄色在线免费观看| 美女脱内裤让男人舔精品视频| av一本久久久久| 免费黄网站久久成人精品| 人成视频在线观看免费观看| 一区二区三区四区激情视频| 成人午夜精彩视频在线观看| 亚洲伊人久久精品综合| 国产精品一二三区在线看| 99国产综合亚洲精品| av一本久久久久| 女的被弄到高潮叫床怎么办| 欧美日韩综合久久久久久| 别揉我奶头~嗯~啊~动态视频 | 十八禁人妻一区二区| 中文字幕高清在线视频| 国产成人一区二区在线| 日韩大片免费观看网站| 国产精品久久久久久久久免| 日韩av在线免费看完整版不卡| 中文字幕高清在线视频| 高清视频免费观看一区二区| 亚洲综合色网址| 婷婷成人精品国产| 纵有疾风起免费观看全集完整版| 高清不卡的av网站| 亚洲伊人色综图| 亚洲成色77777| 欧美日韩一级在线毛片| 亚洲,一卡二卡三卡| 激情视频va一区二区三区| a级片在线免费高清观看视频| 七月丁香在线播放| 国产精品久久久久久久久免| 丝袜人妻中文字幕| 五月天丁香电影| 黄色一级大片看看| 久久影院123| 天天躁狠狠躁夜夜躁狠狠躁| 男人操女人黄网站| 久久人人爽人人片av| 免费高清在线观看日韩| av国产精品久久久久影院| 久久婷婷青草| 亚洲免费av在线视频| 999精品在线视频| 伊人亚洲综合成人网| 国产免费一区二区三区四区乱码| 久久久久精品人妻al黑| 久久午夜综合久久蜜桃| 男人添女人高潮全过程视频| 亚洲美女视频黄频| 女人被躁到高潮嗷嗷叫费观| 91国产中文字幕| a级毛片黄视频| 午夜福利免费观看在线| 啦啦啦中文免费视频观看日本| 人妻 亚洲 视频| 菩萨蛮人人尽说江南好唐韦庄| 激情视频va一区二区三区| 高清黄色对白视频在线免费看| 91精品国产国语对白视频| av在线老鸭窝| 亚洲精品日韩在线中文字幕| 我要看黄色一级片免费的| 成人午夜精彩视频在线观看| 日本午夜av视频| 老司机亚洲免费影院| 成人免费观看视频高清| 精品少妇久久久久久888优播| 午夜福利乱码中文字幕| 成人国产av品久久久| 久久性视频一级片| 无限看片的www在线观看| 久久鲁丝午夜福利片| 国产精品 欧美亚洲| 人人妻,人人澡人人爽秒播 | 国产精品免费大片| 欧美av亚洲av综合av国产av | 日韩精品免费视频一区二区三区| av片东京热男人的天堂| 国产爽快片一区二区三区| 亚洲人成电影观看| 在线免费观看不下载黄p国产| 欧美日韩亚洲综合一区二区三区_| 看免费av毛片| 亚洲,欧美精品.| 免费久久久久久久精品成人欧美视频| 欧美av亚洲av综合av国产av | 日韩一区二区视频免费看| 国产成人免费观看mmmm| 国产在线一区二区三区精| 免费观看a级毛片全部| 欧美成人午夜精品| 一级,二级,三级黄色视频| 老司机深夜福利视频在线观看 | 久久精品国产亚洲av涩爱| 免费久久久久久久精品成人欧美视频| 美女午夜性视频免费| av片东京热男人的天堂| 九九爱精品视频在线观看| 一区二区三区精品91| a 毛片基地| 久久久久久免费高清国产稀缺| 欧美在线一区亚洲| 国产老妇伦熟女老妇高清| 亚洲成人av在线免费| 一区二区三区四区激情视频| 久久鲁丝午夜福利片| 9色porny在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美久久黑人一区二区| 亚洲精品一二三| av网站在线播放免费| 无遮挡黄片免费观看| 久久久久精品久久久久真实原创| 在线亚洲精品国产二区图片欧美| 一区在线观看完整版| 黄网站色视频无遮挡免费观看| 男的添女的下面高潮视频| 亚洲四区av| 在线天堂最新版资源| 好男人视频免费观看在线| av有码第一页| 99久久综合免费| 国产一区二区激情短视频 | 久久久久国产一级毛片高清牌| 精品亚洲乱码少妇综合久久| 国产麻豆69| 男人舔女人的私密视频| 视频区图区小说| 如何舔出高潮| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久人人人人人| 视频区图区小说| 中文字幕制服av| 两性夫妻黄色片| 