• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of BRIC Stock Price Using ARIMA,SutteARIMA,and Holt-Winters

    2022-11-09 08:14:14AnsariSalehAhmarPawanKumarSinghNguyenVanThanhNguyenVietTinhandVoMinhHieu
    Computers Materials&Continua 2022年1期

    Ansari Saleh Ahmar,Pawan Kumar Singh,Nguyen Van Thanh,Nguyen Viet Tinh and Vo Minh Hieu

    1Department of Statistics,Faculty of Mathematics and Natural Sciencces,Universitas Negeri Makassar,Makassar,90223,Indonesia

    2School of Humanities and Social Sciences,Thapar Institute of Engineering and Technology,Patiala,147004,India

    3Faculty of Commerce,Van Lang University,Ho Chi Minh City,70000,Vietnam

    Abstract:The novel coronavirus has played a disastrous role in many countries worldwide.The outbreak became a major epidemic,engulfing the entire world in lockdown and it is now speculated that its economic impact might be worse than economic deceleration and decline.This paper identifies two different models to capture the trend of closing stock prices in Brazil(BVSP),Russia(IMOEX.ME),India(BSESN),and China(SSE),i.e.,(BRIC)countries.We predict the stock prices for three daily time periods,so appropriate preparations can be undertaken to solve these issues.First,we compared the ARIMA,SutteARIMA and Holt-Winters(H-W)methods to determine the most effective model for predicting data.The stock closing price of BRIC country data was obtained from Yahoo Finance.That data dates from 01 November 2019 to 11 December 2020,then divided into two categories-training data and test data.Training data covers 01 November 2019 to 02 December 2020.Seven days(03 December 2020 to 11 December 2020)of data was tested to determine the accuracy of the models using training data as a reference.To measure the accuracy of the models,we obtained the means absolute percentage error(MAPE)and mean square error(MSE).Prediction model Holt-Winters was found to be the most suitable for forecasting the Brazil stock price (BVSP)while MAPE (0.50) and MSE (579272.65) with Holt-Winters (smaller than ARIMA and SutteARIMA),model SutteARIMA was found most appropriate to predict the stock prices of Russia(IMOEX.ME),India(BSESN),and China(SSE)when compared to ARIMA and Holt-Winters.MAPE and MSE with SutteARIMA: Russia (MAPE:0.7;MSE:940.20),India (MAPE:0.90;MSE:207271.16),and China (MAPE: 0.72;MSE: 786.28).Finally,Holt-Winters predicted the daily forecast values for the Brazil stock price (BVSP)(12 December to 14 December 2020 i.e.,115757.6,116150.9 and 116544.1),while SutteARIMA predicted the daily forecast values of Russia stock prices(IMOEX.ME)(12 December to 14 December 2020 i.e.,3238.06,3241.54 and 3245.01),India stock price(BSESN)(12 December to 14 December 2020 i.e.,.45709.38,45828.71 and 45948.05),and China stock price(SSE)(11 December to 13 December 2020 i.e.,3397.56,3390.59 and 3383.61) for the three time periods.

    Keywords: SutteARIMA;Holt-Winters;ARIMA;stock price;COVID-19

    1 Introduction

    COVID-19 is an infectious disease caused by a new coronavirus (SARS-CoV-2).It was first reported in Wuhan,Hubei Province,in China in December of 2019 [1-3].This outbreak became a pandemic,engulfing the entire world in lock-down.It is now speculated that its economic impact might be worse than the Great Depression of the 1930s [4].Developed and undeveloped economies,which were already experiencing weaker growth before this crisis,now face even greater challenges of economic deceleration and decline,with the expectation that the world economy will have shrunk by 3% in 2020 [4].The coronavirus (COVID-19) disease still continues to spread around the world,with over 63 million cases and over 1.47 million deaths as of November 30,2020 [5].

    The current pandemic (COVID-19) is badly affecting stock prices,financial markets,and other economic activities of BRIC (Brazil,Russia,India,and China) as well as the entire world economy [6].The pandemic and the related financial crisis has rekindled interest in predicting the path of leading economic indicators including asset prices.There is evidence that asset prices,including stock prices,help predict output and inflation by acting as leading indicators [7,8].Further,there are major (asymmetric) spillovers from the stock markets to the real sector of economies [9].Asset price bubbles have potentially negative effects on an economy.The departure of asset prices from the fundamentals can lead to inappropriate investments that decrease the efficiency of an economy [10].Hence,the need for accurate prediction of stock prices in the COVID-19 pandemic cannot be overlooked.Intelligent use of such predication data will help policymakers’decision-making strategies [11].The benefits of such forecasts include paving the path for relevant policy decisions in advance and providing important information to officials to prepare appropriate policies to avoid the steepest slowdown since the Great Depression of the 1930s from the unprecedented pandemic COVID-19.Indeed,Gupta and Modise clearly illustrated the importance of forecasting information to fight such economic crises [12].

