• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Artificial Intelligence Approach for Solving Stochastic Transportation Problems

    2022-11-09 08:14:54PrachiAgrawalKhalidAlnowibetTalariGaneshAdelAlrasheediHijazAhmadandAliWagdyMohamed
    Computers Materials&Continua 2022年1期

    Prachi Agrawal,Khalid Alnowibet,Talari Ganesh,Adel F.Alrasheedi,Hijaz Ahmad and Ali Wagdy Mohamed

    1Department of Mathematics and Scientific Computing,National Institute of Technology Hamirpur,Himachal Pradesh,177005,India

    2Statistics and Operations Research Department,College of Science,King Saud University,Riyadh,11451,Kingdom of Saudi Arabia

    3Section of Mathematics,International Telematic University Uninettuno,Roma,00186,Italy

    4Operations Research Department,Faculty of Graduate Studies for Statistical Research,Cairo University,Giza,12613,Egypt

    5Wireless Intelligent Networks Center(WINC),School of Engineering and Applied Sciences,Nile University,Giza,Egypt

    Abstract:Recent years witness a great deal of interest in artificial intelligence(AI) tools in the area of optimization.AI has developed a large number of tools to solve the most difficult search-and-optimizationproblems in computer science and operations research.Indeed,metaheuristic-based algorithms are a sub-field of AI.This study presents the use of the metaheuristic algorithm,that is,water cycle algorithm(WCA),in the transportation problem.A stochastic transportation problem is considered in which the parameters supply and demand are considered as random variables that follow the Weibull distribution.Since the parameters are stochastic,the corresponding constraints are probabilistic.They are converted into deterministic constraints using the stochastic programming approach.In this study,we propose evolutionary algorithms to handle the difficulties of the complex high-dimensional optimization problems.WCA is influenced by the water cycle process of how streams and rivers flow toward the sea (optimal solution).WCA is applied to the stochastic transportation problem,and obtained results are compared with that of the new metaheuristic optimization algorithm,namely the neural network algorithm which is inspired by the biological nervous system.It is concluded that WCA presents better results when compared with the neural network algorithm.

    Keywords: Artificial intelligence;metaheuristic algorithm;stochastic programming;transportation problem;water cycle algorithm;weibull distribution

    1 Introduction

    The issue related to transportation,which is a basic necessity of society,is called a transportation problem.The transportation problem distributes homogeneous products from different origins to different destinations.It mainly consists of three parameters: the available amount of products at origins,the required amount of products at destinations,and the transportation cost from origins to destinations.The main objective is to minimize the transportation cost based on the availability and the requirement of the product.

    Kantorovich’s [1] obtained a solution for the transportation problem through his seminal work;however,Hitchcock [2] gave a constructive method for the same.Arsham et al.[3] proposed a linear programming approach to solve the same issue using the simplex algorithm.

    Owing to lack of information or inaccurate data,the parameters price and demand of the product may be treated as random variables.Such transportation problems,where the pivotal parameters like demand and price are uncertain and where there is a need for mathematical programming that optimizes the uncertainty,are usually termed as “stochastic transportation problems” [4].This is applicable to many areas including but not limited to population management,transportation,agriculture,finance ranger service,to name a few.

    Over the years,the optimization of parameters in stochastic programming (SP) is focused on right side vectors in such a way that these have a certain probability distribution.Few research works in this line were by Barik et al.[5],Matiy et al.[6],Agrawal et al.[7],and Mahapatra et al.[8].In these studies,the parameters are estimated using Pareto,Logistic,and Normal random variables.Several researchers contributed finding the solution for multichoice SP: Maity et al.[9] suggested a utility function to obtain the optimum solution,Agrawal et al.[10] worked on a nonlinear approach to have feasible and optimal values,and Roy [11,12] proposed Lagrange’s interpolation for having optimal values of multichoice parameters and also solutions in the case of stochastic supply.Mahapatra et al.[13] solved a multichoice stochastic transportation problem in which the parameters follow extreme value distribution.

    However,for handling complex SP problems and having a convergence,algorithms that help in iterating the parameter values of SP and finding out the optimal solution are highly required.This has grabbed the attention of many researchers,and several works have come out on this platform too,some notable contributions of which were: genetic algorithm (GA) [14],particle swarm optimization [15],ant colony optimization [16],and differential evolution optimization [17].Dutta et al.[18] solved a fuzzy stochastic transportation problem using GA.Vignaux et al.[19] adopted the GA to understand its utility in solving the linear transportation problem.Cao [20] solved the transportation problem with the branch and bound method,and later on,Cao et al.[21]obtained the solution of transportation with the tabu search algorithm.Later,Eskandar et al.[22]developed a novel approach to address these complex situations by building a metaheuristic algorithm called water cycle algorithm (WCA) and it is also shown that WCA works better than other metaheuristic algorithms.Furthermore,Sadollah et al.[23],Ghaffarzadeh [24],and Sadollah et al.[25] worked on WCA and applied it to enhance the parameters of a power framework stabilizer and used it to solve multi-objective optimization problems.In the recent past,Sadollah et al.[26] proposed an algorithm based on biological neural networks,named neural network algorithm (NNA),to deal with constrained optimization problems.