国产乱来视频区| 亚洲av国产av综合av卡| 国产日韩欧美视频二区| 亚洲精品久久久久久婷婷小说| 狂野欧美激情性bbbbbb| 男女边摸边吃奶| 欧美日韩精品网址| 午夜日本视频在线| 久久人人爽人人片av| 男女边摸边吃奶| 国产黄色视频一区二区在线观看| 日韩人妻精品一区2区三区| 亚洲欧美中文字幕日韩二区| 伊人亚洲综合成人网| 亚洲一区中文字幕在线| 高清黄色对白视频在线免费看| 超碰成人久久| 亚洲七黄色美女视频| 高清欧美精品videossex| 一级毛片黄色毛片免费观看视频| 免费在线观看视频国产中文字幕亚洲 | 18禁观看日本| 婷婷色综合大香蕉| 纯流量卡能插随身wifi吗| 美女主播在线视频| 熟妇人妻不卡中文字幕| 99热网站在线观看| 在线观看一区二区三区激情| 国产男女内射视频| 成人午夜精彩视频在线观看| 在线观看国产h片| 另类亚洲欧美激情| 久久人人爽av亚洲精品天堂| 在线天堂中文资源库| 黑人欧美特级aaaaaa片| 国产亚洲精品第一综合不卡| 街头女战士在线观看网站| 一边摸一边做爽爽视频免费| 91aial.com中文字幕在线观看| 久久久精品区二区三区| 男人操女人黄网站| 自线自在国产av| 国产精品秋霞免费鲁丝片| 韩国精品一区二区三区| 国产成人91sexporn| videos熟女内射| 99久久精品国产亚洲精品| 亚洲精品一区蜜桃| 各种免费的搞黄视频| 免费少妇av软件| 国产亚洲欧美精品永久| 两个人免费观看高清视频| 欧美中文综合在线视频| a级片在线免费高清观看视频| 久久久久久久久免费视频了| 国产成人精品福利久久| 午夜91福利影院| 你懂的网址亚洲精品在线观看| 2021少妇久久久久久久久久久| 黄频高清免费视频| 中文乱码字字幕精品一区二区三区| 国产福利在线免费观看视频| 久久久久国产精品人妻一区二区| 中文天堂在线官网| 久久人人爽人人片av| 国产精品成人在线| 久久人人97超碰香蕉20202| 国产精品秋霞免费鲁丝片| 涩涩av久久男人的天堂| av网站在线播放免费| 久热这里只有精品99| 黑人猛操日本美女一级片| 国产又色又爽无遮挡免| 我的亚洲天堂| 亚洲人成77777在线视频| 亚洲欧美一区二区三区久久| 成人毛片60女人毛片免费| 九色亚洲精品在线播放| 久久性视频一级片| 亚洲美女搞黄在线观看| av又黄又爽大尺度在线免费看| 美女中出高潮动态图| 国产精品欧美亚洲77777| 宅男免费午夜| 国产99久久九九免费精品| 成人免费观看视频高清| 我要看黄色一级片免费的| 永久免费av网站大全| 最近手机中文字幕大全| 日韩av不卡免费在线播放| 国产精品一二三区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 新久久久久国产一级毛片| xxx大片免费视频| 午夜福利一区二区在线看| 9色porny在线观看| 色94色欧美一区二区| 女人爽到高潮嗷嗷叫在线视频| 男女之事视频高清在线观看 | 久久久久久人人人人人| 亚洲免费av在线视频| 久久狼人影院| 亚洲情色 制服丝袜| 国产在线视频一区二区| 91精品伊人久久大香线蕉| 你懂的网址亚洲精品在线观看| 国产精品久久久久久精品电影小说| 丝袜人妻中文字幕| 男人舔女人的私密视频| 精品午夜福利在线看| 久久毛片免费看一区二区三区| 国产成人av激情在线播放| 国产免费现黄频在线看| 国产精品嫩草影院av在线观看| 波多野结衣一区麻豆| 曰老女人黄片| 中文欧美无线码| 国产欧美日韩一区二区三区在线| 国产成人欧美在线观看 | 18在线观看网站| 亚洲国产欧美日韩在线播放| 性少妇av在线| 成年动漫av网址| 久久久久久久久免费视频了| 国产男女超爽视频在线观看| 丝袜脚勾引网站| 成人手机av| 久久久久久久国产电影| 各种免费的搞黄视频| 国产精品国产av在线观看| 天美传媒精品一区二区| 国产男女超爽视频在线观看| 欧美精品亚洲一区二区| 99香蕉大伊视频| 涩涩av久久男人的天堂| 久久久久精品国产欧美久久久 | 自线自在国产av| 成年女人毛片免费观看观看9 | 