    Stock markets in BRIC countries have become an important source of global portfolio diversification.However,there are challenges when predicting stock returns of emerging stock markets,and identifying the dynamic behaviours of stock prices in Brazil,Russia,India,and China.Hence,this study emphasizes the prediction of stock prices for a group of emerging market economies,namely,Brazil,Russia,India,and China (BRICS).BRICS unites five significant arising economies that involve 40% of the total populace,have 25% of the world’s GDP and 17% offers on the worldwide exchanges [13].Indeed,predictions of stock markets is important to understand the fluctuation in markets in the presence of the novel coronavirus (COVID-19).Such investigations have been previously undertaken during different crises and during the 2020 pandemic on various stock prices using different forecasting models.

    Zhang et al.[14] developed the IBCO-BP model to predict the stock indices.Pang,et al.[15]developed a neural network approach for greater accuracy in stock market predictions.Thakkar et al.[16] used fusion methods for various stock market applications.The Infectious Disease EMV tracker (IDEMV) proposed by Baker et al.[17] also offers additional predictive ability for the European stock market’s volatility during the COVID-19 pandemic.Zhou et al.[18] used multiple heterogeneous data sources to predict the direction of stock price movements.Cao et al.[19]compared the prediction abilities of linear models in the financial forecasting literature to the prediction abilities of univariate and multivariate neural network models.Guresen et al.[20]evaluated the effectiveness of neural network models using real exchange daily rate values for the NASDAQ stock exchange index in the U.S.Aye et al.[21] tried to predict BRICS stock returns with the help of ARFIMA models.The SutteARIMA method,a short-term prediction method Qa used in the U.S.for COVID-19 and for COVID-19 and the stock market in Spain [22-24],while Ahmar et al.[3] used the SutteARIMA method ro predict confirmed cases in Spain.Salisu et al.[25] applied the GFI (Global Fear Index) to understand the predictability of commodity price levels during COVID.Nabipour et al.[26] used machine learning algorithms to predict the future values of the Tehran stock market while Garcia-Vega et al.[27] applied the KAF (Kernel Adaptive Index) with stock market interdependence to systematically predict stock market returns.Pang et al.[15] advocated for the use of a deep long short-term memory neural network (LSTM)with an embedded layer and the long short-term memory neural network with an automatic encoder to forecast stock market data.Ahmar et al.[28] compared the indicators ARIMA,Holt-Winters,SARIMA,αsutte,which are widely used along with NNAR for predicting stock market and time series data.

    Against this background,the current paper contributes to this research area by first reinvestigating the existence or otherwise of long memory for BRIC stock prices.Secondly,we predict the stock price for the BRIC countries using the ARIMA,SutteARIMA,and Holt Winters models.Third,we compare the forecast ability of the ARIMA,SutteARIMA,and Holt Winters models.ARIMA,SutteARIMA and Holt-Winters are very important models often used by different researchers [3,22,25].Hence,the current study examines the application of ARIMA,SutteARIMA and Holt-Winters models.

    2 Literatures

    2.1 ARIMA

    TheZtprocess is an autoregressive-moving average or ARMA (p,q) model when fulfilled as [3,22]:

    withφp(B)=(1-φ1B-φ2B2-...-φpBp) (for AR(p))

    andθq(B)=(1-θ1B-θ2B2-...-θqBq) (for MA(q)).

    If there is a differencing then the ARIMA model becomes as follows [3,22]:

    φp(B)(1-Bd)Zt=θq(B)at,at~WN(0,σ2),φp,θq∈?,t∈Z.

    withφp(B)=(1-φ1B-φ2B2-...-φpBp) (for AR(p)),(1-B)d(for differencing non-seasonal)

    andθq(B)=(1-θ1B-θ2B2-...-θqBq) (for MA(q)).

    2.2 α-Sutte Indicator

    Theα-Sutte indicator (α-Sutte) is based on the forecasting practice developed using the previous values of the variable or data set [28].This model applies the adapted version of the MA(moving average) method of forecasting,which is generally used to detect and forecast trends in time series data.Theα-Sutte indicator’s predictions are based on four data sets from the previous period,i.e.,Zt-1,Zt-2,Zt-3,andZt-4[28].The principal equations for theα-Sutte method are [28]:

    where:

    δ=Zt-4

    γ=Zt-3

    β=Zt-2

    α=Zt-1

    Δx=γ-δ=Zt-3-Zt-4

    Δy=β-γ=Zt-2-Zt-3

    Δz=α-β=Zt-1-Zt-2

    Zt=data atttime

    Zt-k=data at (t-k) time.