    The main purpose of this study is to apply WCA to the stochastic transportation problem and find the optimal transportation plan of the problem.In this study,the stochastic transportation problem is considered,in which the parameters supply and demand are considered as random variables,which follow the Weibull distribution [27].Therefore,the stochastic constraints are converted into deterministic using SP,and WCA is applied to the deterministic transportation problem.The obtained results of the case study are compared with NNA.

    The paper is organized as follows.The mathematical model of the stochastic transportation problem is given in Section 2 and the methodology used to solve the stochastic transportation problem is presented in Section 3.The metaheuristic algorithm WCA is given in Section 4.To understand the methodology,the case study is presented in Section 5 and their results and conclusions are given in Sections 6 and 7,respectively.

    2 Problem Specification

    This section contains the introduction and mathematical model of the stochastic transportation problem.Assume that there arepandqnumber of supply and destination locations,respectively.Wt,Rsdenote the availability of the product at the,supply locations and the requirement of the product at the,destination locations.These parameters are stochastic,are considered to follow Weibull distribution,and their corresponding constraints are probabilistic.Alsoctsis the transportation cost fromtthsupply locations to thesthdestination locations.In particular,c13describes the transportation cost from the first supply location to the third destination location.The main aim is to find the number of unitsxts(decision variables) of the homogeneous product that is shipped from thetthsupply locations to thesthdestination locations.The mathematical model of the stochastic transportation problem is written as

    Eq.(1) represents the objective function,and (2) and (3) are the constraints of supply and destination which are probabilistic with a specified probability,respectively.

    3 Methodology

    This section describes the methodology applied to the stochastic transportation problem to find the optimal solution.The problem contains probabilistic constraints,and to convert them into deterministic,SP is used and then metaheuristic algorithm WCA is applied to the deterministic problem.The description of the methodology is presented in the following sections.

    3.1 Transformation of Stochastic Constraints

    Theorem 1.LetWt,t=1,2,...,p,are independent Weibull random variables withαt,βt,andγtbeing the location,scale,and shape parameters,respectively.Then the probabilistic constraint (2) is converted into deterministic as

    Proof:Considertth(t=1,2,...,q)supply constraint:

    It can be rewritten as

    SinceWt(t=1,2,...,q)are random variables that follow Weibull distribution,the probability density function ofWtis given by

    whereWt≥αt,αt∈R,η >0,andγt >0.

    Eq.(5) is rewritten as

    which implies that

    This implies that

    Taking logarithm on both sides,we obtain

    This implies that

    On simplifying,we obtain

    Eq.(7) is the deterministic constraint of the supply probabilistic constraint (2).

    Theorem 2.LetRs,s=1,2,...,q,are independent Weibull random variables with,,andbeing the location,scale,and shape parameters,respectively.Then the probabilistic constraint (3) is converted into deterministic as

    Proof: The proof follows the same procedure as in Theorem 1,and,therefore,we omit it.

    Eq.(8) is the deterministic constraint of the demand probabilistic constraint (3).

    3.2 The Mathematical Model

    Using SP,the deterministic mathematical model of the stochastic transportation problem is written as follows:

    4 Water Cycle Algorithm

    The thought behind WCA is invigorated from nature,based on the perception of the water cycle,and how rivers and streams stream downhill toward the sea in reality.A river,or a stream,is shaped at whatever point water moves downhill,starting with one point and then onto the next.This shows that most rivers are framed high up in the mountains,where snow or ice sheets liquefy.The rivers consistently stream downhill.On their downhill adventure and at the end winding up to the sea,water is gathered from the downpour and different streams.Water in streams and lakes evaporates to create mists which at that point consolidates in the colder air,discharging the water back to the earth as downpour or precipitation.

    4.1 Initial Solution Generation

    The population-based metaheuristic algorithm WCA begins with the initial population,called raindrops.A raindrop represents an array of 1 ×nVar,wherenVaris the dimension of the optimization problem.The 1×nVararray represents the decision variables,which is defined as follows:

    Raindrop(x)=[x1,x2,...,xnVar].

    In the array,the best raindrop is picked as the sea,and at that point,various great raindrops are picked as the river,and the remainder of the raindrops are considered as streams which flow to the rivers and sea.A candidate solution represents a matrix of raindrops of sizenPop×nVarwhich is generated randomly.Hence,the matrixXis written as

    Each of the decision variables(kx1,kx2,...,kxnVar)is represented as floating-point numbers,but all the decision variables have to be non-negative.NSR(user-defined parameter) represents the summation of the number of rivers and sea (single value),as shown in the following equation:

    and the remainder of the population is calculated from

    In (9),1 represents the sea value,and in (10),NRDdenote the number of raindrops.