波野结衣二区三区在线| 午夜激情av网站| 男人操女人黄网站| tube8黄色片| 国产人伦9x9x在线观看| 国产成人精品福利久久| 在线 av 中文字幕| 亚洲熟女精品中文字幕| 亚洲国产毛片av蜜桃av| 久久综合国产亚洲精品| 久久女婷五月综合色啪小说| 777久久人妻少妇嫩草av网站| 国产一区二区三区av在线| 亚洲四区av| 亚洲精品久久久久久婷婷小说| 18禁观看日本| 免费久久久久久久精品成人欧美视频| 精品人妻熟女毛片av久久网站| 午夜福利影视在线免费观看| 国产黄色免费在线视频| 老熟女久久久| www.熟女人妻精品国产| 久久久国产精品麻豆| 亚洲国产精品成人久久小说| 观看av在线不卡| 亚洲欧美色中文字幕在线| av天堂久久9| 亚洲成色77777| 777久久人妻少妇嫩草av网站| 观看av在线不卡| 免费少妇av软件| 欧美日韩视频高清一区二区三区二| 色网站视频免费| 水蜜桃什么品种好| 人人妻人人澡人人看| 久久国产精品男人的天堂亚洲| 亚洲情色 制服丝袜| 叶爱在线成人免费视频播放| 麻豆乱淫一区二区| av免费观看日本| 亚洲国产欧美日韩在线播放| 人人妻人人澡人人看| 亚洲av在线观看美女高潮| 国产成人欧美在线观看 | 成人免费观看视频高清| 精品卡一卡二卡四卡免费| 曰老女人黄片| 一级毛片黄色毛片免费观看视频| 国产 精品1| 欧美精品一区二区免费开放| 18禁观看日本| 久久久久视频综合| 亚洲精品久久成人aⅴ小说| av一本久久久久| 日本黄色日本黄色录像| 亚洲精品av麻豆狂野| 午夜福利在线免费观看网站| av电影中文网址| 国产成人精品无人区| 欧美精品亚洲一区二区| 十八禁人妻一区二区| 黄色 视频免费看| 亚洲欧洲国产日韩| 国产乱人偷精品视频| 各种免费的搞黄视频| 秋霞伦理黄片| 男女高潮啪啪啪动态图| 一本一本久久a久久精品综合妖精| 精品一区二区三区av网在线观看 | 欧美日本中文国产一区发布| 天美传媒精品一区二区| 黄色一级大片看看| 男男h啪啪无遮挡| 国产免费现黄频在线看| 精品卡一卡二卡四卡免费| 你懂的网址亚洲精品在线观看| 欧美国产精品va在线观看不卡| 交换朋友夫妻互换小说| 亚洲精品成人av观看孕妇| 91aial.com中文字幕在线观看| 在线亚洲精品国产二区图片欧美| 久久这里只有精品19| 久久久国产欧美日韩av| 国产亚洲欧美精品永久| 国产午夜精品一二区理论片| 青青草视频在线视频观看| 欧美日本中文国产一区发布| 嫩草影院入口| 男女之事视频高清在线观看 | 午夜日韩欧美国产| 中文字幕另类日韩欧美亚洲嫩草| 国产老妇伦熟女老妇高清| 这个男人来自地球电影免费观看 | 国产熟女午夜一区二区三区| av线在线观看网站| 国产一区亚洲一区在线观看| h视频一区二区三区| 久久青草综合色| 伊人亚洲综合成人网| 精品亚洲乱码少妇综合久久| 人人澡人人妻人| 天天操日日干夜夜撸| 国产深夜福利视频在线观看| 久久热在线av| 亚洲欧美精品自产自拍| 999久久久国产精品视频| 男女边吃奶边做爰视频| 最近中文字幕2019免费版| 亚洲成人一二三区av| 熟女少妇亚洲综合色aaa.| 波野结衣二区三区在线| 久久久久久免费高清国产稀缺| 大片电影免费在线观看免费| 久久女婷五月综合色啪小说| 久久精品久久久久久久性| 一边亲一边摸免费视频| 久久国产精品大桥未久av| 亚洲三区欧美一区| 成人三级做爰电影| 午夜福利在线免费观看网站| 啦啦啦啦在线视频资源| 国产激情久久老熟女| 国产男女超爽视频在线观看| 另类精品久久| 亚洲精品乱久久久久久| 久久毛片免费看一区二区三区| 亚洲,一卡二卡三卡| 叶爱在线成人免费视频播放| 一二三四在线观看免费中文在| 成人黄色视频免费在线看| 美女午夜性视频免费| 午夜日韩欧美国产| 欧美精品一区二区免费开放| 日韩一区二区视频免费看| 一级毛片我不卡| 中文字幕人妻熟女乱码| 1024香蕉在线观看| 中文乱码字字幕精品一区二区三区| 久久这里只有精品19| 99re6热这里在线精品视频| 午夜激情av网站| 一本色道久久久久久精品综合|