    2.3 SutteARIMA

    The SutteARIMA is a method of forecasting that combines the ARIMA method andα-Sutte [22].The result of this SutteARIMA forecast is the average of the results coming from ARIMA andα-Sutte.

    The SutteARIMA Eq.(1),can be described as [28]:

    While Eq.(3),can be reduced by using backward shift operator(BpZt=Zt-p):

    If we define:

    δ=Zt-4

    γ=Zt-3

    β=Zt-2

    α=Zt-1

    The Eq.(4) can be:

    and the Eq.(2) can be simplified as:

    Let,Eq.(4) added with Eq.(5),we will find:

    So,Eq.(6) is the formula for SutteARIMA.After an overview of related models,the next section discusses the methodology.

    2.4 Holt-Winters

    The Holt-Winters prediction method has been categorized into two parts-Multiplicative Holt-Winters (MHW),and Additive Holt-Winters (AHW).The MHW method is described in the following Eq.(7) [29].

    The component form for the additive method is:

    where:yt=data onttime,s=the seasonal length in a certain time,andm=the amount of data to be predicated.

    3 Methodology

    The stock closing price data for Brazil,Russia,India and China (BRIC) were collected from YahoFinance for period from 01 November 2019 to 11 December 2020 [30].In this research,the data have been divided into two parts,namely,training data and test data.The training data covers 01 November 2019 to 02 December 2020,while test data covers 03 December to 11 December 2020.Based on these fitted data,this study conducted short-term forecasts for 3 future periods.Ahmar developed the SutteForecast R package in R software,and it compares the forecasting results of other forecasting methods [31].In our interpretation of these predictions,we used the forecasting accuracy measure MAPE (Mean Absolute Percentage Error) and Mean Squared Error (MSE) [32] noted as follows:

    where:

    At=Actual values at data timetandFt=forecast value at data timet.

    4 Result and Discussion

    Short-term daily estimates for stock prices are important in order to make strategic decisions for the future.Figs.1a-1d highlight that the stock prices in Brazil,Russia,India and China have fluctuated since the beginning of COVID-19.A crucial impact was felt on the stock prices of BRIC countries,because with the outbreak of the unprecedented pandemic called COVID-19,investors started panic buying,which then led to selling of stocks,which resulted in a drop-in stock price.This trend increased after the WHO announced COVID-19 was a global pandemic.Brazil,Russia,India and China saw large numbers of confirmed cased and deaths due to the pandemic.Hence,it became very important to throw light on the fluctuations of stock prices in BRIC countries during this COVID-19 period.

    This study applied the ARIMA,SutteARIMA,and Holt-Winters prediction models to forecast the stock price for BVSP (Brazil),IMOEX.ME (Russia),BSESN (India),and SSE (China).Results of the fitted data for ARIMA,SutteARIMA,and Holt-Winters in the BRIC countries are presented in Tab.1.Tab.1 shows the value of the average percentage error (APE) of each method.The value of APE for SutteARIMA was lower than the other methods for RIS (Russia,India,and China) and Holt-Winters for Brazil.

    To determine the accuracy of each method,the comparison of the value of mean absolute percentage error (MAPE) and the mean square error from the results of predicting the test data was done (Tab.2).A comparison of accuracy value is presented in Tab.2,and the forecast results based of most appropriate model for the next three periods are presented in Tab.3.

    Holt-Winters was found to be most appropriate method for predicting the Brazilian stock price (BVSP),while SutteARIMA was found to be most appropriate model to use for predicting the Russian stock price (IMOEX.ME),Indian stock price (BSESN),and Chinese stock price(SSE).Hence Holt-Winters was used to forecast the Brazilian stock price,and SutteARIMA was used to forecast the Russian,Indian and Chinese stock prices in Tab.3.

    All the predictions were performed with 99% confidence intervals.The MAPE (0.50) and MSE(579272.65) value using the Holt-Winters method for Brazil stock price,and MAPE (Russia:0.75;India: 0.90 and China:0.72),and MSE (Russia:940.20;India: 207271.16 and China: 786.28) and using the SutteARIMA method for Russia,India and China stock price were to be found relatively smaller as noted in Tab.2.