    4.2 Evaluation of Fitness

    The objective function (cost function) is evaluated at the raindropskx1,kx2,...,kxnVar,k=1,2,...,nPop:

    kObjective=f(kx1,kx2,...,kxnVar),

    wherenPopandnVarare the number of raindrops and the number of decision variables,respectively.

    4.3 Designate Streams to Rivers and Sea

    To assign/appoint raindrops to the rivers and sea relying on the power of the flow,the accompanying equation is given in whichNSndenotes the numbers of streams that flow to the specific rivers or sea:

    4.4 Formation of Rivers and Streams

    In WCA,the streams are made from the raindrops,which join with others to form new rivers.Likewise,a portion of the streams straightforwardly moves to the sea.Every river and every stream end up in the sea.With distance,a stream moves toward the river along the interfacing line between them.The distance is chosen randomly,which is given as

    wheredis the current distance between the stream and the river.The value ofXdepends on the random number between 0 andv×d.

    Therefore,the new streams and rivers are written as

    k+1XSt=kXSt+rand×v×(kXR-kXSt),

    k+1XR=kXR+rand×v×(kXsea-kXR),

    wherekXStandkXRare the position of the stream and the river atkthiteration,respectively,and the rand is a uniformly distributed random number between 0 and 1.The position of the river and streams will be interchanged if the solution obtained by the stream is better than its connecting river.The same will be applied to rivers and sea.

    4.5 Evaporation

    The main part of the algorithm is based on evaporation,which prevents the algorithm from rapid convergence.In the water cycle,water evaporates from rivers and lakes,while plants give off water during photosynthesis.The evaporated water is carried into the atmosphere to clouds which then condenses in the colder atmosphere,releasing the water back to the earth in the form of rain.The rain creates the new streams,and the new streams flow to the rivers which in turn flow to the sea.In WCA,the vanishing procedure causes the seawater to dissipate,as waterways/streams stream to the sea.This idea is utilized to abstain from getting caught in local optima.The drizzling procedure is connected for which new raindrop structure streams in various areas.For indicating the new areas of the recently shaped streams,the accompanying condition is utilized:

    whereLbandUbare the lower and upper bounds of the decision variables,respectively,which is defined in the problem.Again,the best newly formed raindrop is considered as a river flowing to the sea.

    5 Case Study

    A numerical example is considered for a better understanding of the proposed methodology,in which supply and demand follow the Weibull distribution.It presents a case study of tea transportation,which contains three supply locations and four destination locations in India.Tea is transported from the bottom of hill areas to different areas.It is transported at Palampur,The tea capital of North India,in Kangra district,Himachal Pradesh,India,from Bir,Thakurdwara,and Dharamsala,to four destination locations of Delhi,Punjab,Rajasthan,and Uttar Pradesh.The cost of transporting one unit (50 kg) from supply location to destination locations is considered.The main aim is to minimize the total transportation cost for availability and the requirement of the tea.The corresponding objective function and the related data are presented.

    Tab.1 presents the data relating to Weibull distribution with three known parameters of supply and demand.

    Table 1:The data for weibull distribution of supply and destination locations

    First,using the data,the mathematical model of the stochastic transportation problem involving the Weibull distribution is formulated.The objective function is given in the following form subject to probabilistic constraints.The probabilistic model is converted into a deterministic model using the transformation technique and then solved by WCA and NNA.

    s.t.

    x11+x12+x13+x14≤555.7788653,

    x21+x22+x23+x24≤656.3787239,

    x31+x32+x33+x34≤757.1776883,

    x11+x21+x31≥331.20851,

    x12+x22+x32≥431.90705,

    x13+x23+x33≥532.30701,

    x14+x24+x34≥632.80666,.

    xts≥0,t=1,2,3,s=1,2,3,4.

    6 Results and Discussion

    A case study based on the stochastic transportation problem involving Weibull distribution is presented in Section 5,and using SP,the problem is converted into its deterministic form.WCA is applied to obtain the solution of the problem that contains 12 decision variables and 19 constraints.The problem is solved using MATLAB software,and the codes were run on a computer with Intel (R) Core (TM)2 Quad,a CPU clock of 2.33 GHz with 4.00 GB RAM.Tab.2 presents the values of the parameters used in WCA.

    Table 2:Values of the parameters used in WCA

    For each run,the initial candidate solution was generated randomly within the boundaries using a uniform probability distribution.Tolerance,which is defined by the user,is∈=2.22E-16$ and the maximum number of iterations was set to 1000.Similarly,the number of the total population and the maximum number of iterations for the NNA were set as reported in the WCA.Twenty-five independent runs were performed for both the algorithms and the obtained results are noted throughout the process.It can be observed from the obtained results that WCA has the optimal (minimum) objective value in the 20th run and has the worst objective value in the fifth run.The best (optimal),average,and the worst objective values are shown in Tab.3,which depicts that the WCA presents better solutions when compared to NNA.

    Table 3:The best,average,and the worst solutions of the case study using WCA and NNA

    Fig.1 shows that WCA and NNA are comparable: using WCA,the obtained value is 22495.384 which occurs at the 77th iteration,whereas using NNA,the objective value is 23534.583 which occurs at the 387th iteration.

    Figure 1:The convergence graph for solving the stochastic transportation problem at the third run using WCA and NNA

    The convergence graph of WCA and NNA at the optimal solution is presented in Fig.2.It can be observed from the figure that the convergence of WCA is faster than that of NNA.WCA is stable after 203 iterations,whereas NNA is stable after 569 iterations.

    Figure 2:The convergence graph of the optimal solution obtained by WCA and NNA of the stochastic transportation problem

    Fig.3 illustrates the convergence graph of WCA and NNA at the worst solution.The convergence of WCA is much stable than that of NNA.WCA converges after 64 iterations,whereas NNA converges after 500 iterations.

    Also,for each run,the elapsed time is calculated using WCA and NNA,which is shown in Fig.4.

    It is concluded that for solving transportation problem,the decision-maker opt for the best solution,which means that the number of units that are transferred from different supply locations to different destination locations arex11=62.22365,x12=0.0205(~0),x13=30.98294,x14=461.7318,x21=1.339141,x22=118.9762,x23=501.3241,x24=34.68913,x31=267.6457,x32=312.9103,x33=0,x34=136.3857,and the total transportation cost is Rs.21887.897.

    Figure 3:The convergence graph of the optimal solution obtained by WCA and NNA of the stochastic transportation problem

    Figure 4:The elapsed time taken by WCA and NNA at each run

    7 Conclusions

    In this study,the stochastic transportation problem is considered in which supply and demand are Weibull random variables.This work incorporates the WCA algorithm into the stochastic transportation problem to obtain the optimal solution.Since the transportation problem contains a large number of constraints,the constraints are handled using Deb’s constraint handling techniques.The problem is also solved by a metaheuristic algorithm NNA and the obtained results are compared.All the constraints are handled in WCA and NNA.The results show that WCA gives significant results when compared to NNA.As a future scope,WCA can be applied to the multi-objective stochastic transportation problem to find the optimal solution that can satisfy all the objectives.

    Acknowledgement: The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group number RG-1436-040.