    Figure 1:The stock price of Brazil (a),Russia (b),India (c) and China (d) fluctuated since the beginning of COVID-19

    Table 1:Results from fitting the stock price in the BRIC countries

    Table 1:Continued

    Table 2:Error in the forecasting models

    Table 2:Continued

    Table 3:Forecasting results on the basis of fitting data

    5 Conclusion and Further Research

    In fitting the data from 03 December 2020 to 11 December 2020,Holt-Winters and SutteARIMA were found to be most suitable to use to predict the stock price of BRIC countries.Therefore,in this paper,we propose two different techniques for predicting the stock prices BVSP(Brazil),IMOEX.ME (Russia),BSESN (India),and SSE (China).First Holt-Winters can be used to predict the Brazil stock price,and SutteARIMA can be used to predict Russia,India,and China stock prices.Finally,Holt-Winters predicted daily forecast values for the Brazil stock price (BVSP) (12 December to 14 December 2020 i.e.,115757.6,116150.9 and 116544.1) and SutteARIMA was used to predict the daily forecast values of Russia (IMOEX.ME) (12 December to 14 December 2020 i.e.,3238.06,3241.54 and 3245.01),India (BSESN) (12 December to 14 December 2020 i.e.,45709.38,45828.71 and 45948.05),and China (SSE) (11 December to 13 December 2020 i.e.,3397.56,3390.59 and 3383.61) for the three-time periods.

    This result demonstrates that the Holt-Winters and SutteARIMA models are most appropriate for predicting BRIC countries’stock prices,and they can provide an intellectual notion for policy makers to use as a tool for policy formulation.This models will also be helpful for policymakers when ascertaining future impacts.Further this approach can be compared with other methods,for example,theα-Sutte indicator,NNAR,Theta,the time series linear model (TSLM) or other forecasting methods.

    Acknowledgement: Authors should thank those who contributed to the article but cannot include themselves.

    Funding Statement: The authors received no specific funding for this study.

    Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the present study.

    欧美黄色片欧美黄色片| 亚洲熟女精品中文字幕| 在线精品无人区一区二区三| 亚洲伊人色综图| 激情视频va一区二区三区| 黑人欧美特级aaaaaa片| 日韩一卡2卡3卡4卡2021年| 国产黄频视频在线观看| 性色av乱码一区二区三区2| 精品人妻熟女毛片av久久网站| 在线观看人妻少妇| 性色av一级| a 毛片基地| 9191精品国产免费久久| 亚洲欧洲日产国产| 亚洲精品乱久久久久久| 国产精品成人在线| 纵有疾风起免费观看全集完整版| 大香蕉久久网| 午夜福利,免费看| 国产一区有黄有色的免费视频| 女人被躁到高潮嗷嗷叫费观| 9热在线视频观看99| 黑人操中国人逼视频| 两个人看的免费小视频| 一级片'在线观看视频| 日韩 亚洲 欧美在线| 精品少妇内射三级| 人人澡人人妻人| 亚洲avbb在线观看| 亚洲av男天堂| 69精品国产乱码久久久| 男女边摸边吃奶| 国产亚洲精品久久久久5区| 国产三级黄色录像| 亚洲男人天堂网一区| 精品视频人人做人人爽| 女人高潮潮喷娇喘18禁视频| 日韩一区二区三区影片| 五月天丁香电影| 精品少妇内射三级| 脱女人内裤的视频| 搡老乐熟女国产| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕最新亚洲高清| 18禁裸乳无遮挡动漫免费视频| 精品国产乱码久久久久久小说| 亚洲精品久久久久久婷婷小说| 69av精品久久久久久 | 欧美激情极品国产一区二区三区| 另类亚洲欧美激情| 日韩电影二区| 天天躁狠狠躁夜夜躁狠狠躁| 嫩草影视91久久| 女人被躁到高潮嗷嗷叫费观| 一区二区三区激情视频| 淫妇啪啪啪对白视频 | 五月天丁香电影| 高清欧美精品videossex| 看免费av毛片| 黄片播放在线免费| 免费av中文字幕在线| 色综合欧美亚洲国产小说| 性少妇av在线| 久久这里只有精品19| 欧美日韩一级在线毛片| 欧美精品一区二区免费开放| 老鸭窝网址在线观看| 最近最新中文字幕大全免费视频| 老司机影院毛片| 精品人妻熟女毛片av久久网站| 91麻豆精品激情在线观看国产 | 国产又爽黄色视频| 久久久久久久国产电影| 亚洲国产欧美日韩在线播放| 在线观看www视频免费| 999精品在线视频| 麻豆乱淫一区二区| 国产精品一区二区精品视频观看| 高清欧美精品videossex| 天天躁日日躁夜夜躁夜夜| 中文字幕高清在线视频| 啦啦啦在线免费观看视频4| 两个人看的免费小视频| 精品第一国产精品| 中文字幕最新亚洲高清| av一本久久久久| 欧美国产精品一级二级三级| www.精华液| svipshipincom国产片| 午夜久久久在线观看| 国产亚洲午夜精品一区二区久久| 欧美另类亚洲清纯唯美| 一级片'在线观看视频| 人妻久久中文字幕网| 自拍欧美九色日韩亚洲蝌蚪91| 少妇的丰满在线观看| 日韩大片免费观看网站| 亚洲成国产人片在线观看| 十分钟在线观看高清视频www| 国产区一区二久久| 首页视频小说图片口味搜索| 各种免费的搞黄视频| 十分钟在线观看高清视频www| 国产精品亚洲av一区麻豆| 首页视频小说图片口味搜索| 可以免费在线观看a视频的电影网站| 久久精品久久久久久噜噜老黄| 99精品久久久久人妻精品| 精品熟女少妇八av免费久了| 99久久国产精品久久久| 午夜老司机福利片| 久久久精品国产亚洲av高清涩受| 女警被强在线播放| 日韩有码中文字幕| 成在线人永久免费视频| 亚洲九九香蕉| 最近中文字幕2019免费版| 叶爱在线成人免费视频播放| 91av网站免费观看| 少妇裸体淫交视频免费看高清 | 男女国产视频网站| 中文字幕最新亚洲高清| 久久人人爽av亚洲精品天堂| 制服人妻中文乱码| 成人影院久久| 精品一区二区三区av网在线观看 | 黄片大片在线免费观看| 桃红色精品国产亚洲av| 日本av免费视频播放| 后天国语完整版免费观看| av福利片在线| 日韩一卡2卡3卡4卡2021年| 一本色道久久久久久精品综合| 成年女人毛片免费观看观看9 | 99久久综合免费| 91麻豆av在线| 男女高潮啪啪啪动态图| 9色porny在线观看| 一级毛片精品| 9191精品国产免费久久| 久久精品亚洲熟妇少妇任你| 男人爽女人下面视频在线观看| 一二三四在线观看免费中文在| 亚洲中文字幕日韩| 免费在线观看影片大全网站| 亚洲av成人不卡在线观看播放网 | 国产欧美日韩综合在线一区二区| 热99re8久久精品国产| 欧美黄色淫秽网站| 国产精品 欧美亚洲| 久久人人爽av亚洲精品天堂| 久久 成人 亚洲| 