    Funding Statement: This work was funded by the Deanship of Scientific Research at King Saud University through research Group Number RG-1436-040.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    欧美丝袜亚洲另类 | 制服丝袜大香蕉在线| 精品欧美国产一区二区三| 亚洲人成网站在线播| 少妇的逼水好多| 色哟哟哟哟哟哟| av国产免费在线观看| 九九热线精品视视频播放| 亚洲欧美日韩高清专用| 脱女人内裤的视频| 999久久久精品免费观看国产| 他把我摸到了高潮在线观看| 免费搜索国产男女视频| 欧美日韩亚洲国产一区二区在线观看| 成人国产综合亚洲| 久久99热这里只有精品18| 91在线精品国自产拍蜜月 | 亚洲美女视频黄频| 国产黄色小视频在线观看| 美女 人体艺术 gogo| 午夜久久久久精精品| 精品福利观看| 搡女人真爽免费视频火全软件 | 亚洲av中文字字幕乱码综合| 亚洲精品亚洲一区二区| 国产精品自产拍在线观看55亚洲| 美女高潮的动态| 亚洲中文日韩欧美视频| 日本五十路高清| 九九热线精品视视频播放| 精品熟女少妇八av免费久了| 少妇的逼水好多| 成人国产一区最新在线观看| 欧美性感艳星| 99久久综合精品五月天人人| 欧美日韩精品网址| 99久久精品热视频| 国产精华一区二区三区| 窝窝影院91人妻| 亚洲中文字幕日韩| 国产欧美日韩精品亚洲av| 男插女下体视频免费在线播放| 国产久久久一区二区三区| 国内精品一区二区在线观看| 18禁黄网站禁片免费观看直播| 国内毛片毛片毛片毛片毛片| 国产精品久久久久久久久免 | av天堂中文字幕网| 国产成年人精品一区二区| 久久久久九九精品影院| 啦啦啦韩国在线观看视频| 三级国产精品欧美在线观看| 亚洲无线在线观看| 国产日本99.免费观看| 中文字幕av在线有码专区| 日本免费一区二区三区高清不卡| 国产黄a三级三级三级人| 久9热在线精品视频| 夜夜躁狠狠躁天天躁| 人妻夜夜爽99麻豆av| 亚洲国产欧洲综合997久久,| 三级毛片av免费| 小蜜桃在线观看免费完整版高清| 国产野战对白在线观看| 日韩av在线大香蕉| 午夜福利成人在线免费观看| 又黄又爽又免费观看的视频| 91麻豆精品激情在线观看国产| 久久久久国内视频| 免费在线观看日本一区| 国产精品影院久久| 亚洲欧美一区二区三区黑人| www.熟女人妻精品国产| av在线蜜桃| 国产欧美日韩精品亚洲av| 别揉我奶头~嗯~啊~动态视频| 免费观看精品视频网站| 国产男靠女视频免费网站| 18禁在线播放成人免费| 精品久久久久久成人av| 国产精品久久久久久久电影 | 天堂av国产一区二区熟女人妻| 成人av一区二区三区在线看| 综合色av麻豆| 国产成人啪精品午夜网站| 变态另类成人亚洲欧美熟女| 九色成人免费人妻av| 欧美日韩一级在线毛片| 特级一级黄色大片| 亚洲片人在线观看| 欧美成狂野欧美在线观看| 欧美一级a爱片免费观看看| 亚洲一区二区三区色噜噜| 少妇的逼好多水| 久99久视频精品免费| 午夜免费男女啪啪视频观看 | 国产成人啪精品午夜网站| 在线观看66精品国产| 丰满人妻一区二区三区视频av | 国产精品1区2区在线观看.| 免费av毛片视频| 18禁裸乳无遮挡免费网站照片| 国产在线精品亚洲第一网站| 又粗又爽又猛毛片免费看| 亚洲狠狠婷婷综合久久图片| 成熟少妇高潮喷水视频| 久久精品91蜜桃| 最新中文字幕久久久久| 1024手机看黄色片| 波多野结衣巨乳人妻| 欧美日本亚洲视频在线播放| 久久久国产精品麻豆| 国产精华一区二区三区| 国内精品久久久久久久电影| 性欧美人与动物交配| 精品一区二区三区av网在线观看| 亚洲人成网站在线播放欧美日韩| www.色视频.com| 日本a在线网址| 免费在线观看亚洲国产| 久久久精品大字幕| 99视频精品全部免费 在线| 97人妻精品一区二区三区麻豆| 亚洲内射少妇av| 男女视频在线观看网站免费| 免费看日本二区| 人人妻人人看人人澡| 精品国产亚洲在线| 男女做爰动态图高潮gif福利片| 国内毛片毛片毛片毛片毛片| 国产成人av教育| 午夜视频国产福利| 午夜福利高清视频| 一进一出好大好爽视频| 嫩草影院精品99| 好男人在线观看高清免费视频| 欧美中文综合在线视频| 亚洲国产日韩欧美精品在线观看 | 夜夜爽天天搞| 在线免费观看不下载黄p国产 | 香蕉丝袜av| 国产麻豆成人av免费视频| 久久人妻av系列| 激情在线观看视频在线高清| 午夜影院日韩av| 久久久久久国产a免费观看| 黄片大片在线免费观看| 国产精品久久电影中文字幕| 欧美日韩瑟瑟在线播放| 国产午夜精品久久久久久一区二区三区 | 最新美女视频免费是黄的| 免费一级毛片在线播放高清视频| 757午夜福利合集在线观看| 搡老岳熟女国产| 国产一区二区亚洲精品在线观看| 亚洲av免费高清在线观看| 老司机福利观看| 国产色爽女视频免费观看| 全区人妻精品视频| 亚洲熟妇中文字幕五十中出| 成人无遮挡网站| av黄色大香蕉| 亚洲精品一卡2卡三卡4卡5卡| 成人国产一区最新在线观看| 亚洲片人在线观看| 久久久精品欧美日韩精品| 亚洲av免费高清在线观看| 国产高清videossex| 免费看光身美女| 婷婷精品国产亚洲av在线| 黄片小视频在线播放| 啪啪无遮挡十八禁网站| 国产视频内射| av专区在线播放| 不卡一级毛片| 久久精品国产清高在天天线| 天天躁日日操中文字幕| 亚洲第一欧美日韩一区二区三区| 国产精品99久久久久久久久| 午夜福利18| 欧美性猛交╳xxx乱大交人| 久久天躁狠狠躁夜夜2o2o| 日韩欧美在线二视频| 中文资源天堂在线| 国内精品美女久久久久久| 国产91精品成人一区二区三区| 18美女黄网站色大片免费观看| 熟女少妇亚洲综合色aaa.| 欧美日韩国产亚洲二区| 国内精品美女久久久久久| 一二三四社区在线视频社区8| 国产成人影院久久av| 国产高清三级在线| 久久香蕉精品热| 免费电影在线观看免费观看| 嫩草影院入口| 国内久久婷婷六月综合欲色啪| 午夜免费男女啪啪视频观看 | 18禁国产床啪视频网站| 狂野欧美白嫩少妇大欣赏| 国产精品一区二区三区四区免费观看 | 别揉我奶头~嗯~啊~动态视频| 国产免费男女视频| 国产成年人精品一区二区| 又爽又黄无遮挡网站| 精品国产超薄肉色丝袜足j| 亚洲狠狠婷婷综合久久图片| 男女那种视频在线观看| 国产一区二区在线观看日韩 | 久久国产精品影院| 偷拍熟女少妇极品色| 久久国产精品人妻蜜桃| 18禁黄网站禁片免费观看直播| tocl精华| 少妇高潮的动态图| 精品久久久久久久毛片微露脸| 日本在线视频免费播放| 久久人人精品亚洲av| 禁无遮挡网站| 天天一区二区日本电影三级| 色综合站精品国产| 国产久久久一区二区三区| 成人国产一区最新在线观看| 国产成人影院久久av| 亚洲一区二区三区不卡视频| 老汉色av国产亚洲站长工具| 高清在线国产一区| 国产一区在线观看成人免费| 黄色片一级片一级黄色片| h日本视频在线播放| 999久久久精品免费观看国产| 舔av片在线| 动漫黄色视频在线观看| 国产黄色小视频在线观看| 免费观看精品视频网站| 18禁国产床啪视频网站| 内地一区二区视频在线| 黄色成人免费大全| 日本与韩国留学比较| 亚洲无线在线观看| 精品一区二区三区视频在线 | 国产毛片a区久久久久| 午夜福利欧美成人| 欧美性猛交黑人性爽| 色精品久久人妻99蜜桃| 中文字幕人妻熟人妻熟丝袜美 | 亚洲国产精品成人综合色| 99久久成人亚洲精品观看| 又紧又爽又黄一区二区| 长腿黑丝高跟| 少妇人妻精品综合一区二区 | 国内精品久久久久久久电影| 欧美乱色亚洲激情| 男人舔女人下体高潮全视频| 天天躁日日操中文字幕| 国产麻豆成人av免费视频| 国产免费男女视频| 九九久久精品国产亚洲av麻豆| 一本一本综合久久| 波多野结衣巨乳人妻| 每晚都被弄得嗷嗷叫到高潮| 色综合站精品国产| 亚洲人成伊人成综合网2020| 香蕉久久夜色| 国产高清激情床上av| 久久午夜亚洲精品久久| 小蜜桃在线观看免费完整版高清| 少妇人妻一区二区三区视频| 91在线精品国自产拍蜜月 | 亚洲片人在线观看| 国产精华一区二区三区| 99久久精品一区二区三区| 搡老岳熟女国产| 久久久久久久精品吃奶| 中文在线观看免费www的网站| 两个人的视频大全免费| 一二三四社区在线视频社区8| 国模一区二区三区四区视频| 蜜桃亚洲精品一区二区三区| 动漫黄色视频在线观看| 18禁国产床啪视频网站| a在线观看视频网站| 最新美女视频免费是黄的| 免费在线观看影片大全网站| 深夜精品福利| 18禁黄网站禁片午夜丰满| 国产熟女xx| 日韩 欧美 亚洲 中文字幕| 中国美女看黄片| 人妻丰满熟妇av一区二区三区| 日韩人妻高清精品专区| 超碰av人人做人人爽久久 | 欧美最新免费一区二区三区 | 亚洲真实伦在线观看| 欧美zozozo另类| 亚洲av成人精品一区久久| 国产男靠女视频免费网站| 最近最新中文字幕大全免费视频| 