丰满少妇做爰视频| 亚洲va日本ⅴa欧美va伊人久久 | 美女中出高潮动态图| 1024香蕉在线观看| av有码第一页| 99国产综合亚洲精品| 伊人亚洲综合成人网| 最新的欧美精品一区二区| 香蕉国产在线看| 亚洲人成电影观看| 国产精品久久久久久人妻精品电影 | 久久久久国产一级毛片高清牌| 精品久久久久久电影网| 亚洲av男天堂| 777米奇影视久久| 亚洲国产中文字幕在线视频| 丰满迷人的少妇在线观看| 青春草亚洲视频在线观看| 精品人妻1区二区| 欧美精品高潮呻吟av久久| 在线观看免费视频网站a站| 欧美激情 高清一区二区三区| 成年人免费黄色播放视频| 俄罗斯特黄特色一大片| 亚洲精品中文字幕一二三四区 | 久久人妻福利社区极品人妻图片| 永久免费av网站大全| 欧美精品一区二区免费开放| 亚洲国产av新网站| 熟女少妇亚洲综合色aaa.| 久久久久久久久免费视频了| 黑人操中国人逼视频| 国产精品99久久99久久久不卡| 韩国高清视频一区二区三区| 日韩欧美国产一区二区入口| 久久亚洲精品不卡| www.999成人在线观看| 黑丝袜美女国产一区| 国产免费福利视频在线观看| 超色免费av| 亚洲国产av新网站| svipshipincom国产片| 啦啦啦视频在线资源免费观看| 国产成+人综合+亚洲专区| 少妇 在线观看| www.自偷自拍.com| avwww免费| 亚洲国产日韩一区二区| 一进一出抽搐动态| 国产成人影院久久av| 99久久精品国产亚洲精品| 伊人久久大香线蕉亚洲五| 狠狠精品人妻久久久久久综合| tube8黄色片| 男女床上黄色一级片免费看| videosex国产| 色精品久久人妻99蜜桃| 黄色片一级片一级黄色片| 色综合欧美亚洲国产小说| 天堂8中文在线网| 超碰成人久久| 在线观看www视频免费| 嫩草影视91久久| 一区二区日韩欧美中文字幕| 国产一区二区三区综合在线观看| 久久国产精品大桥未久av| 18在线观看网站| 亚洲av男天堂| 91老司机精品| 亚洲av成人一区二区三| 国产精品免费视频内射| 黑人巨大精品欧美一区二区蜜桃| 国产精品香港三级国产av潘金莲| 国产精品国产av在线观看| 大香蕉久久网| 高清黄色对白视频在线免费看| 如日韩欧美国产精品一区二区三区| 黄色片一级片一级黄色片| 正在播放国产对白刺激| 一区二区三区乱码不卡18| 性色av一级| 丝袜喷水一区| 99国产精品免费福利视频| 纵有疾风起免费观看全集完整版| 欧美日韩福利视频一区二区| 亚洲欧洲日产国产| 9191精品国产免费久久| 天堂俺去俺来也www色官网| tube8黄色片| 一本一本久久a久久精品综合妖精| 国内毛片毛片毛片毛片毛片| 青草久久国产| 人妻久久中文字幕网| 精品少妇内射三级| 一区二区三区激情视频| 少妇精品久久久久久久| 啦啦啦 在线观看视频| 色精品久久人妻99蜜桃| 最新在线观看一区二区三区| 午夜免费鲁丝| 九色亚洲精品在线播放| 97在线人人人人妻| 精品人妻熟女毛片av久久网站| 欧美精品一区二区大全| 最黄视频免费看| 国产高清国产精品国产三级| 亚洲精品国产av成人精品| 亚洲精品在线美女| 国产精品久久久av美女十八| 亚洲中文av在线| 大香蕉久久成人网| 国产激情久久老熟女| 9191精品国产免费久久| 蜜桃国产av成人99| 国产主播在线观看一区二区| www.999成人在线观看| 国产精品二区激情视频| 日韩欧美免费精品| 伊人亚洲综合成人网| 日本一区二区免费在线视频| 亚洲avbb在线观看| 在线观看免费高清a一片| 秋霞在线观看毛片| 青春草视频在线免费观看| 免费高清在线观看日韩| 成年人黄色毛片网站| 亚洲国产中文字幕在线视频| 无限看片的www在线观看| 久久人人97超碰香蕉20202| 中文字幕人妻丝袜一区二区| 色精品久久人妻99蜜桃| av又黄又爽大尺度在线免费看| 男男h啪啪无遮挡| 国产一级毛片在线| 久久中文看片网| 最近最新免费中文字幕在线| 精品国产乱码久久久久久小说| 久久人人爽av亚洲精品天堂| 色婷婷久久久亚洲欧美| 国产野战对白在线观看| 午夜福利免费观看在线| av福利片在线| 国产精品一区二区免费欧美 | 90打野战视频偷拍视频| 91国产中文字幕| 国产片内射在线| 美国免费a级毛片| 国产无遮挡羞羞视频在线观看| 他把我摸到了高潮在线观看 | 亚洲人成77777在线视频| 久久香蕉激情| 9色porny在线观看| 午夜两性在线视频| 国产精品国产av在线观看| 亚洲av欧美aⅴ国产| 中文精品一卡2卡3卡4更新| 99九九在线精品视频| 亚洲 国产 在线| 国产欧美日韩精品亚洲av| 成人手机av| 9色porny在线观看| 国产日韩欧美视频二区| 久久毛片免费看一区二区三区| 啪啪无遮挡十八禁网站| 久久久久国产一级毛片高清牌| 一本久久精品| 日本五十路高清| 日韩视频一区二区在线观看| 欧美日韩福利视频一区二区| 亚洲 欧美一区二区三区| 亚洲午夜精品一区,二区,三区| 国产在线观看jvid| 香蕉丝袜av| 十分钟在线观看高清视频www| netflix在线观看网站| 乱人伦中国视频| 久久国产精品大桥未久av| 国产成人一区二区三区免费视频网站| 日日夜夜操网爽| 美女视频免费永久观看网站| 美女高潮喷水抽搐中文字幕| 国产色视频综合| 50天的宝宝边吃奶边哭怎么回事| 另类精品久久| 国产欧美日韩精品亚洲av| 欧美人与性动交α欧美精品济南到| 精品国产乱子伦一区二区三区 | 亚洲av欧美aⅴ国产| www.精华液| 又紧又爽又黄一区二区| 亚洲视频免费观看视频| 免费高清在线观看视频在线观看| 亚洲精品国产色婷婷电影| 久久国产精品影院| 国产一卡二卡三卡精品| 免费人妻精品一区二区三区视频| 丰满人妻熟妇乱又伦精品不卡| 少妇 在线观看| 蜜桃在线观看..| 一区二区三区精品91| 淫妇啪啪啪对白视频 | 黄片小视频在线播放| 国产黄频视频在线观看| 亚洲欧美日韩高清在线视频 | 亚洲精品在线美女| 99re6热这里在线精品视频| 后天国语完整版免费观看| 日日夜夜操网爽| 丝瓜视频免费看黄片| 久久国产精品大桥未久av| 国产成人免费观看mmmm| 两性午夜刺激爽爽歪歪视频在线观看 | 久久精品国产亚洲av高清一级| 精品欧美一区二区三区在线| 曰老女人黄片| kizo精华| 亚洲熟女精品中文字幕| 国产免费视频播放在线视频| 丝瓜视频免费看黄片| 91av网站免费观看| 熟女少妇亚洲综合色aaa.| 亚洲专区国产一区二区| 午夜福利,免费看| 亚洲人成电影免费在线| 精品国产国语对白av| tube8黄色片| 母亲3免费完整高清在线观看| 国产高清国产精品国产三级| 欧美日韩黄片免| 人人妻人人澡人人爽人人夜夜| 欧美黄色淫秽网站| 手机成人av网站| 国产伦理片在线播放av一区| 亚洲熟女精品中文字幕| 男男h啪啪无遮挡| 极品少妇高潮喷水抽搐| 香蕉丝袜av| 免费不卡黄色视频| 丰满迷人的少妇在线观看| 999精品在线视频| 男女床上黄色一级片免费看| 制服诱惑二区| 99国产精品99久久久久| 波多野结衣av一区二区av| 国产成人精品无人区| 中文字幕最新亚洲高清| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成77777在线视频| 亚洲国产欧美在线一区| 黑人巨大精品欧美一区二区mp4| 久久av网站| 国产精品秋霞免费鲁丝片| 99国产精品一区二区三区| 他把我摸到了高潮在线观看 | 国产精品偷伦视频观看了| 黄色毛片三级朝国网站| 波多野结衣av一区二区av| 色精品久久人妻99蜜桃| av在线播放精品| 在线观看人妻少妇| 午夜福利在线观看吧| av在线播放精品| 午夜影院在线不卡| 亚洲精品久久久久久婷婷小说| 日日夜夜操网爽| 午夜影院在线不卡| 十八禁人妻一区二区| 91精品伊人久久大香线蕉| 免费少妇av软件| 国产精品偷伦视频观看了| 午夜日韩欧美国产| h视频一区二区三区| 亚洲熟女精品中文字幕| 91九色精品人成在线观看| 精品人妻在线不人妻| 最黄视频免费看| 久久精品亚洲熟妇少妇任你| 18禁国产床啪视频网站| 国产精品秋霞免费鲁丝片| 9热在线视频观看99| 日本黄色日本黄色录像| 亚洲av男天堂| 99热全是精品| 久久国产精品大桥未久av| 黑人猛操日本美女一级片| 国产高清视频在线播放一区 | 9191精品国产免费久久| 久久亚洲精品不卡| 欧美人与性动交α欧美精品济南到| 午夜福利影视在线免费观看| 亚洲视频免费观看视频| 亚洲国产av影院在线观看| 老熟妇乱子伦视频在线观看 | 嫁个100分男人电影在线观看| 99久久综合免费| 欧美变态另类bdsm刘玥| 99久久国产精品久久久| 欧美日韩精品网址| 日韩熟女老妇一区二区性免费视频| 一级片'在线观看视频| 国产一级毛片在线| 十八禁网站免费在线| 视频区图区小说| 国产精品免费视频内射| 国产精品一区二区在线观看99| 日韩视频一区二区在线观看| 国产精品亚洲av一区麻豆| 国产亚洲一区二区精品| 免费观看人在逋| 淫妇啪啪啪对白视频 | 国产精品一区二区在线观看99| 