亚洲无线观看免费| 亚洲国产欧美人成| 国产精品野战在线观看| 麻豆国产97在线/欧美| av黄色大香蕉| 香蕉av资源在线| 精品久久久久久成人av| 国产精品香港三级国产av潘金莲| 亚洲欧美精品综合久久99| 午夜免费成人在线视频| 一级黄片播放器| 一进一出抽搐gif免费好疼| 成人无遮挡网站| 99久久九九国产精品国产免费| 免费看美女性在线毛片视频| 国产亚洲精品av在线| 十八禁网站免费在线| 日韩欧美在线二视频| 91av网一区二区| 桃色一区二区三区在线观看| 久久精品人妻少妇| 亚洲人与动物交配视频| 亚洲专区中文字幕在线| bbb黄色大片| 麻豆久久精品国产亚洲av| 午夜免费激情av| av福利片在线观看| 亚洲精品久久国产高清桃花| 麻豆成人av在线观看| 91在线精品国自产拍蜜月 | 亚洲aⅴ乱码一区二区在线播放| 国产午夜精品论理片| 久久久国产精品麻豆| 成人欧美大片| 久久香蕉国产精品| 麻豆一二三区av精品| 一二三四社区在线视频社区8| 一本精品99久久精品77| 97超视频在线观看视频| 日韩欧美国产在线观看| 国产私拍福利视频在线观看| av黄色大香蕉| 国产精品,欧美在线| 亚洲男人的天堂狠狠| 日韩成人在线观看一区二区三区| www国产在线视频色| 人人妻人人澡欧美一区二区| 首页视频小说图片口味搜索| 成人三级黄色视频| 国产精品久久久久久久久免 | 国产一区在线观看成人免费| 女人被狂操c到高潮| 日韩欧美国产一区二区入口| 国产中年淑女户外野战色| 12—13女人毛片做爰片一| 亚洲欧美日韩高清专用| 老熟妇仑乱视频hdxx| 久久久国产成人免费| 亚洲中文字幕一区二区三区有码在线看| a在线观看视频网站| 久久香蕉精品热| www.www免费av| 网址你懂的国产日韩在线| 久久6这里有精品| 亚洲国产精品合色在线| 男女视频在线观看网站免费| 小说图片视频综合网站| 给我免费播放毛片高清在线观看| 999久久久精品免费观看国产| 青草久久国产| 每晚都被弄得嗷嗷叫到高潮| 国产精品美女特级片免费视频播放器| 波多野结衣高清无吗| 精品熟女少妇八av免费久了| 久久精品人妻少妇| 亚洲成a人片在线一区二区| 国产男靠女视频免费网站| 熟女人妻精品中文字幕| 99久久久亚洲精品蜜臀av| 亚洲五月婷婷丁香| 麻豆久久精品国产亚洲av| 最近在线观看免费完整版| 伊人久久大香线蕉亚洲五| 免费观看的影片在线观看| 特级一级黄色大片| 欧美性感艳星| 亚洲欧美日韩东京热| 国产黄色小视频在线观看| 国产伦一二天堂av在线观看| 亚洲欧美一区二区三区黑人| 国产精品98久久久久久宅男小说| 国产成人影院久久av| 九九在线视频观看精品| 嫁个100分男人电影在线观看| 国产老妇女一区| 一边摸一边抽搐一进一小说| 亚洲电影在线观看av| 亚洲成av人片免费观看| 日韩人妻高清精品专区| 日本黄色片子视频| 亚洲成人中文字幕在线播放| 日韩欧美在线二视频| 色综合亚洲欧美另类图片| 国产高清videossex| 在线免费观看的www视频| 国产成人a区在线观看| 中文字幕人妻丝袜一区二区| 国产伦精品一区二区三区四那| 久久久国产精品麻豆| 欧美日本视频| 欧美激情在线99| av福利片在线观看| 精品欧美国产一区二区三| 国产免费一级a男人的天堂| 可以在线观看的亚洲视频| 久久久久亚洲av毛片大全| 欧美黄色淫秽网站| 国内揄拍国产精品人妻在线| 观看免费一级毛片| 国产亚洲欧美在线一区二区| 好看av亚洲va欧美ⅴa在| 日本免费a在线| 欧美不卡视频在线免费观看| 亚洲五月婷婷丁香| 大型黄色视频在线免费观看| 亚洲成a人片在线一区二区| 国产成人系列免费观看| 99久久成人亚洲精品观看| 88av欧美| 免费av观看视频| 日本免费a在线| 亚洲av五月六月丁香网| 18禁裸乳无遮挡免费网站照片| 国产一级毛片七仙女欲春2| 操出白浆在线播放| 亚洲欧美日韩无卡精品| 丰满人妻熟妇乱又伦精品不卡| 黄片小视频在线播放| 啦啦啦韩国在线观看视频| 午夜福利免费观看在线| 欧美日韩瑟瑟在线播放| 桃红色精品国产亚洲av| 嫩草影视91久久| 国产单亲对白刺激| 国产欧美日韩一区二区三| 男女那种视频在线观看| 琪琪午夜伦伦电影理论片6080| 香蕉久久夜色| 国产精品久久视频播放| 国产免费一级a男人的天堂| 一级黄片播放器| 国产真人三级小视频在线观看| 少妇的逼好多水| 国产精品 欧美亚洲| 午夜福利18| 在线看三级毛片| 国产精品久久久久久亚洲av鲁大| 亚洲av免费高清在线观看| 国产精品亚洲美女久久久| 国产精品自产拍在线观看55亚洲| 精品国内亚洲2022精品成人| 亚洲,欧美精品.