亚洲欧洲日产国产| 亚洲 国产 在线| 中国美女看黄片| 丰满少妇做爰视频| 亚洲国产精品999| 日韩大片免费观看网站| 在线观看www视频免费| 免费女性裸体啪啪无遮挡网站| 欧美久久黑人一区二区| 丁香六月天网| 91国产中文字幕| 老司机亚洲免费影院| 黄色视频不卡| 免费av中文字幕在线| 乱人伦中国视频| 免费人妻精品一区二区三区视频| 国产在视频线精品| 99精品欧美一区二区三区四区| 欧美黄色淫秽网站| 丝袜在线中文字幕| 人成视频在线观看免费观看| 少妇猛男粗大的猛烈进出视频| 久久久精品免费免费高清| 精品久久久久久电影网| 日韩中文字幕欧美一区二区| 国产亚洲精品久久久久5区| 一级毛片女人18水好多| 精品一品国产午夜福利视频| 亚洲伊人久久精品综合| 热re99久久精品国产66热6| 在线看a的网站| 午夜福利视频精品| 亚洲成人国产一区在线观看| 亚洲第一欧美日韩一区二区三区 | 91老司机精品| 在线观看免费视频网站a站| 亚洲国产av新网站| 啦啦啦啦在线视频资源| 亚洲黑人精品在线| 91九色精品人成在线观看| 精品少妇黑人巨大在线播放| 亚洲avbb在线观看| 男女午夜视频在线观看| 欧美人与性动交α欧美精品济南到| 国产精品一区二区精品视频观看| 国产一区二区三区在线臀色熟女 | 50天的宝宝边吃奶边哭怎么回事| 国产精品香港三级国产av潘金莲| 久久这里只有精品19| 国产无遮挡羞羞视频在线观看| 精品福利永久在线观看| 一区二区三区乱码不卡18| 日韩,欧美,国产一区二区三区| 精品一区在线观看国产| 亚洲第一av免费看| 日本wwww免费看| 国产一级毛片在线| 1024视频免费在线观看| 国产精品熟女久久久久浪| 日韩熟女老妇一区二区性免费视频| 成人18禁高潮啪啪吃奶动态图| a级片在线免费高清观看视频| 国产亚洲午夜精品一区二区久久| 新久久久久国产一级毛片| 99香蕉大伊视频| 亚洲中文字幕日韩| 老鸭窝网址在线观看| 国产成+人综合+亚洲专区| 国产亚洲欧美在线一区二区| 久久综合国产亚洲精品| 欧美变态另类bdsm刘玥| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 日韩有码中文字幕| 亚洲精品国产区一区二| 日韩大码丰满熟妇| 国产精品一区二区精品视频观看| 中文字幕人妻丝袜制服| 王馨瑶露胸无遮挡在线观看| 啦啦啦 在线观看视频| 9191精品国产免费久久| 欧美激情 高清一区二区三区| √禁漫天堂资源中文www| 免费少妇av软件| 国产区一区二久久| 99久久人妻综合| 人人妻人人澡人人看| 免费在线观看影片大全网站| 免费人妻精品一区二区三区视频| 国产精品一区二区精品视频观看| 亚洲精品中文字幕一二三四区 | 少妇猛男粗大的猛烈进出视频| 中文字幕人妻丝袜一区二区| 国产人伦9x9x在线观看| 欧美97在线视频| 免费不卡黄色视频| 啦啦啦在线免费观看视频4| 久久久久国内视频| 成年人午夜在线观看视频| 欧美激情高清一区二区三区| 亚洲av成人一区二区三| 成人亚洲精品一区在线观看| 一本色道久久久久久精品综合| 精品亚洲乱码少妇综合久久| 三级毛片av免费| 天天躁夜夜躁狠狠躁躁| 波多野结衣一区麻豆| 妹子高潮喷水视频| 亚洲五月婷婷丁香| 亚洲中文字幕日韩| 汤姆久久久久久久影院中文字幕| 水蜜桃什么品种好| a级毛片在线看网站| 一边摸一边抽搐一进一出视频| 亚洲欧美一区二区三区黑人| 我要看黄色一级片免费的| 免费观看人在逋| 中文字幕精品免费在线观看视频| 日韩欧美免费精品| 欧美人与性动交α欧美软件| 性色av乱码一区二区三区2| 欧美人与性动交α欧美软件| 肉色欧美久久久久久久蜜桃| 亚洲欧美清纯卡通| 男女之事视频高清在线观看| 国产精品久久久久成人av| 肉色欧美久久久久久久蜜桃| 又黄又粗又硬又大视频| 欧美xxⅹ黑人| 男人爽女人下面视频在线观看| 男女下面插进去视频免费观看| 一边摸一边抽搐一进一出视频| 纵有疾风起免费观看全集完整版| 亚洲一区中文字幕在线| 69av精品久久久久久 | 精品少妇久久久久久888优播| 老汉色av国产亚洲站长工具| 久久人人爽av亚洲精品天堂| 国产精品二区激情视频| av在线播放精品| 欧美日韩中文字幕国产精品一区二区三区 | 人人澡人人妻人| 捣出白浆h1v1| 午夜福利视频精品| 99精国产麻豆久久婷婷| 一本大道久久a久久精品| 亚洲av日韩在线播放| 9热在线视频观看99| 1024视频免费在线观看| 亚洲成人免费电影在线观看| 久久九九热精品免费|