| 欧美中文综合在线视频| 亚洲乱码一区二区免费版| 可以在线观看的亚洲视频| 老熟妇仑乱视频hdxx| 亚洲成人久久爱视频| 亚洲一区二区三区色噜噜| 国产精品 国内视频| 国产精品一区二区三区四区免费观看 | 波野结衣二区三区在线 | 最近最新中文字幕大全电影3| 精华霜和精华液先用哪个| 99热6这里只有精品| 亚洲国产高清在线一区二区三| 色精品久久人妻99蜜桃| 久久香蕉精品热| a在线观看视频网站| 国产精品98久久久久久宅男小说| 99久久无色码亚洲精品果冻| 久久久久免费精品人妻一区二区| 听说在线观看完整版免费高清| 看黄色毛片网站| 亚洲av成人av| 窝窝影院91人妻| 淫秽高清视频在线观看| 成人欧美大片| 亚洲av免费在线观看| 黄色丝袜av网址大全| 精品国产三级普通话版| 亚洲av电影不卡..在线观看| 久久国产乱子伦精品免费另类| xxxwww97欧美| 男女午夜视频在线观看| 99久久精品国产亚洲精品| 亚洲 国产 在线| 精品无人区乱码1区二区| 神马国产精品三级电影在线观看| 一进一出抽搐动态| 亚洲 欧美 日韩 在线 免费| 俺也久久电影网| 99久久九九国产精品国产免费| 免费看十八禁软件| 成人一区二区视频在线观看| 有码 亚洲区| 久久精品国产综合久久久| 极品教师在线免费播放| 欧美+日韩+精品| 亚洲七黄色美女视频| 在线十欧美十亚洲十日本专区| 色播亚洲综合网| 国产精品亚洲一级av第二区| 一本久久中文字幕| 色哟哟哟哟哟哟| 国产中年淑女户外野战色| 欧美av亚洲av综合av国产av| 日韩欧美在线二视频| 丰满的人妻完整版| 亚洲欧美日韩高清在线视频| 国产一区二区激情短视频| 亚洲无线观看免费| 免费搜索国产男女视频| 熟女电影av网| 亚洲av免费高清在线观看| 一区二区三区高清视频在线| 亚洲av免费高清在线观看| 日韩精品青青久久久久久| 亚洲第一欧美日韩一区二区三区| 国产精品av视频在线免费观看| 中文字幕人妻熟人妻熟丝袜美 | 啦啦啦观看免费观看视频高清| 亚洲av日韩精品久久久久久密| 欧美乱色亚洲激情| 日本 欧美在线| 身体一侧抽搐| 在线观看免费午夜福利视频| 国产真实乱freesex| 老司机在亚洲福利影院| 一边摸一边抽搐一进一小说| 麻豆久久精品国产亚洲av| 老司机午夜十八禁免费视频| 在线视频色国产色| 日本三级黄在线观看| 国产精品一区二区三区四区久久| a级一级毛片免费在线观看| 波多野结衣高清作品| 99久久精品一区二区三区| 亚洲国产欧美人成| 看免费av毛片| 国产黄a三级三级三级人| 精品久久久久久久人妻蜜臀av| 亚洲av电影在线进入| 国产精品亚洲美女久久久| 亚洲欧美一区二区三区黑人| 老司机在亚洲福利影院| 18禁裸乳无遮挡免费网站照片| 亚洲中文字幕一区二区三区有码在线看| 久久久国产成人免费| 91字幕亚洲| 国产日本99.免费观看| 亚洲成人精品中文字幕电影| 国产v大片淫在线免费观看| 精品国产三级普通话版| 国产在视频线在精品| 国产高清视频在线观看网站| 国产伦精品一区二区三区四那| 最近视频中文字幕2019在线8| 香蕉久久夜色| 欧美激情在线99| 久久香蕉精品热| 在线观看免费午夜福利视频| 国产三级中文精品| 成年女人毛片免费观看观看9| 亚洲av成人av| 欧美日韩精品网址| 亚洲欧美激情综合另类| 免费电影在线观看免费观看| 老司机深夜福利视频在线观看| 成年人黄色毛片网站| 3wmmmm亚洲av在线观看| av专区在线播放| 午夜福利在线观看吧| 国产av在哪里看| 亚洲人成网站高清观看| 亚洲av熟女| 91字幕亚洲| 国产aⅴ精品一区二区三区波| 国产精品女同一区二区软件 | 久久精品亚洲精品国产色婷小说| 免费观看的影片在线观看| 日韩欧美精品v在线| 最近最新中文字幕大全电影3| 午夜亚洲福利在线播放| 91久久精品电影网| 久久久久精品国产欧美久久久| 免费看美女性在线毛片视频| 1000部很黄的大片| 亚洲国产精品久久男人天堂| 亚洲av电影在线进入| 国语自产精品视频在线第100页| aaaaa片日本免费| 国产不卡一卡二| 91在线观看av| 好男人在线观看高清免费视频| 亚洲美女视频黄频| 欧美日韩国产亚洲二区| 最近在线观看免费完整版| 久久婷婷人人爽人人干人人爱| 国产午夜精品论理片| 国产真实乱freesex| 久久久久久久久大av| 特级一级黄色大片| 国产精品美女特级片免费视频播放器| 高清日韩中文字幕在线| 天天一区二区日本电影三级| 无人区码免费观看不卡| 日韩欧美三级三区|